Main menu
[49] H.-C. Herbig, D. Herden, C. Seaton, A symmetric function approach to polynomial regression , submitted (2023).
[48] W.Q. Erickson, D. Herden, J. Meddaugh, M. Sepanski, C. Hammon, J. Mohn, I. Ruiz-Bolaños, Young tableau reconstruction via minors , submitted (2023).
[47] D. Herden, J. Meddaugh, M. Sepanski, I. Echols, N. Garcia-Montoya, C. Hammon,
G. Huang, A. Kraus, J. Marchena-Menendez, J. Mohn, R. Morales Jiménez, On
the P3 -hull number and infecting times of generalized Petersen graphs , submitted (2021).
[46] M. Dugas, D. Herden, The Dedekind-MacNeille completion of a poset as a set of ideals , to appear in Order (2023), doi:10.1007/s11083-023-09640-y
[45] A. Barringer, H.-C. Herbig, D. Herden, S. Khalid, C. Seaton, L. Walker, Multigraded Hilbert series of invariants, covariants, and symplectic quotients for some rank 1 Lie groups , Commun. Alg. 52 (2024), 1000–1027, doi:10.1080/00927872.2023.2255284
[44] D. Herden, A.V. Pasi, On the absoluteness of ℵ1 -freeness , Algebra Logic 61 (2023), 351–362, doi:10.1007/s10469-023-09704-3
[43] D. Herden, A.V. Pasi, ОБ АБСОЛЮТНОСТИ ℵ1 -СВОБОДЫ (Russian Translation), Algebra i Logika 61 (2023), 523–540, doi:10.33048/alglog.2022.61.501
[42] H.-C. Herbig, D. Herden, C. Seaton, Higher Kozsul brackets on the cotangent complex , Int. Math. Res. Notices 2023 (2023), 11592–11644, doi:10.1093/imrn/rnac170
[41] D. Herden, M. Sepanski, J. Stanfill, C. Hammon, J. Henningsen, H. Ickes, I. Ruiz-Bolaños, Partitions with designated summands not divisible by 2l , 2, and 3l modulo 2, 4, and 3 , Integers 23 (2023), #A43 (23 pages).
[40] W.Q. Erickson, D. Herden, J. Meddaugh, M. Sepanski, I. Echols, C. Hammon,
J. Marchena-Menendez, J. Mohn, B. Radillo-Murguia, I. Ruiz-Bolaños, Klein cordial trees and odd cyclic cordial friendship graphs , Discrete Math. 346 (2023), 113488 (18
pages), doi:10.1016/j.disc.2023.113488
[39] H.-C. Herbig, D. Herden, C. Seaton, Hilbert series of symplectic quotients by the 2-torus , Collect. Math. 74 (2023), 415–442, doi:10.1007/s13348-022-00357-6
[38] D. Bossaller, D. Herden, A.V. Pasi, Forcing a basis into ℵ1 -free groups , J. Algebra 627 (2023), 43–57, doi:10.1016/j.jalgebra.2023.03.009
[37] D. Herden, J. Meddaugh, M. Sepanski, I. Echols, N. Garcia-Montoya, C. Hammon,
G. Huang, A. Kraus, J. Marchena-Menendez, J. Mohn, R. Morales Jiménez, Vertex-edge marking score of certain triangular lattices , Australas. J. Comb. 84 (2022), 202–211.
[36] D. Herden, M. Sepanski, J. Stanfill, C. Hammon, J. Henningsen, H. Ickes, J.
Marchena-Menendez, T. Poe, I. Ruiz-Bolaños, E. Smith, Counting the parts divisible by k in all the partitions of n whose parts have multiplicity less than k , Integers 22 (2022), #A49 (17 pages).
[35] M. Dugas, D. Herden, J. Rebrovich, Reduced finitary incidence algebras and their automorphisms , Internat. J. Algebra Comput. 32 (2022), 85–114, doi:10.1142/S0218196722500047
[34] H.-C. Herbig, D. Herden, C. Seaton, The Laurent coefficients of the Hilbert series of a Gorenstein algebra , Exp. Math. 30 (2021), 56–75, doi:10.1080/10586458.2018.1492473
[33] P. Hagelstein, D. Herden, A. Stokolos, A theorem of Besicovitch and a generalization of the Birkhoff Ergodic Theorem , Proc. Amer. Math. Soc. Ser. B 8 (2021), 52–59, doi:10.1090/bproc/73
[32] M. Dugas, D. Herden, S. Shelah, אk -free cogenerators , Special Issue in Honor of L. Fuchs’s 95th Birthday, Rend. Semin. Mat. Univ. Padova 144 (2020), 87–104, doi:10.4171/RSMUP/58
[31] P. de Carvalho Cayres Pinto, H.-C. Herbig, D. Herden, C. Seaton, The Hilbert series of SL2 -invariants , Commun. Contemp. Math. 22 (2020), 1950017 (38 pages), doi:10.1142/S0219199719500172
[30] M. Dugas, D. Herden, J. Rebrovich, Indecomposable ideals of finitary incidence algebras , J. Pure Appl. Algebra 224 (2020), 106336 (12 pages), doi:10.1016/j.jpaa.2020.106336
[29] H.-C. Herbig, D. Herden, C. Seaton, Hilbert series associated to symplectic quotients by SU2 , Internat. J. Algebra Comput. 30 (2020), 1323–1357, doi:10.1142/S0218196720500435
[28] P. Hagelstein, D. Herden, Solution 12071 , Amer. Math. Monthly 127 (2020), 464–465, doi:10.1080/00029890.2020.1736447
[27] M. Dugas, D. Herden, J. Rebrovich, Normal subgroups of the group of units of incidence algebras , Lin. Alg. Appl. 586 (2020), 64–88, doi:10.1016/j.laa.2019.10.017
[26] E. Gwaltney, P. Hagelstein, D. Herden, B. King, On a theorem of Besicovitch and a problem in ergodic theory , Involve 12 (2019), 961–968, doi:10.2140/involve.2019.12.961
[25] E. Cowie, H.-C. Herbig, D. Herden, C. Seaton, The Hilbert series and a-invariant of circle quotients , J. Pure Appl. Algebra 223 (2019), 395–421, doi:10.1016/j.jpaa.2018.03.017
[24] P. Hagelstein, D. Herden, Problem 12071 , Amer. Math. Monthly 125 (2018), 851, doi:10.1080/00029890.2018.1507359
[23] J. Courtemanche, M. Dugas, D. Herden, Local automorphisms of finitary incidence algebras , Lin. Alg. Appl. 541 (2018), 221–257, doi:10.1016/j.laa.2017.12.008
[22] E. Gwaltney, P. Hagelstein, D. Herden, A probabilistic proof of the Vitali Covering Lemma , Meth. Funct. Anal. Top. 24 (2018), 34–40.
[21] D. Herden, M. Petapirak, J. Rodríguez, Group varieties not closed under cellular covers and localizations , J. Group Theory 20 (2017), 1073–1088, doi:10.1515/jgth-2017-0021
[20] P. Hagelstein, D. Herden, D. Young, Ramsey theorems for sets satisfying a regularity condition , J. Math. Anal. Appl. 447 (2017), 951–956, doi:10.1016/j.jmaa.2016.10.047
[19] M. Dugas, D. Herden, S. Shelah, An extension of M. C. R. Butler’s theorem
on endomorphism rings , Groups, Modules and Model Theory – Surveys and Recent Developments, Springer (2017), 277–284, doi:10.1007/978-3-319-51718-6_13
[18] D. Herden, M. Hrbek, P. Růžička, On the existence of weak bases for vector spaces , Lin. Alg. Appl. 501 (2016), 98–111, doi:10.1016/j.laa.2016.03.001
[17] D. Herden, H. G. Salazar Pedroza, Separable אk -free modules with almost trivial dual , Comment. Math. Univ. Carol. 57 (2016), 7–20, doi:10.14712/1213-7243.2015.150
[16] H.-C. Herbig, D. Herden, C. Seaton, On compositions with x² ⁄ (1-x) , Proc. Am. Math. Soc. 143 (2015), 4583–4596, doi:10.1090/proc/12806
[15] R. Göbel, D. Herden, H. G. Salazar Pedroza, אk -free separable groups with prescribed endomorphism ring , Fund. Math. 231 (2015), 39–55, doi:10.4064/fm231-1-3
[14] R. Göbel, D. Herden, S. Shelah, Prescribing endomorphism algebras of אn -free modules , J. Eur. Math. Soc. 16 (2014), 1775–1816, doi:10.4171/JEMS/475
[13] D. Herden, Constructing אk -free Structures , Habilitationsschrift, Universität Duisburg-Essen (2013).
[12] D. Herden, L. Strüngmann, Pure subgroups of completely decomposable groups and a group class problem , Illinois J. Math. 55 (2013), 1533–1549, euclid:ijm/1373636695
[11] D. Herden, Upper cardinal bounds for absolute structures , Groups and Model Theory, Proceedings of the Mülheim Conference 2011, Contemporary Mathematics 576 (2012), 137–150, doi:10.1090/conm/576/11355
[10] R. Göbel, D. Herden, S. Shelah, Absolute E -rings , Adv. Math. 226 (2011), 235–253, doi:10.1016/j.aim.2010.06.019
[9] D. Herden, S. Shelah, κ -fold transitive groups , Forum Math. 22 (2010), 627–640, doi:10.1515/forum.2010.034
[8] R. Göbel, D. Herden, S. Shelah, Skeletons, bodies and generalized E(R) -algebras , J. Eur. Math. Soc. 11 (2009), 845–901, doi:10.4171/JEMS/169
[7] D. Herden, S. Shelah, An upper cardinal bound on absolute E -rings , Proc. Am. Math. Soc. 137 (2009), 2843–2847, doi:10.1090/S0002-9939-09-09842-6
[6] D. Herden, L. Strüngmann, Pure subgroups of completely decomposable groups – an algorithmic approach , Models, Modules and Abelian Groups (In Memory of A.L.S. Corner), Walter de Gruyter, Berlin (2008), 169–186, doi:10.1515/9783110203035.169
[5] R. Göbel, D. Herden, The existence of large E(R) -algebras that are sharply transitive modules , Commun. Algebra 36 (2008), 120–131, doi:10.1080/00927870701665230
[4] R. Göbel, D. Herden, Constructing sharply transitive R -modules of rank ≤ 2אo , J. Group Theory 10 (2007), 467–475, doi:10.1515/JGT.2007.039
[3] R. Göbel, D. Herden, E(R) -algebras that are sharply transitive modules , J. Algebra 311 (2007), 319–336, doi:10.1016/j.jalgebra.2006.12.020
[2] D. Herden, Uniquely Transitive R -modules , PhD Thesis, Universität Duisburg-Essen (2005).
[1] D. Herden, Scharf transitive κ -freie R -Moduln , Diploma Thesis, Universität Duisburg-Essen (2003).