Baylor Analysis Seminar
(Baylor Math Home Page)


The Baylor University analysis seminar meets on Wednesday afternoons from 3:30PM-4:30PM in Sid Richardson 225. For questions about the analysis seminar or to be added to the seminar mailing list, please contact Paul Hagelstein, Andrei Martinez-Finkelshtein, Tao Mei, Marius Mitrea, or Brian Simanek (all email addresses can be found on the Baylor math department website).


Academic Year 2022-2023 SCHEDULE:

 

December 7
3:30 PM
SDRICH 225
 
Blanca Radillo-Murguia
Baylor University
Graduate Prelim Exam

 

(Contact: Blanca Radillo-Murguia)

 
November 30
3:30 PM
Zoom
 
Galina Filipuk
University of Warsaw
Painleve and Quasi-Painleve Equations

 

(Contact: Andrei Martinez-Finkelshtein)

 
November 9
3:30 PM
SDRICH 225
 
Lee Fisher
University of California, Irvine
The Area Law for XXZ Quantum Spin Systems

 

(Contact: Christoph Fischbacher)

 
November 2
3:30 PM
SDRICH 225
 
Pedro Da Silva
Baylor University
Boundary Problems, Herz-type Hardy Spaces, and Functions of Bounded Central Mean Oscillations

 

(Contact: Pedro Da Silva)

 
October 19
3:30 PM
SDRICH 225
 
Dorina Mitrea
Baylor University
A Sharp Divergence Theorem

 

(Contact: Dorina Mitrea)

 
October 5
3:30 PM
SDRICH 225
 
Javier Parcet
ICMAT
Balanced Fourier truncations and Xp inequalities

 

(Contact: Tao Mei)

 
September 28
3:30 PM
SDRICH 225
 
Hunter Handley
Baylor University
Continued Fractions: An Arithmetic and Analytic Study

 

(Contact: Brian Simanek)

 
September 7
3:30 PM
SDRICH 225
 
Sheng Yin
Baylor University
Rank Inequality Done by Free Probability and Random Matrices
Abstract

(Contact: Tao Mei)

 
August 23
3:30 PM
SDRICH 225
 
Pavel Exner
Doppler Institute for Mathematical Physics and Applied Mathematics
Effects of a nontrivial vertex coupling in the spectra of quantum graphs

Abstract

(Contact: Fritz Gesztesy)

 
August 10
3:30 PM
SDRICH 225
 
Roger Nichols
The University of Tennessee at Chattanooga
Strict Domain Monotonicity of the Principal Eigenvalue and a Characterization of Lower Semiboundedness for the Friedrichs Extension of Four-Coefficient Sturm–Liouville Operators
 

(Contact: Fritz Gesztesy)

 






















































































Leave a Reply

Your email address will not be published.