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Abstract. We combine recently-developed finite element algorithms based on Bernstein polynomials [1, 14]
with the explicit basis construction of the finite element exterior calculus [5] to give a family of algorithms for the
Rham complex on simplices that achieves stiffness matrix construction and matrix-free action in optimal complexity.
These algorithms are based on realizing the exterior calculus bases as short combinations of Bernstein polynomials.
Numerical results confirm optimal scaling of the algorithms and favorable comparison with FEniCS at high polynomial
order as well. Additional empirical studies show that very high accuracy is achieved in the mixed discretization of
the Poisson equation and the Maxwell eigenvalue problem as the polynomial degree increases.
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1. Introduction. Realizing the mathematical power of high-order discretizations of partial
differential equations requires specialized algorithms. In rectangular geometry, sum-factorization
algorithms dating back to Orszag [27] have proven fundamental, giving optimal-complexity and high
arithmetic intensity algorithms for evaluating operators. Though more complicated, the collapsed-
coordinate bases discussed extensively by Karniadakis and Sherwin [12] have proven effective in
other simplicial and other geometries.

Recently, Bernstein polynomials have been proposed as an alternative tool for developing effi-
cient high-order finite element algorithms. Our paper [14] demonstrated that elementwise constant-
coefficient mass matrices possess dimensionally-recursive blockwise decompositions that lead to
optimal-complexity O(rn+1) algorithms for matrix-vector products, where r is the polynomial de-
gree and n the spatial dimension. Because of the sparsity of differentiation in the Bernstein basis,
this technique carries over to stiffness matrices. We developed similar techniques applicable to
variable coefficients via numerical quadrature in [15]. Around the same time, Ainsworth et al also
developed techniques for Bernstein polynomials [1]. These are based on the observation that the
Duffy transform [9] tensorializes the Bernstein basis, and the resulting algorithms are perhaps more
concise to explain and implement than the matrix decompositions in [14, 15]. In addition to opti-
mal complexity for the matrix-vector product, they also give the first known optimal-order O(r2n)
algorithm for forming the entries of the element stiffness matrices – constant work per matrix
element.

Collapsed-coordinate bases and Bernstein polynomials, then, give two approaches for efficiently
implementing standard H1-type finite element spaces on simplices. The Sobolev spaces H(div) and
H(curl) present additional challenges. While we can refer to the work of Hientzsch [11] in rectangular
geometry, we are only aware of [2] for simplicial geometry, where Ainsworth, Andriamaro, and
Davydov provide a Bernstein-type implementation of the triangular Raviart-Thomas element [29]
and their ongoing work to extend this to three dimensions.

In this paper, we take a broader view than [2], uniformly handling the de Rham complex. In
particular, we take the explicit basis construction [5] provided by Arnold, Falk, and Winther for the
de Rham complex [4]. These bases, inspired by earlier work of Gopalakrishnan et al [10], are based
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on Bernstein polynomials times Whitney forms. We express all of these bases as geometrically-
dependent linear combinations of Bernstein polynomials and utilize the already-developed fast
evaluation and integration techniques. In this way, we are able to give the first family of optimal-
complexity algorithms for matrix formation and application that works across the de Rham complex.
Linear solvers for higher-order mixed methods in unstructured geometry remain a challenge, how-
ever. We point to the work on multigrid for H(div) and H(curl) [3], block preconditioning work
for mixed Poisson [28], and the preconditioning techniques for high-order H1 disctretizations in [8]
as possible starting points for future work in this direction.

This paper sits in the wider context of our ongoing work to enable effective implementations of
finite element methods. In the FIAT project [13], we offered a computational paradigm based on
dense linear algebra that may have been the first realization of arbitrary order mixed finite element
spaces. However general these techniques are, they do not enable optimal-complexity algorithms
except for constant coefficient problems, were precomputation of reference integrals is performed.
This limitation propogates upwards to our work in ffc [30]. Likewise, our work in FErari [16] only
reduced the number of instructions, typically by some small factor, and did not reduce the order of
complexity. The present work, while not incorporated in high-level automated tools, does suggest
the possibility of obtaining the algorithmic efficiency of spectral element methods while retaining a
wide range of possible discretizations in unstructured geometry.

For the rest of this paper, in Section 2, we recall notation for Bernstein polynomials on the
simplex and recall the fundamental problems of evaluation and moment calculation addressed in
earlier papers [1,15]. We recall the complexity results of the algorithms given, but refer the reader to
those papers for the algorithmic details. We finish Section 2 by discussing how to evaluate bilinear
forms over linear combinations of Bernstein polynomials. If the linear combinations are short, then
the same order of complexity holds for these algorithms. In Section 3, we turn to the finite element
exterior calculus bases [5] and describe the relevant notation and bases. The major result of this
section and the paper, is that these basis functions and their derivatives are in fact short linear
combinations of Bernstein polynomials. In fact, the P−

r Λk basis functions consist of k+1 Bernstein
polynomials, independent of the polynomial degree r and spatial dimension d. Hence, the matrices
associated with bilinear forms over these spaces may be assembled and multiplied onto vectors with
optimal complexity.

We present some numerical results indicating the performance and accuracy of these bases in
Section 4. In particular, we give single-core scaling results for matrix assembly and matrix-vector
products for both 1- and 2-forms. Also, because Bernstein polynomials can give rise to matrices
with very large condition numbers, the accuracy of our methods at high order is a reasonable
concern. To this end, we present r-convergence studies on very coarse meshes for the mixed Poisson
problem in three dimensions and the curl-curl eigenvalue problem in two and three dimensions.

2. Bernstein-basis finite element algorithms.

2.1. Notation for Bernstein polynomials. Bernstein polynomials are naturally formulated
on the n-simplex in terms of the barycentric coordinates and multiindex notation. For a nondegen-
erate simplex T ⊂ R

n with vertices {xi}n
i=0, let {bi}n

i=0 denote the barycentric coordinates. Each
of these is an affine map from R

n into R with bi(xj) = δij for 0 ≤ i, j ≤ n and bi(x) ≥ 0 for all
x ∈ T .

We will also use standard multiindex notation, using lowercase Greek letters to denote multi-
indices and beginning the indexing with 0. So, α = (α0, α1, . . . , αn) is a tuple of n+ 1 nonnegative
integers. The order of α is given by

∑n
i=0 αi and we define the factorial α! ≡

∏n
i=0 αi!. A binomial
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coefficient with multiindex arguments implies the product over the entries. That is, if αi >= βi for
each entry i,

(
α

β

)
= Πn

i=0

(
αi

βi

)
.

We also define ei to be the multiindex consisting of zeros in all but the ith entry, where it is one.

Let b ≡ (b0, b2, . . . , bn) be the tuple of barycentric coordinates on a simplex. For a multiindex
α, we define bα by

∏n
i=0 b

α
i , which we call a barycentric monomial. Scaling these by appropriate

generalized binomial coefficients yields the Bernstein polynomials. The Bernstein polynomials of
degree r have the form

Br
α =

r!

α!
bα. (2.1)

For all spatial dimensions and degrees r, the Bernstein polynomials {Br
α}|α|=r form a nonnegative

partition of unity and a basis for the space of polynomials of degree r.

To take a partial derivative of a Bernstein polynomial in some direction s, we use the general
product rule to write

∂Br
α

∂s
=

∂

∂s

(
r!

α!
bα

)
=
r!

α!

n∑

i=0

(
αi
∂bi
∂s

bαi−1
i Πn

j=0b
αi

i

)
,

with the understanding that a term in the sum disappears if αi = 0. This can readily be rewritten
as

∂Br
α

∂s
= r

n∑

i=0

Br−1
α−ei

∂bi
∂s

, (2.2)

again with the terms vanishing if any αi = 0, so that the derivative of each Bernstein polynomial
is a short linear combination of lower-degree Bernstein polynomials.

Iterating over spatial directions, the gradient of each Bernstein polynomial can be written as

∇Br
α = r

n∑

i=0

Br−1
α−ei

∇bi. (2.3)

Note that each ∇bi is a fixed vector in R
n for a given simplex T . For a collection of cells, the

gradients of Bernstein polynomials are formed as exactly the same pattern of lower-degree Bernstein
polynomials times these fixed vectors – the pattern remains the same, but the numerical values of
the vectors changes between cells. In this way, one may store the pattern needed to form the linear
combinations once and then store the numerical values of ∇bi in a Nc × n array, where Nc is the
number of simplices in the mesh.

2.2. An example. We flesh out this approach with an example. Consider r = n = 2 –
quadratic Bernstein polynomials on a triangle. We use the lexicographic ordering to enumerate the
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Bernstein polynomials as

β2
0 ≡ B2

(0,0,2),

β2
1 ≡ B2

(0,1,1),

β2
2 ≡ B2

(0,2,0),

β2
3 ≡ B2

(1,0,1),

β2
4 ≡ B2

(1,1,0),

β2
5 ≡ B2

(2,0,0).

(2.4)

Since the gradients of these will be linear polynomials, we also enumerate the linear Bernstein
polynomials by

β1
0 ≡ B1

(0,0,1),

β1
1 ≡ B1

(0,1,0),

β1
2 ≡ B1

(1,0,0).

(2.5)

Using (2.3), the gradient of β0 = B2
(0,0,2) is

∇β2
0 = ∇B2

(0,0,2) = 2B1
(0,0,1)∇b2. = 2β1

0∇b2.

Similarly, we calculate that

∇β2
1 = 2β1

0∇b1 + 2β1
1∇b2,

∇β2
2 = 2β1

1∇b1,

∇β2
3 = 2β1

0∇b0 + 2β1
2∇b2,

∇β2
4 = 2β1

1∇b0 + 2β1
2∇b1,

∇β2
5 = 2β1

2∇b0.

We can specify the structure of these gradients for all triangles with some basic arrays. Each
gradient consists of one or more terms of the form of a scalar times a linear Bernstein polynomial
times the gradient of a barycentric coordinate. (In this case, all the scalars are 2, but we will need
a more general structure).

We have a total of six quadratic Bernstein polynomials, and there are a total of nine linear terms
in the expansion of these six gradients. We introduce several arrays that store this information.
Each Bernstein polynomial in the expansion of each gradient is scaled by the number 2. We define
S to be the array consisting of the number 2 repeated nine times:

S = [2, 2, 2, 2, 2, 2, 2, 2, 2].

We also store the arrays

L = [0, 0, 1, 1, 0, 2, 1, 2, 2]

and

G = [2, 1, 2, 1, 0, 2, 0, 1, 0]
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that contain the indices of the linear Bernstein polynomials and barycentric gradients appearing
in the linear combinations respectively. These are obtained by concatenating the indices of the
linear Bernstein polynomials and Bernstein gradients that appear in the linear combinations above
– ∇β2

0 is 2 times the β1
0 times the gradient of b2, so our first entries of S, L, and G are 2, 0, and

2, respectively. The next gradient ∇β2
1 = 2β1

0∇b1 + 2β1
1∇b2 consists of two terms. Both scalars

are 2, so the second and third entries in S are both 2. The 0 and 1 in the second and third entries
of L correspond to the bottom indices of β1

0 and β1
1 . Since the gradients of b1 and b2 appear in

the terms, the second and third entries of G must be 1 and 2. Going down the list of barycentric
gradients in the same manner fills in the rest of these entries.

One more data structure is needed to demarcate the beginnings of each basis function in S, L,
and R. To this end, we introduce the array

R = [0, 1, 3, 4, 6, 8, 9].

R[0] is 0, so the information for the first basis function begins in entries 0 of S, L, and G. Since R[1]
- R[0] = 1, we know there is only one term to build the first gradient. The second gradient starts
at entry 1 of S, L, and G, and has two terms (R[2] - R[1] = 2). The length of R is one more than
the number of basis gradients, and the final entry of R gives the total number of entries in S, L,
and G.

We call this collection a pattern. Given values of the linear Bernstein polynomials at a collection
of points, it is possible to evaluate the gradients of the quadratic Bernstein polynomials at those
points by looping through these data structures and incorporating the particular values of the
barycentric gradients, much like multiplying a compressed sparse row matrix onto a vector.

2.3. Stroud conical rules and the Duffy transform. The Duffy transform [9] tensorializes
the Bernstein polynomials, so sum factorization can be used for evaluating and integrating these
polynomials with Stroud conical quadrature. We used similar quadrature rules in our own work
on Bernstein-Vandermonde-Gauss matrices [15], but the connection to the Duffy transform and
decomposition of Bernstein polynomials was quite cleanly presented by Ainsworth et al in [1].

The Duffy transform maps any point t = (t1, t2, . . . , tn) in the n-cube [0, 1]n into the barycentric
coordinates for a n-simplex by first defining

λ0 = t1 (2.6)

and then inductively by

λi = ti+1


1 −

i−1∑

j=0

λj


 (2.7)

for 1 ≤ i ≤ n− 1, and then finally

λn = 1 −
n−1∑

j=0

λj . (2.8)

If a simplex T has vertices {xi}n
i=0, then the mapping

x(t) =

n∑

i=0

xiλi(t) (2.9)
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maps the unit n-cube onto T .

This mapping can be used to write integrals over T as iterated weighted integrals over [0, 1]n

∫

T

f(x)dx =
|T |

n!

∫ 1

0

dt1(1 − t1)
n−1

∫ 1

0

dt2(1 − t2)
n−2 . . .

∫ 1

0

dttf(x(t)). (2.10)

The Stroud conical rule [31] is based on this observation and consists of tensor products of certain
Gauss-Jacobi quadrature weights in each ti variable, where the weights are chosen to absorb the
factors of (1 − ti)

n−i. These rules play an important role in the collapsed-coordinate framework
of [12] among many other places.

Vital to fast Bernstein-basis finite element algorithms is that the Duffy transform tensorializes
the Bernstein polynomials. In [1], it is shown that with Br

i (t) =
(
r
i

)
ti(1− t)r−i the one-dimensional

Bernstein polynomial, then

Br
α(x(t)) = Br

α0
(t1)B

r−α0
α1

(t2) · · ·B
r−

Pn−2
i=0 αi

αn−1 (tn) (2.11)

2.4. Basic algorithms. The Stroud conical rule and tensorialization of Bernstein polynomials
under the Duffy transformation lead to highly efficient algorithms for evaluating B-form polynomials
and approximating moments of functions against sets of Bernstein polynomials.

Three algorithms based on this decomposition turns out to be fundamental for optimal assembly
and application of Bernstein-basis bilinear forms. First, any polynomial u(x) =

∑
|α|=r uαB

r
α(x)

may be evaluated at the Stroud conical points in O(rn+1) operations. In [15], this result is pre-
sented as exploiting certain block structure in the matrix tabulating the Bernstein polynomials at
quadrature points. In [1], it is done by explicitly factoring the sums.

Second, given some function f(x) tabulated at the Stroud points, it is possible to approximate
the set ofBernstein moments

µr
α(f) =

∫

T

f(x)Br
αdx

for all |α| = r via Stroud quadrature in O(rn+1) operations. In the the case where f is constant on
T , we may also use the algorithm for applying a mass matrix in [14] to bypass numerical integration.

Finally, it is shown in [1] that the moment calculation can be adapted to the evaluation of
element mass and hence stiffness and convection matrices utilizing another remarkable property of
the Bernstein polynomials. Namely, the product of two Bernstein polynomials of any degrees is, up
to scaling, a Bernstein polynomial of higher degree:

Br
αB

s
β =

(
α+β

α

)
(
r+s

r

) Br+s
α+β , (2.12)

This fact leads to optimal-complexity assembly of element matrices. For a basis consisting of
O(rn) members, the element matrix contains O(r2n) entries. To evaluate the variable coefficient
mass matrix

Mαβ =

∫

T

c(x)Br
α(x)Bs

β(x)dx, (2.13)
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one writes

Mαβ =

∫

T

c(x)

(
α+β

α

)
(

r+s
r

) Br+s
α+βdx

=

(
α+β

α

)
(
r+s

r

) µr+s
α+β(c).

(2.14)

To efficiently form M , one first computes all of the degree r + s moments of the weight function
c(x)

{
µr+s

α (c)
}
|α|=r+s

.

Supposing r = s, this means evaluating all moments of degree 2r, which costs about 2n+1 times
that of forming all moments of degree r, or is itself an O(rn+1) process. After the moments are
obtained, forming the entire mass matrix consists of scaling these moments by the appropriate
binomial coefficients, which requires some care.

This optimal assembly algorithm makes heavy use of the fact that, up to scaling, the mass
matrix contains many repeated entries. We remark in [15] that the one-dimensional mass matrix is
always a row- and column- scaling of a Hankel matrix and that the blocks of a higher-dimensional
mass matrix consist of scaled lower-dimensional mass matrices. Since this fact persists with variable
coefficients, Ainsworth’s optimal assembly is some kind of more general use of this fact.

Also, the first two algorithms described above for evaluation and moment calculations demon-
strate that M may be applied to a vector without explicitly forming its entries in only O(rn+1)
entries.

Now, these algorithms can be readily adapted to evaluate matrices whose entries consist of short
linear combinations of Bernstein polynomials. This is true whether the coefficients in those linear
combinations are scalars, vectors, or even tensors of some sort. Since any directional derivative
of each B-form polynomial is such a linear combination with scalar coefficients and the gradient a
linear combination with vector coefficients, our technique here recreates the stiffness and convection
matrix discussion in [1].

Suppose we have a collection of functions {χi}
N
i=1 of the form

χi =

mi∑

j=1

si
ja

i
jB

r
αi

j
. (2.15)

That is, each χi is the sum over some mi terms of the form scalar times Bernstein polynomial times
a vector ai

j ∈ R
N . We will assume that each mi < m for some small m.

Now, for some function c(x), define the N ×N matrix

Kij =

∫

T

c(x)χi · χjdx. (2.16)



8 R.C. KIRBY

Expanding the definition of χi, we have

Kij =

∫

T

c(x)χi · χjdx

=

∫

T

c(x)

(
mi∑

k=1

si
ka

i
kB

r
αi

k

)
·

(mj∑

ℓ=1

sj
ℓa

j
ℓB

r
αj

ℓ

)
dx

=

mi∑

k=1

si
ks

j
ℓ

mj∑

ℓ=1

(
ai

k · aj
ℓ

)(∫

T

c(x)Br
αi

k
Br

αj

ℓ

dx

)

=

mi∑

k=1

mj∑

ℓ=1

(
ai

k · aj
ℓ

)
Mαi

k
βj

ℓ
.

(2.17)

We define the rank-four tensor Aij
kℓ by

Aij
kℓ = si

ks
j
ℓ

(
ai

k · aj
ℓ

)
, (2.18)

and the logical submatrix M̃ of M by

M̃ ij
kℓ = Mαi

k
αj

ℓ
. (2.19)

With these two definitions, we rewrite the entries of K by

Kij =

mi∑

k=1

mj∑

ℓ=1

Aij
kℓM̃

ij
kℓ. (2.20)

We compute K with optimal-order complexity by first forming the moments
{
µ2r

α (c)
}
|α|=2r

. Then,

for each Aij
kℓ, we require a dot product costing N multiply-add pairs and scaling si

ks
j
ℓ costing two

more multiplications. So, forming all Aij
kℓ costs mimj (N + 2) flops, assuming a fused multiply-

add. We then form each M̃ ij
kℓ by scaling each moment µ2n

αi
k
+αj

ℓ

(c) by a binomial coefficient
(

αi
k
+α

j
ℓ

αi
k

)

(2n

n )
,

requiring an additional mimj multiplications. The final entry Kij follows by contracting Aij
kℓ and

M̃ ij
kℓ requiring mimj more multiply-add pairs. This means that the total cost of building K is the

cost of moment formation plus an additional mimj (N + 4) flops per entry. This operation count
remains of constant order per matrix entry.

In light of (2.3), then, this approach can be used to assemble the element stiffness matrix

Kαβ =

∫

T

c(x)∇Br
α · ∇Br

βdx (2.21)

at the cost of assembling all Bernstein moments µ2r−2
α (c) plus no more than an additional (n +

1)2 (2 + n) operations per entry.
This approach also allows optimal computation of moments of some function f

˜
: T → R

N

against all {χi}Ni=1. Let {f ℓ}N
ℓ=1 with f ℓ : T → R be the individual components of the vector-

valued function f
˜
. Similarly, let {ai

j,ℓ}
N
ℓ=1 denote the N components of each ai

j . Then,
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∫

T

f

˜
(x) · χidx =

∫

T

f

˜
(x) ·

mi∑

j=1

si
ja

i
jB

r
αi

j
dx

=

∫

T

mi∑

j=1

N∑

ℓ=1

si
ja

i
j,ℓf

ℓ(x)Br
αi

j
dx

=

mi∑

j=1

si
j

N∑

ℓ=1

ai
j,ℓ

∫

T

f ℓ(x)Br
αi

j
dx

(2.22)

To evaluate this, we first calculate the N sets of moments {µr
α(f ℓ)}N

ℓ=1. Afterward, the desired
moments against {χi} are found by more arithmetic. The innermost sum above costs N flops (a
dot product of ai

j with a subset of the moments), with another multiplication to scale by si
j. There

are mi such computations, for no more than m (N + 1) flops per moment against χi calculated.
Before proceeding, this discussion suggests a great deal of reuse in a computer program. Once

the evaluation, integration, and moment routines are in place for Bernstein polynomials, a small
amount of additional code combines these routines with the patterns for {χi} to give general,
optimal-complexity algorithms. This works very well for constant- or variable-coefficientH1 stiffness
matrices, and we shall also show soon that it works for the rest of the de Rham complex.

3. Finite element exterior calculus bases. The finite element exterior calculus [4] has
provided a unified explanation of the theoretical properties of mixed finite element spaces developed
over the past several decades. For our purposes, we are interested in the description of suitable
elementwise bases found in [5] for the de Rham complex. By working in terms of the local bases, we
are able to give a more general approach than by handling the H(div) and H(curl) bases separately.

For a domain Ω ⊂ R
d, we let HΛk(Ω) denote the space of all differential k-forms ω in L2

whose exterior derivatives dω also are in L2. As subspaces of these spaces, we consider polynomial-
based Λk

h ⊂ HΛk such that appropriate projections into these spaces commute with the exterior
derivatives, giving discrete de Rham complexes.

The domain Ω will be tesselated into T , a collection of simplices that is a triangulation [7], and
we will employ suitable local polynomial spaces. The exterior calculus deals with two such kinds of
spaces: PrΛ

k(T ) whose members restricted to any T ∈ T are polynomial k-forms of degree r, and
the somewhat smaller space P−

r Λk(T ) that sits somewhere between polynomials of degree r − 1
and degree r. These spaces correspond to the classical second and first kind spaces developed by
Nédélec [23, 24], respectively.

Following the notation developed in [5], we use increasing maps on the integers to index simpli-
cial facets, Bernstein polynomials, and associated differential forms. Let j, k, l,m be integers with
0 ≤ k − j ≤ m− l and let Σ(j : k, l : m) the set of all increasing maps from the integers {j, . . . , k}
into the integers {l, . . . ,m}. That is, each σ ∈ Σ(j : k, l : m) satisfies σ : {j, . . . , k} → {l, . . . ,m}
with σ(i) < σ(i) for each j ≤ i < k.

For σ ∈ Σ(j : k, l : m), denote by [[σ]] the range of σ. That is [[σ]] = {σ(i) : j ≤ i ≤ k}. For a
sequence σ ∈ Σ(0 : k, 0 : n), we will also need the complementary sequence σ∗ ∈ Σ(k + 1 : n, 0 : n)
such that [[σ]] ∩ [[σ∗]] is empty and [[σ]] ∪ [[σ∗]] = {0, 1, . . . , n}. For a multiindex α and increasing
sequence σ, we also define [[α, σ]] by

[[α, σ]] = suppα ∪ [[σ]],
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where the support of a muliindex α is the set of indices i for which αi 6= 0.
Now, for a simplex T with vertices {xi}

n
i=0, we let ∆(T ) denote all the facets (subsimplices) of T

and ∆k(T ) denoting the subsimplices of dimension k. So, ∆k(T ) has
(
n+1
k+1

)
elements. The elements

of ∆(T ) may be described by increasing sequences. For σ ∈ Σ(j : k, 0 : n), we let fσ ∈ ∆(T )
be the closed convex hull of vertices {xσ(j), . . .xσ(k)}. In particular, there is a natural one-to-one
mapping between Σ(0 : k, 0 : n) and ∆k(T ). For example, if we label a tetrahedron with vertices
(x0, x1, x2, x3), then ∆1 denotes the edges, which we label (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), and
(2, 3). We define the index set I(f) of a facet f (ordered sequence) by the set of vertex labels
defining it.

3.1. P−
r Λk spaces. The exterior calculus bases for the P−

r Λk spaces employ the Whitney
forms φf

σ assocated with each facet f ∈ ∆k(T ). These are defined by

φf
σ =

k∑

i=0

(−1)
i
bfσ(i)

k∧

ℓ=0

dbfσ(ℓ), (3.1)

where the bf are the barycentric coordinates of the facet f . A key result of [5] is that these functions
can be consistently extended from the facet to the whole simplex in such a way that the trace on
the facet’s complement vanishes.

In fact, the basis functions for P−
r Λk(T ) associated with a facet f of a simplex T , are given by

{
bαφT

σ : α ∈ N
0:n
0 , |α| = r − 1, σ ∈ Σ(0 : k, 0 : n), [[α, σ]] = I(f), αi = 0 if i < min [[σ]]

}
. (3.2)

We make a slight modification, replacing the barycentric monomial bα with the Bernstein
polynomial Br

α. This gives the set of functions

{
Br−1

α φT
σ : α ∈ N

0:n
0 , |α| = r − 1, σ ∈ Σ(0 : k, 0 : n), [[α, σ]] = I(f), αi = 0 if i < min [[σ]]

}
. (3.3)

Rather than summarizing the derivation given in [5], we give an example below of how this
basis may converted to to B-form, much like we did with the Bernstein gradients.

3.2. PrΛ
k spaces. We also consider the bases for PrΛ

k. These are given by Arnold, Falk, and
Winther, after substituting Bernstein polynomials for the barycentric monomials, as

{
Br

αψ
α,f,T
σ : α ∈ N

0:n
0 , |α| = r, σ ∈ Σ(1 : k, 0 : n), [[α, σ]] = I(f), αi = 0 if i < min(I(f)\[[σ]])

}
,

(3.4)
where the vectors ψα,f,T

σ are defined by

ψα,f,T
σ = ψα,f,T

σ(1) ∧ · · · ∧ ψα,f,T
σ(k) , σ ∈ Σ(1 : k, 0 : n), [[σ]] ⊆ I(f), (3.5)

with

ψα,f,T
i = dbTi −

αi

|α|

∑

j∈I(f)

dbgj , i ∈ I(f). (3.6)

This definition, though somewhat complicated, was required to get the facet basis functions to have
vanishing traces off the facet. For our computational purposes, we note that each ψα,f,T

σ is a fixed,
geometric vector.
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3.3. Basis conversion. Both P−
r Λk and PrΛ

k have natural representations as vectors of
length

(
n
k

)
whose components are polynomials of degree r.

For each particular r, k, T , we let {ξj}
dim P−

r Λk(T )
j=1 denote the basis for P−

r Λk(T ) Each k-form

is naturally represented as a vector in R
(n

k), so we can represent each basis function as a vector of
polynomials. In particular, we will expand each vector component in the Bernstein basis. That is,

for each i, we seek a collection of vectors {ai
j} ⊂ R

(n
k) and indices αji with |αji | = r such that

ξi =
∑

j

ai
jBαji , (3.7)

and a similar expansion for the basis θj .
For P−

r Λk spaces, each element of the bases in (3.3) has the form of a Bernstein polynomial
times a Whitney form. Each Whitney form is in turn a sum of barycentric coordinates times certain
geometric vectors. These vectors are the gradients of the barycentric coordinates for 1-forms and
wedge (cross) products of these gradients for 2-forms. A generic 1-form basis function has the form
Br−1

α φij for some |α| = r − 1 and some σ = (i, j). Expanding the Whitney form, we have

Br−1
α φij = Br−1

α (bidbj − bjdbi)

= biB
r−1
α dbj − bjB

r−1
α dλi.

(3.8)

Now, the factors biB
r−1
α are scaled Bernstein polynomials of degree r. To see this,

biB
r−1
α = bi

(r − 1)!

α!
bα

=
(αi + 1)

r

r!

(α+ ei)!
bα+ei

=
(αi + 1)

r
Br

α+ei
.

(3.9)

This calculation renders our typical 1-form basis function as

Br−1
α φij =

αi + 1

r
Br

α+ei
dbj −

αj + 1

r
Br

α+ej
dbi. (3.10)

The same calculation generalizes readily to k-forms.
Theorem 3.1. For any |α| = r − 1 and σ ∈ Σ(0 : k, 0 : n), we have that

Br−1
α φσ =

k∑

i=0

(−1)
i

(
ασ(i) + 1

r

)
Br

α+eσ(i)

k∧

ℓ=0

ℓ 6=i

dbσ(ℓ). (3.11)

Each k-form basis function for P−
r Λk, then, is a sum of k+1 terms, each of which is a scalar times

a Bernstein polynomial times a cell-dependent geometric vector. In this case, it is a wedge product
of k exterior derivatives (gradients) of the barycentric coordinates. Once the barycentric coordinates
are differentiated, one can iterate over k-tuples of them and enumerate all of the wedge products
needed for each cell, and build a pattern just as we did for the Bernstein gradients. Note that for
each cell, there is a small number of geometric vectors,

(
n+1
k+1

)
, independent of the polynomial degree
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r. These vectors, wedge products of exterior derivatives (gradients) of the barycentric coordinates,
vary from cell to cell, but the particular pattern remains the same on each cell. In particular,
the same CSR-like pattern technique described for Bernstein gradients can be used to store the
conversion from the exterior calculus basis to the Bernstein form.

Now, we pause to give an example of the pattern obtained by converting the basis functions to
B-form. We consider P−

2 Λ1 on a triangle. We order the edges by (1, 2), (0, 2), and then (0, 1). We
need to enumerate the two basis functions for each edge and then the two internal basis functions
and apply (3.8) to each.

Consider the first edge, (1, 2). In (3.3), we require that all α and σ associated with this edge
have |α| = 1 and [[α, σ]] = {1, 2}. With σ = (1, 2), this gives α = (0, 0, 1) or α = (0, 1, 0) as the
possibilites. Using (3.8) to expand the Whitney forms and (2.4) to use the linear ordering of the
quadratic Bernstein polynomials gives

B1
(0,0,1)σ(1,2) =

1

2
B2

(0,1,1)db2 −B2
(0,0,2)db1 =

1

2
β2

1db2 − β2
0db1,

B1
(0,1,0)σ(1,2) = B2

(0,2,0)db2 −
1

2
B2

(0,1,1)db1 = β2
2db2 −

1

2
β2

1db1.

(3.12)

Similarly, for edge (0, 2), we have σ = (0, 2) and α = (0, 0, 1) or (1, 0, 0) and find

B1
(0,0,1)σ(0,2) =

1

2
B2

(1,0,1)db2 −B2
(0,0,2)db0 =

1

2
β2

3db2 − β2
0db0,

B1
(1,0,0)σ(0,2) = B2

(2,0,0)db2 −
1

2
B2

(1,0,1)db0 = β2
5db2 −

1

2
β2

3db0.

(3.13)

For edge (0, 1) we have σ = (0, 1) and α = (0, 1, 0) or (1, 0, 0) so that

B1
(0,1,0)σ(0,1) =

1

2
B2

(1,1,0)db1 −B2
(0,2,0)db0 =

1

2
β2

4db1 − β2
2db0,

B1
(1,0,0)σ(0,1) = B2

(2,0,0)db1 −
1

2
B2

(1,1,0)db0 = β2
5db1 −

1

2
β2

4db0.

(3.14)

The basis functions associated with the triangle (0, 1, 2) in (3.3) require a bit more care to enumerate.
For each σ = (0, 1), (0, 2), or (1, 2) we find the α such that [[α, σ]] = {0, 1, 2}. When σ = (0, 1),
we require that α = (0, 0, 1). Likewise, for σ = (0, 2), α = (0, 1, 0). However, when σ = (1, 2) and
α = (1, 0, 0) the condition αi = 0 if i < min(supp σ) fails to hold. So then, we convert the two
internal basis functions to B-form as before:

B1
(0,0,1)σ(0,1) =

1

2
B2

(1,0,1)db1 −
1

2
B2

(0,1,1)db0 =
1

2
β2

3db1 −
1

2
β2

1db0

B1
(0,1,0)σ(0,2) =

1

2
B2

(1,1,0)db2 −
1

2
B2

(0,1,1)db0 =
1

2
β2

4db2 −
1

2
β2

1db0

(3.15)

We order the basis functions as we have listed them and give the pattern. Since each basis
function is a combination of two Bernstein polynomials, the row pointer vector is

R = [0, 2, 4, 6, 8, 10, 12, 14].

From the expansions above, we start with the first term in the first basis function, then the second
term, and move through the basis functions in the order they are enumerated, packing up the scalar
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coefficients (in this case, all ± 1
2 or ±1) into the array

S =

[
1

2
,−1, 1,−

1

2
,
1

2
,−1, 1,−

1

2
,
1

2
,−1, 1,−

1

2
,
1

2
,−

1

2
,
1

2
,−

1

2

]
.

Similary, we extract the labels of each Bernstein polynomial to obtain

B = [1, 0, 2, 1, 3, 0, 5, 3, 4, 2, 5, 4, 3, 1, 4, 1].

Finally, we collect the indices of each of the barycentric derivatives dbi that occur in each combi-
nation, with

G = [2, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0].

This information encodes the conversion of the exterior calculus basis to B-form. An important
piece of our implementation is a collection of functions that finds the pattern for any order of
differential form for any polynomial degree in any spatial dimension.

For PrΛ
k, we have noted that each basis function is only a single Bernstein polynomial times

some geometric vector. So, specifying the row pointer, scalars, and Bernstein indices is quite
straightforward. On the other hand, each basis function has a different geometric vector so that
the cost of storing all of the geometric vectors will be quite high as the polynomial degree increases.
While our approach is applicable in this case, our implementation has focused on P−

r Λk spaces.
To differentiate the P−

r Λk basis functions, we could simply differentiate the Bernstein poly-
nomials in each expansion and then combine the two levels of linear combinations. In practice,
however, it is preferable to have a representation of the exterior derivatives directly in terms of the
Bernstein polynomials. Let us consider the exterior derivative of a typical P−

r Λk function. As with
the Bernstein gradients, we assume that any terms in sums vanish if they have a negative entry in
a multiindex. We use the expansion (3.11) and our Bernstein differentiation formula to find

d
(
Br−1

α φσ

)
= d


Br−1

α

k∑

i=0

(−1)
i
bσ(i)

k∧

j=0

j 6=i

dbσ(j)




= d




k∑

i=0

(−1)
i
Br−1

α bσ(i)

k∧

j=0

j 6=i

dbσ(j)




= d




k∑

i=0

(−1)i
(
ασ(i) + 1

r

)
Br

α+eσ(i)

k∧

j=0

j 6=i

dbσ(j)




=

k∑

i=0

(−1)
i (
ασ(i) + 1

) n∑

ℓ=0

Br−1
α+eσ(i)−eℓ

dbℓ ∧
k∧

j=0

j 6=i

dbσ(j).

(3.16)

We consider the internal sum over ℓ in three cases. First, if ℓ = σ(i), then we have that
Br−1

α+eσ(i)−eℓ
= Br−1

α and that

dbℓ ∧
k∧

j=0

j 6=i

dbσ(j) = dbσ(i) ∧
k∧

j=0

j 6=i

dbσ(j) = (−1)i
k∧

j=0

dbσ(j)
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using the anticommutativity of the wedge product. Second, if ℓ ∈ [[σ]]\ {σ(i)}, then the wedge
product contains a repeated term dbσ(j) for some j and hence vanishes. Finally, suppose that
ℓ /∈ [[σ]]. We define

νℓ,σ,i ≡ # {0 ≤ j ≤ k : σ(j) < ℓ} (3.17)

and let ςℓ,σ,i be the unique increasing sequence in Σ(0 : k, 0 : n) such that

[[ςℓ,σ,i]] = {ℓ} ∪ ([[σ]]\ {σ(i)}) . (3.18)

Then, we have

dbℓ ∧
k∧

j=0

j 6=i

dbσ(j) = (−1)
νℓ,σ,i

k∧

j=0

dbςℓ,σ,i(j). (3.19)

Combining these calculations with (3.16) gives our result:
Theorem 3.2. With νℓ,σi

defined by (3.17) and ςℓ,σ,i(j) defined by (3.18), then for any |α| =
r − 1 and increasing sequence σ ∈ Σ(0 : k, 0 : n), the exterior derivative of Br−1

α φσ satisfies

dBr−1
α φσ =

k∑

i=0

n∑

ℓ=0

ℓ/∈[[σ]]

(−1)i+νℓ,σi

(
ασ(i) + 1

)
Bα+eσ(i)−eℓ

k∧

j=0

dbςℓ,σ,i(j)

+

(
k∑

i=0

(
ασ(i) + 1

)
)
Br−1

α

k∧

j=0

dbσ(j).

(3.20)

While this formula is somewhat more complicated than the expansion for the basis function
itself, it is still manageable and a short linear combination. The first term, with a sum over i and
ℓ, contains k+ 1 times (n+ 1− (k+ 1)) terms of the form of a scalar times a Bernstein polynomial
times some geometric vector. The second term is only one additional term with scalar coefficient∑k

i=0 ασ(i)+1 = (k+1)+
∑k

i=0 ασ(i). This gives a total of (k + 1) (n− k)+1 Bernstein polynomials
in the expansion. The geometric terms on each cell are now the set of all k+1-way wedge products
of the barycentric gradients.

4. Numerical results.

4.1. Some comments on implementation. We began by implementing all our algorithms
in Python, using numpy arrays as general multidimensional arrays where needed. Our code consists
of numerical routines for polynomial evaluation and integration at Stroud points, forming matrices
based on linear combinations of polynomials, and so forth. We also provide routines to form the
local-to-global mappings needed for assembly. A novel feature is our implementation of patterns,
which encode the CSR-like arrays needed to convert Bernstein gradients, P−

r Λk basis functions
and their exterior derivatives to B-form. This pattern implementation allows for arbitrary order
differential forms, polynomial degrees and spatial dimensions. We used scipy for global sparse
matrices.

Because of poor performance of the numerically intensive parts of our code, we ported these into
Cython [6,32], annotating the variables with static types. This leads to a considerable speedup over
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standard Python, although we have not attempt to achieve maximal performance. For example, in
several places we use function parameters to outsource computations to dimensionally-dependent
routines. These are currently passed as Python callable objects rather than function pointers, which
is probably a source of some overhead at low polynomial degree.

4.2. Timing results. We consider the cost of assembling the mass and stiffness matrices
for one- and two- forms in three dimensions. In addition to our Bernstein implementation, we
used several components of FEniCS [20]. We used the Python interface to DOLFIN [21] to create
triangular and tetrahedral meshes. This interface also exposes a just-in-time interface to the FEniCS
Form Compiler ffc [17, 30], which in turn relies on FIAT [13] to generate reference element basis
functions.

Using the UnitCubeMesh accessible within the FEniCS package DOLFIN, we constructed a
mesh consisting of the unit cube divided into 10 × 10 × 10 cubes, each divided into six tetrahedra
for a total of 6000 cells. Then, for each polynomial degree from one through eight, we assembled the
mass and stiffness matrices for 1- and 2-forms, reporting an average timing over several iterations.
For the lowest polynomial degree, the 1-form matrices had 7930 rows and 119530 nonzeros. For
degree five, they had 471650 rows and 103788250 nonzeros, and they increase from there. For higher
degree, we ran out of memory assembling the matrices.

As a point of reference, we also compared our times to assemble the matrices with FEniCS.
Using the nodal bases for the tetrahedral Raviart-Thomas-Nédélec elements available through FIAT,
we used the tensor-contraction mode of ffc. This gives matrices of exactly the same dimensions
as our Bernstein techniques, although with different numerical values. The FEniCS-generated code
performs, per cell, a contraction of a reference-element tensor containing pre-computed integrals
with a geometric tensor that depends on the cell Jacobian. For constant coefficients, this geometric
tensor is independent of the polynomial degree or basis. For mass matrices, the geometric tensor
is quite cheap to compute, and a mere nine flops per entry of the element matrix are required
after its formation. The geometric tensor for the stiffness matrix is a bit more involved, and we
refer the reader to [30] for more details. At any rate, all numerical integration is performed once
on a reference cell so that (in theory) we should see constant work per entry as the polynomial
degree increases. Such would not hold, however, if we were to use the quadrature mode developed
in [25]. As an additional remark, it is quite expensive to generate the tensor contraction code for
higher degree polynomials. In the worst case, code generation for the eighth degree mass matrix for
1-forms required over 37 hours. The stiffness matrix code generation was more efficient, requiring
more on the order of minutes for higher degrees.

We plot the timings for 1- and 2-form mass and stiffness matrices in Figure 4.1. With FEniCS,
we see a split between the mass and stiffness matrices for both 1- and 2-forms, with mass matrix
construction being considerably faster. Our Bernstein algorithms are close to each other in both
cases, although we fail to beat the FEniCS mass matrix for any polynomial degree. However,
that we are within an order of magnitude using a quadrature-based method is encouraging for our
techniques.

An important feature of the assembly algorithm we used that is also shared by the tensor
contraction mode for constant coefficient problems is that the work for building the element matrices
is of constant order per entry as a function of the polynomial degree. In Figure 4.2, we examine
this feature empirically by plotting the assembly time divided by the global nonzeros for each
polynomial degree. The FEniCS code does not seem to flatten out, which could be due to how
entries are inserted into the global sparse PETSc matrix.

We also considered the cost of matrix-free application of the mass and stiffness matrices to
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Fig. 4.1. Time (in seconds) to build the 1- and 2- form mass and stiffness matrix using FEniCS and our
Bernstein algorithms at degrees 1 through 5 on a mesh of 6000 tetrahedra. The FEniCS-based mass matrix assembly
greatly outperforms our methods, but the reverse holds for the stiffness matrix after degree 2 for 1-form matrices
and degree 1 for 2-form matrices.

a given vector. In our Bernstein code uses the typical process of scattering the global degrees
of freedom to each cell, locally applying the operator, and summing the results back to global
storage. This tests the combined performance of our polynomial evaluation, moment calculation,
and transformations between the P−

r Λk bases and the Bernstein polynomials. For the FEniCS
implementation, we used the same technique as in [18], where we declare u to be a Function

and v a TestFunction and assemble the forms inner(u,v)*dx, inner(curl(u),curl(v))*dx and
div(u)*div(v)*dx for the mass and stiffness matrices. In Figure 4.3, we see that the Bernstein-
based algorithms for mass and stiffness matrices both dramatically outperform FEniCS at high
order, although FEniCS performs very well at low order.
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Fig. 4.2. Time per nonzero entry to assemble the global mass and stiffness matrices on a mesh of 6000 tetrahedra
using polynomial orders 1 through 5 for 1-form (left picture) and 2-form (right picture) mass and stiffness matrices.
With Bernstein polynomial algorithms, the cost per nonzero seems to approach a constant as the degree increases, but
this does not hold for the FEniCS-based implementations. Whether this is a feature of the sparse matrix insertion
or the element matrix construction is uncertain.

4.3. Accuracy. Typically, finite element shape functions are chosen to optimize the condi-
tioning and sparsity of element stiffness matrices. The Bernstein polynomials do neither. They give
dense element matrices that yet may be constructed and multiplied onto vectors very efficiently.
They can also give rise to very poorly conditioned matrices, so we will empirically consider their
accuracy at very high order, at least on coarse meshes.

First, we consider the mixed Poisson problem

∇ · u = f

u+ ∇p = 0
(4.1)

posed on the unit cube with homogeneous Dirichlet boundary conditions. Here u is the flux field
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Fig. 4.3. Time (in seconds) to perform the matrix-free action of the mass and stiffness matrices for 1- and
2-forms using Bernstein polynomials and DOLFIN on a mesh of 6000 tetrahedra and polynomial degrees 1 through
10. For degrees 4 and higher, the Bernstein matrix-free algorithms are significantly faster, although DOLFIN’s
low order methods perform very well. The separation of between mass and stiffness Bernstein matrices in 2-forms
results from the relevant geometric vectors having different lengths, whereas they are the same length in 1-forms.

sought in H(div) and p the scalar potential. We pick f such that the true solution is p(x, y, z) =
3

π2 sin(πx) sin(πy) sin(πz).
To study the accuracy with respect to the polynomial degree r, we subdivide the unit cube into

6 tetrahedra, again with DOLFIN’s UnitCubeMesh.
We use the standard mixed finite element formulation of uh ∈ Vh and ph ∈ Wh such that

(∇ · uh, wh) = (f, wh)

(uh, vh) − (ph,∇ · vh) = 0,
(4.2)

for all wh ∈ Wh and vh ∈ Vh. Wh is the space of discontinuous polynomials of degree r − 1, and
Vh is the Raviart-Thomas space of order r − 1, or equivalently, P−

r Λ2(T ). Because of the small
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Fig. 4.4. Convergence of the mixed finite element method as a function of the polynomial degree on a mesh
with six tetrahedra. At degree 15, the L2 error has dropped below 10−10

number of cells, we use dense storage for the mass and divergence matrices and the form and factor
the Schur complement using LAPACK via numpy [26].

In Figure 4.4, we see r-convergence – as the polynomial degree increases, the smooth solution is
very well-approximated. However, the convergence seems somewhat jagged, with small drops from
odd to the next-higher even degree followed by larger drops going from even up to odd. To gain
more insight, we plotted the error for odd and even degrees separately in Figure 4.5. In this plot,
we see fairly typical exponential converge plots, although the constants seem different between the
two degrees.

It is also interesting to examine the condition number of the resulting system. For each of
the system matrices, we also measured the 2-norm condition number as the ratio of the largest to
smallest singular value. For our six-cell mesh, we plot this as a function of polynomial degree in
Figure 4.6. The accuracy we obtained in the finite element solution is surprising in light of the very
large condition numbers, and we do not have an explanation for this. The condition number only
provides a worst-case situation that seems, in this case, quite pessimistic.

Next, we turn to the Maxwell cavity resonator, for which Nédélec elements provide an important
tool. We consider the roblem of finding resonances ω ∈ R and eigenfunctions E ∈ H0(curl) such
that

(∇× E,∇× F ) = ω2(E,F ) (4.3)

for all F ∈ H0(curl). Here, Ho(curl) is the subspace of H(curl) with vanishing tangential component
on ∂Ω.

We consider both the square [0, π]2 divided into a pair of right triangles and the cube [0, π]3

divided into six tetrahedra and study the r-convergence of the finite element eigenvalue problem.
The eigenvalues are known to be integral, consisting of certain sums of squares of nonzero inte-
gers [22, 30] As with the mixed Poisson equation, we use dense storage and use LAPACK to solve
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Fig. 4.5. Convergence of the mixed finite element as a function of the polynomial degree, separating out the
odd and even degrees into separate convergence plots. The degrees of different parity seem to both converge as the
degree increases at the same rate, but with different constants.

the resulting (generalized) eigenvalue problem.

For the two-dimensional problem, the first several eigenvalues are 1, 2, 4, 5, 8, 9, and 10
with respective muliplicities 2, 1, 2, 2, 1, 2, and 2. We used polynomial degrees 5 through 15 to
approximate these eigenvalues on a mesh consisting of two right triangles. Figure 4.7 shows that at
degree 15, all of these eigenvalues are resolved to within 10−10. At the highest degrees, we start to
see a slight increase in the error of the smallest eigenvalues, but the results still are very accurate.

For the three-dimensional problem, the first eigenvalues are 2 with multiplicity 3, 3 with mul-
tiplicity 2, and 5 with multiplicity 6. We start with polynomial degree two since the degree one
space has only a single degree of freedom corresponding to the internal edge. We take the first
eleven computed nonzero eigenvalues and measure the average error in each one. In Figure 4.8, we
see that ten-digit accuracy in all three of the first eigenvalues is obtained when we reach degree 13.
As with the mixed Poisson problem, the results seem to exhibit an odd/even separation. No effects
of ill-conditioning are apparent, except that the curve for the smallest eigenvalue may be flattening
out as the error approaches O(10−13).

5. Conclusions. We have presented the first known optimal-complexity algorithms for form-
ing and applying finite element matrices for the de Rham complex on simplices. These algorithms
utilize existing techniques for Bernstein polynomials to give high efficiency and accuracy for the
test problems we considered.

In the future, we hope to study how these methods port to GPUs and other accelerators and
how they apply to more complicated problems. Efficient solvers and preconditioners for the resulting
high-order global linear systems also remain open questions. We are also interested in adapting
these techniques to other spline-type spaces [19] with bases constructed from Bernstein polynomials.
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Fig. 4.6. Exponential growth of the condition number of mixed finite element stiffness matrix on a six-
tetrahedron mesh for polynomial degrees 1 through 15.

Fig. 4.7. Error in the eigenvalues no larger than 10 for the two-dimensional cavity resonator problem using
polynomials of degrees 5 through 15.
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