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Abstract

This paper introduces Playa, a high-level user interface layer for
composing algorithms for complex multiphysics problems out of objects
from other Trilinos packages. Among other features, Playa provides
very high-performance overloaded operators implemented through an
expression template mechanism. In this paper, we give an overview of
the central Playa objects from a user’s perspective, show application to
a sequence of increasingly complex solver algorithms, provide timing
results for Playa’s overloaded operators and other functions, and briefly
survey some of the implementation issues involved.

1 Introduction

The Trilinos library provides high-level interfaces to portable, efficient linear
and nonlinear algebra. The data structures and algorithms hide the details
of distributed memory, and increasingly through Tpetra, shared memory
parallelism. Packages such as AztecOO, Belos, and Amesos provide robust
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implementations of iterative and direct linearsolver methods, with packages
such as Ifpack and ML providing algebraic preconditioners. Building on the
successes of these packages for increasingly complex coupled multiphysics
problems requires even higher-level abstractions for more involved linear
algebraic algorithms. During our work on Sundance [17], a high-level Trilinos
package for automating the construction of finite element operators, we have
found need of many extended capabilities built on top of these packages.
These capabilities have been put together in a new Trilinos package Playa.

Playa lakes are novel geographical features of the South Plains of eastern
New Mexico and West Texas. They are shallow, often seasonal, lakes sup-
porting a diverse ecosystem that includes native and migratory species. In
the same way, we hope to provide a thin layer of support on top of existing
Trilinos packages to support new algorithmic research on coupled problems,
optimization, and other challenging topics.

1.1 Design Example

We begin with a short code example. Many of the Playa features evident in
this example will be described later in the paper. The purpose here is simply
to illustrate some of the important features of Playa for potential end users.
In this example, we show a simple implementation of the Conjugate Gra-
dients algorithm in Playa. For simplicity and brevity, preconditioning and
error checking are omitted, and parameters such as the stopping tolerance
and maximum number of iterations are hard coded. The human readability
of Playa code can be seen by comparing this code to a standard pseudo-code
statement of the Conjugate Gradients algorithm such as that in Trefethen
and Bau [20, Algorithm 38.1].

Upon exiting the CG loop, the solution is in the x vector. An industrial-
strength CG solver would certainly need preconditioning and error checking,
and could be packaged up as a LinearSolver object. But this example
illustrates the clean Playa interface.

1.2 Design Goals

Frequently, even successful HPC codes start from a bottom-up approach that
emphasizes performance without significant consideration for higher-level
programmability. This complicates research and development of algorithms
that do not map into simple combinations of library calls. In Playa, we have
started with a top-down design that aims to combine programmability and
flexibility on top of existing high-performance libraries.



Code Example 1 Simple Implementation of Unpreconditioned CG in Playa

Vector<double> x = b.copy(); // deep copy
Vector<double> r = b — Axx;
Vector<double> p = r.copy();
Vector<double> Ap = Axp;

double tol = 1.0e—-12;
int maxlter = 100;

fo

{

r (int i=0; i<maxlter; i++4)

double rSqOld = rxr; // dot product
double pAp = px*Ap;
double alpha = rSqOld/pAp;

x += alphaxp; // x = x + alphaxp
r —= alphaxAp; // r = r — alphaxAp

double rSq = rxr; // dot product

double rNorm = sqrt(rSq);

Out::root() << "iter=" << setw(6) << i
<< setw(20) << rNorm << endl;

if (rNorm < tol) break;

double beta = rSq/rSqOld;
p = r + betaxp;
Ap = Axp; // save this; we’'ll use it twice




We stress interoperability of vectors, matrices, and solver libraries via
a VectorType class. Also, on top of this interoperability framework lies a
handle layer that manages memory without requiring the user to explicitly
manipulate pointers or some kind of smart pointer. The high-level syntax
afforded by this handle layer allows us to present an efficient expression
template engine [21, 13] that not only performs standard matrix and vec-
tor operations, but also supports deferred evaluation of transposition and
inversion (through an existing linear solver).

This interoperability is also featured in some existing Trilinos packages.
While the Thyra library [4] provides a relatively low-level interoperability
suite between different code types, Playa targets the user-level experience.
Also aiming for generality, Belos provides Krylov methods for very general
kinds of operators via traits. We aim at a similar level of flexibility, al-
though are oriented towards general programmability rather than optimally
architecting Krylov methods. We provide a compatibility layer so that very
complex, implicitly-defined Playa operators may be efficiently used within
Belos solvers.

Another goal is the support of coupled systems that arise in multiphysics
applications. Such problems frequently give rise to linear systems that have
a block structure, in which operators are themselves arrays of operators. In
some cases, this blocking can be recursive (multiply-layered). Playa provides
extensive support for this case, and we will present examples of forming
(implicit) Schur complements and block structured preconditioners for some
model problems in fluid mechanics.

Besides these features, we provide a mechanism by which various Trilinos
solvers are united in a common framework and specified at run-time through
a ParameterList. This allows solver decisions to be deferred to run-time,
and users have access to a wide range of Trilinos packages via XML files
without having to explicitly remember the calling conventions within C++.
Currently solvers from Amesos, Belos, and AztecOO are supported, as are
preconditioners from Ifpack and ML. We have found this ability to switch
between solvers without penalty or need to write or compile new C++ quite
useful.

1.3 Related Software

Playa shares similarities with several existing packages. Within Trilinos,
Thyra [4] also provides interoperability between various Trilinos packages,
blocked operators, and various utilities. Relative to Thyra, Playa’s class hi-
erarchy is sparser. Also, the handle layer with expression templates on top



is distinctive, and our interoperability mechanisms, such as abstract inter-
faces for loading vectors and matrices, should allow Playa to be more easily
extended to support additional linear algebra packages in the future. Also
within Trilinos, Teko [19] contains similar features for blocking and some
advanced utility features for constructing block preconditioners, although
their focus is more limited to block-structured solver research. High-level
PDE packages such as DOLFIN [15] and Deal.Il [2] also provide some kind
of interoperability, although these packages essentially wrap PETSc and
Trilinos, along with other libraries, behind a common abstract API. Playa
provides a high-level architecture for linear algebra, while aiming at reuse
of underlying libraries.

1.4 Organization of this Paper

In Section 2, we first give a user-level introduction to some of the key features
of Playa, including handles and memory management through reference-
counted pointers and an overview of some of the principal user-level classes.
In Section 3, we walk through a few relatively simple examples in Playa
with a view to giving the users a more concrete sense of the advantages
of Playa. These advantages may not be so appealing if they came at the
price of efficiency. In Section 4, we provide some timing results comparing
Playa and Epetra on a range of different platforms to demonstrate that our
high-level interface does not degrade the performance of basic linear algebra
operations. Finally, in Section 5, we provide more detailed implementation
information. These details are critical to the efficiency and the ease of use of
Playa, and some users will want to know these details and understand how
Playa achieves efficiency. However, understanding these implementation is-
sues for the typical user to effectively use Playa.

2 User-level view of Playa

In this section we survey the core Playa object suite from a user’s point of
view, deferring most implementation details until Section 5.

Code fragments and references to class names will be written in typewriter
font. For brevity and clarity, class names used in English sentences rather
than code will often have template arguments suppressed where convenient,
for example, although Playa vector objects are templated on scalar type we
will often speak of a Vector instead of a Vector<Scalar>.



2.1 Memory management: Reference-counted pointers and
handles

One implementation issue that should be discussed early is memory man-
agement. Playa makes extensive use of the templated reference-counted
pointer (RCP) tools available through Teuchos [3]. Consequently, in any
standard use case, the user will have transparent, safe, and robust memory
management ensured when using Playa objects.

Playa further hides memory management issues from the user by wrap-
ping RCPs in handle classes, so that typical Playa objects will have value
syntax rather than pointer syntax. We'll refer to RCP-based handles as
reference-counted handles, or RCH. Beyond the user-level convenience of
value syntax, RCH also provide a common point of entry for certain mainte-
nance tasks that should be done neither by the user nor by concrete instances
of derived types. These issues will be discussed in more detail below, after
the relevant classes have been introduced.

One consequence of the use of reference-counting is that by default,
copies of Playa objects are shallow. That means that an assignment such as

Vector<double> y = x;

does not create a new copy of the vector x, complete with new data. Rather,
it creates a new RCH to the same data. One advantage of this is obvious:
vectors can be large, so we want to avoid making unnecessary copies. But
note that any modification to y will also trigger the same modification to
x, because x and y are referring to exactly the same data in memory. The
potential for confusion and unintended side effects is obvious. Less obvious
is that in certain important circumstances, such side effects are exactly what
is needed for a clean user interface to efficient low-level code. Deep copies
require use of the copy () member function.

2.1.1 Issues with Handles and Polymorphism

An issue with handles to polymorphic hierarchies is the decision of which
member functions of possible subtypes are to be propagated to the handle-
level interface. For example, as will be discussed in more detail below,
vectors can have block structure.

One resolution to this issue is to force explicit user-level dynamic casts to
specialized subtypes. Another is to propagate specialized methods up to the
handle layer. In the design of Playa, we try to avoid user-level dynamic casts
whenever possible. Our rough guideline for deciding which methods appear



in the common user interface is that implementation-dependent methods
(such as a method specific to a particular vector representation such as
Epetra) should not appear in the common interface, however, methods spe-
cific to a mathematically-distinct type of object (such as a block vector) can.
Dynamic casts must still be done, of course, but are done by the handle layer
itself; this both hides such issues from the user and provides a common point
of entry for error detection and handling.

One additional issue arises with error handling and dynamic typing.
The dynamic polymorphism used in Playa requires run-time error handling.
While many other portions of Trilinos rely on compile-time error checking,
this comes at the expense of a much larger type system that some users find
difficult to navigate.

2.2 Key Classes

The principal user-level classes in Playa are listed here.

e Vector objects represent mathematical vectors. In addition to the
fundamental operations of vector addition and scalar-vector multipli-
cation, arbitrary user-defined transformation and reduction operations
can be implemented through application of templated functors.

e LinearOperator objects represent linear functions that map vector
inputs to vector outputs.

e LinearSolver objects represent algorithms for solving linear systems.

e VectorSpace is an abstract factory that produces Vector objects. This
provides a consistent user interface for creating vectors without the
client code needing to know anything about what sort of vector object
is being created.

e VectorType is an abstract factory that produces VectorSpace objects
of a user-specified type, dimension, and internal data layout. A client
such as a finite element code uses a VectorType to create a VectorSpace
once the dimension and distribution of its discrete space has been
determined.

Each of these five classes is a RCH to an underlying base class of the appro-
priate type: Vector is a RCH to a VectorBase, and so on.



2.3 Vector Spaces

A user will rarely construct a vector directly; the reason for this is that
different vector implementations have different data requirements making
it difficult to provide a uniform vector constructor; furthermore, vectors
are often created inside solver algorithms hidden from the solver rather
than in user-space code such as main(). Polymorphic object creation is a
common design problem with a common solution: the factory class [9]. The
realization that a wvector space object could function as a factory class for
vectors was due to Gockenbach and Symes [10] who incorporated it in their
influential Hilbert Class Library (HCL). Descendents of the HCL including
TSF [16], TSFCore [5], Thyra [6], and now Playa, have continued the use of
this pattern.

With this design pattern, vectors are built indirectly by calling the
createMember () member function of VectorSpace. FEach VectorSpace
object contains the data needed to build vector objects, and the imple-
mentation of the createMember () function will use that data to invoke a
constructor call.

Every Vector retains a RCH to the space that created it. Among
other things, this can be used for checking compatibility in vector-vector
and operator-vector operations. To support such compatibility checking,
the VectorSpace class provides overloaded == and != operators as member
functions.

The VectorSpace class also provides member functions that describe
block structure, element indexing, and data layout.

2.3.1 Block structure

In optimization and physics-based preconditioning, it is common to segre-
gate variables into blocks. Mathematically, this is a factoring of a problem’s
vector space setting into a Cartesian product of smaller spaces. Segregation
into blocks can be done recursively; i.e. each block of a block space could it-
self be a block space. Iteration over blocks requires a means of indexing into
a space’s block structure. This can be done in several ways. The simplest is
to identify a block by its index into the current level, that is, without recur-
sion into sub-block structure. To identify a block at an arbitrary depth, a
double-ended queue (deque) of indices can be used. Finally, the index deque
can be encapsulated in a BlockIterator object, allowing in-order traversal
of any arbitrary block structure in a single loop.

The user interface of the VectorSpace object provides member functions



that describe that space’s block structure, and also a member function that
creates a BlockIterator appropriate to that space. A BlockIterator can
then be used to identify blocks in any Vector created by the space in ques-
tion, or block rows (or columns) of any LinearOperator having the space
in question as its range (or domain).

2.4 Vectors

Vector is the user-level vector object. As such, it supports through mem-
ber functions many commonly-used mathematical operations such as linear
combinations, dot products, and norms. Adding new vector operations in a
scalable way is discussed in Section 5.

2.4.1 Overloaded operations

Whenever possible, Playa uses overloaded operators to represent vector op-
erations; for example, the operation

r=x+Py+z
where x,y, z are vectors and 3,y scalars would be written
X += betaxy 4+ gammaxz;

using overloaded scalar-vector multiplication, vector addition, and add-into
operators. It is well known that naive implementations of overloaded vector
operations are unacceptably slow due to creation of temporary objects (see,
for example, [18]); nonetheless, efficient operator overloading implementa-
tions have been devised [22, 13]. Our fast implementation of overloaded op-
erations on polymorphic vectors will be described in Section 5, and timings
demonstrating negligible performance penalty will be shown in Section 4.

2.4.2 Access to vector data

Access to vector data is desired in several contexts. First and most impor-
tantly, during operations such as the fill step in a finite element code, a
simulator will write data into specified elements in a vector, and in coeffi-
cient evaluation the same simulator will read field data stored in a vector.
A complicating factor in the read use case is the need to access non-local
“ghost” elements. In Playa, these operations are not part of the Vector
interface; rather, specialized LoadableVector and GhostView interfaces are



used. The interface between vector and simulator will not be discussed
further in this paper.

A second use case for data access is the occasional desire for quick and
simple access to a vector element through an operation such as

cout << "'x[3] = "' << x[3] << endl;

Universally efficient implementation of such “bracket” operators is not pos-
sible with polymorphic vector types, so it is rarely a good idea to program
mathematical operations through user-level element access. However, for de-
bugging and prototyping, it is often most efficient in terms of programmer
time to have such operations available; therefore, Playa supports element
read and write through bracket operators. The indices used to specify el-
ements here are always local to a given processor. In the case of block
vector spaces, a natural local indexing for the entire block vector is defined
recursively using the block dimensions and the local indexing in the blocks.

2.5 Operators

The LinearOperator RCH is the user-level class representation of linear op-
erators, including not only various matrix representations (including block
matrices) but also implicit operators whose action on a vector is to be com-
puted without explicit construction of a matrix representation.

The overloaded +,-,* operators have their conventional meaning of ad-
dition, subtraction, and composition of operators, respectively, but those
operations are done in an implicit sense. The action of a composed operator
ABz is computed implicitly by first computing y = Bz, then computing
Ay. There is no need to form the matrix AB. Similarly, (A + B)z can be
evaluated implicitly by computing y = Ax, z = Bz, then doing y+2z. Action
of a scaled operator aAz is done implicitly as o (Ax). Any combination of
these can be specified using overloaded operators, for example:

LinearOperator<double> C = A + B;
LinearOperator<double> D = 2.0xA — 0.5%xB + 1.2xC;
LinearOperator<double> E = AxB;

Certain simple operators have implicit representation. A diagonal op-
erator can be represented with nothing but a vector of diagonal elements.
Application of the zero operator returns the zero vector of the range space
of the operator. The identity operator simply returns a copy of the operand.
Playa provides functions to construct all of these simple operators.
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Finally, it is often useful to have implicit object representations of trans-
poses and inverses. Most good sparse matrix packages have the ability to
compute ATz without explicitly forming A”. Given that, together with im-
plicit composition, we can do (AB)Tx = BT ATz implicitly as well, and with
implicit addition we can do (A + B)' 2 = ATz + BTz, The transpose()
member function creates an operator object that knows to apply these
rules. Note that the transpose() function is a member function of the
LinearOperator class and not of the Vector class. Playa makes no distinc-
tion between row and column vectors, so transpose() does not make any
sense in the context of Vector objects. An inner product of two vectors u
and v, for example, would be written as u*v.

The operation y = A~ 'z is computed implicit by solving the system
Ay = x. It is necessary to specify the solver algorithm that will be used
to solve the system, by means of providing a LinearSolver object as an
argument to the inverse function.

LinearOperator<double> Alnv = inverse (A, solver);

The operation of solving Az = b for x can then be encapsulated nominally
as multiplication x = A~ 1b. This notational simplification is important in
composing algorithms such as block preconditioners, where the application
of a preconditioner might involve several solves on subsystems.

Each LinearOperator has VectorSpace members indicating the domain
and range of the operator. Block structure in the domain and/or range
is naturally propagated to the operators. These blocks may be manipu-
lated with basic getBlock() and setBlock() operations, and a nonmember
makeBlockOperator () methods produces empty block operators for user-
defined construction.

2.6 Linear Solvers

Linear solvers are represented by the LinearSolver RCH. The most often
used member function of LinearSolver is solve(). Examples of solver
subtypes include wrappers for Amesos, Aztec, and Belos solvers. It is also
easy to write new solvers using Playa objects; several examples of this will
be shown in Section 3.

Not every solver algorithm will be compatible with every operator in-
stance; for example, an implicit inverse operator won’t normally be able
provide the elementwise information needed for use in a direct solver. Such
incompatibilities are checked for at runtime, and if encountered, an excep-
tion is thrown.
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2.6.1 Preconditioners and Preconditioner Factories

Playa’s representation of a preconditioner is an object that contains two op-
erators that can be applied as left and right preconditioners. Also necessary
are introspection functions that indicate whether a given preconditioner has
left and right operators.

Creation of actual preconditioner objects is usually not done directly by
the user, but indirectly by a solver: a natural use case for the factory pattern.
Consequently, the user will normally specify a PreconditionerFactory ob-
ject which when given a LinearOperator instance, can build a Preconditioner
object of the appropriate type.

Examples of simple Playa preconditioner factories include factories to
construct incomplete factorization preconditioners through Ifpack and alge-
braic multigrid preconditioners through ML. Several examples of building
physics-based block preconditioners are shown in the examples in Section 3.

2.7 Key Concrete Adapters

To use the high-level capabilities of Playa to drive calculations with a spec-
ified low-level data representation (for instance, Epetra), one must write
a small set of adapter classes that implement the Playa VectorTypeBase,
VectorSpaceBase, and VectorBase interfaces.

At present the workhorse of Trilinos-based simulation is still Epetra, and
so the most widely-used Playa concrete adapters are for Epetra objects. We
also provide adapters for serial dense matrices and vectors. The abstraction
is general enough to incorporate Tpetra operators and vectors as well as
other libraries such as PETSc.

3 Playa examples

In this section, we highlight some of the important features of Playa through
a few more examples starting with the power method and inverse power
method, then progressing to the solution and preconditioning of the linear
systems arising in the incompressible Navier-Stokes equations and precon-
ditioners for this problem, and finally to a more complicated block precon-
ditioner for a coupled fluid-thermal problem.

3.1 Power Iteration and Inverse Power Iteration

We define a simple function implementing the power method for calculating
the largest eigenvalue and corresponding eigenvector of a matrix A. With
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polymorphic operator objects, a power method code can be converted to an
inverse power method code simply by calling the method with A~! rather
than A. In Code Example 2, we call the power method with a linear operator
A to calculate its largest eigenvalue and eigenvector and with an implicit
A~1 resulting in an application of the inverse power method and returning
the reciprocal of the lowest eigenvalue and corresponding eigenvector of A.
The implicit inverse operator evaluates A~!y using a LinearSolver to solve
the system Ax = y. The implementation of the power iteration method is
shown in Code Example 3.

Code Example 2 Power Method and Inverse Power Method in Playa

// A is a LinearOperator previously defined.
// x is a Vector previously defined.

// Power method with A
double lambda_largest = powerMethod(A,x);

// Inverse power method using implicit A inverse
LinearSolver <double> solver =

LinearSolverBuilder:: createSolver(”amesos.xml");
LinearOperator<double> Ainv = inverse (A, solver);
double lambda_smallest = (1.0 / powerMethod(Ainv,x));

This example, like the Conjugate Gradients example in the Introduction,
has concentrated on the use of matrix and vector objects rather than the
creation of these objects, since they will be built by an application code.
However, in writing advanced preconditioning, optimization, and solver al-
gorithms, composing implicit operations will be critical.

3.2 Incompressible Navier-Stokes

The previous sections illustrated some simple applications of Playa and its
potential for ease of programmability. Now we combine these tools with
block-structured operations to develop complex preconditioners using in-
compressible Navier—Stokes as an example.
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Code Example 3 Power Method in Playa

double powerMethod(const LinearOperator<double>& A, Vector<
double>& x)

{

// Normalize initial ev guess x.

x = 1.0 / x.norm2() * x;

// Set parameters for power method.
int maxlters = 500;

double tol = 1.0e—-10;

double mu;

double muPrev;

for (int i=0; i<maxlters; i++)
{

Vector<double> Ax = Axx;

mu = (x*xAx) / (xxx);

cout << "lteration " << i

<< " mu =" << setprecision(10) << mu << endl;
if (fabs(mu — muPrev) < tol) break;
muPrev = mu;

double AxNorm = Ax.norm2();
x = 1.0 / AxNorm x Ax;

}

return mu;

14



3.2.1 Schur complement

Using Playa’s blocking and expression template capabilities, it is straightfor-
ward to form Schur complements of matrices. In this example, we solve the
incompressible Navier—Stokes equations via the Schur complement. Con-
sider the incompressible Navier—Stokes equations,

—vAu+u-Vu+Vp=f (1)
V-u=0,
posed on some domain Q C RY for d = 2,3 and equipped with appropriate
boundary conditions. Here, u is the d-dimensional velocity field, p is the
pressure, and v is the kinematic viscosity, which is inversely proportional to
the Reynolds number.
Linearization and (Div-stable) discretization of (1) leads to a linear sys-

tem of the form i ;
v [ f
(5 5)0G)-(%) @

where B and BT are matrices corresponding to discrete divergence and
gradient operators, and F' operates on the discrete velocity space.

Key in a Schur complement solve is the use of an implicit inverse for F~*
and deferred evaluation of the product BF BT, These features are illus-
trated in Code Example 4. In this example, we assume that the LinearProblem
prob has been previously defined with Sundance, the operator K is a block
2 x 2 linear operator as in (2), and the solver for the F' matrix has been
defined elsewhere in Sundance. The linear systems can be written as the
following Schur complement system

(BF'BT)p=BF 'fi + fo, (3)
which we solve for p. The current velocity u is then formed from the system
Fu=f; — BTp. (4)

In Code Example 4, we build the Schur complement operator making use
of deferred evaluation and implicit inverses. This code fragment would be
part of a nonlinear solver loop such as a Newton or a fixed point iteration.

3.2.2 PCD block preconditioner

We can also form complicated block preconditioners such as the pressure
convection-diffusion (PCD) preconditioner [8, 12] for solution of the incom-
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Code Example 4 Schur Complement Solve in Playa

// The LinearProblem prob has already been defined in Sundance

// K is the block 2x2 operator and rhs is the blocked right
// hand side from equation (2).

LinearOperator<double> K = prob.getOperator();
Vector<double> rhs = prob.getSingleRHS ();

// Extract the subblocks from K to use in forming S
LinearOperator<double> F = K. getBlock (0,0);
LinearOperator<double> Bt = K. getBlock(0,1);
LinearOperator<double> B = K. getBlock(1,0);

// Define an implicit inverse on F. The LinearSolver FSolver
// has been defined outside the nonlinear loop.
LinearOperator<double> Flnv = inverse(F, FSolver);

// Build the Schur complement (deferred evaluation).
LinearOperator<double> S = BxFlnv«Bt;

// Get the RHS subblocks for the Schur solve
Vector<double> urhs = rhs.getBlock(0);
Vector<double> prhs = rhs.getBlock(1);

// Build the RHS for the Schur complement system.
Vector<double> yp = B.range().createMember();
yp = prhs + BxFlnvxurhs;

// Solve the Schur complement system for pressure.

// The Schur complement LinearSolver has been defined
elsewhere.

Vector<double> pnew = B.range().createMember();

SolverState <double> SState = SSolver.solve(S , yp , pnew);

// Calculate the new velocity as in equation (4).
Vector<double> uNew = B.domain () .createMember();
uNew = Flnv % ( urhs — Btx pnew );

16



pressible Navier—Stokes equations. This preconditioner has the block form

wo (5ET(E) o

which results from a block LU factorization of the matrix in (2). Here S
is an approximation to the Schur complement S. In PCD, we have S~ =
M, 1EDA; ! where A, is a discrete Laplacian operator on the pressure space,
F, is a discrete convection-diffusion operator on the pressure space, and M),
is a pressure mass matrix. The operators A, F},, and M, are needed by the
PCD preconditioner from the user; we can easily generate these operators
with Sundance. An application of the preconditioner thus requires linear
solves with the operators A,, M,, and F.

Playa’s support of block structure, deferred evaluation, and implicit in-
verses lead to relatively simple code for this complicated block precondi-
tioner. The resulting Playa code looks very much like “hand-written” equa-
tions. The PCD preconditioner has been implemented in Playa and derives
from the PreconditionerFactory class. Code Example 5 illustrate these
features.

Since the Navier—Stokes equations are nonlinear, we need a nonlinear
solver in this PCD example and in the previous Schur complement example.
We used Newton’s method in our implementations. One can code the New-
ton system directly or use the nonlinear operator class NLOp in Sundance.
The NLOp class encapsulates a discrete nonlinear problem and can be passed
to a nonlinear solver such as NOX [14].

3.3 Bénard convection

We conclude this section with an even more complicated block precondi-
tioner developed for a coupled fluid-thermal problem. Consider the Bénard
convection problem
—Au+wu-Vu+ Vp = —@QT
Pr
V-u=0 (6)
1

T -VT =0
Prv +u-V ,

posed on some domain €2 along with boundary conditions, where the Rayleigh

number Ra measures the ratio of energy from buoyant forces to viscous dis-
sipation and heat conduction, the Prandtl number Pr measures the ratio of

17



Code Example 5 PCD Preconditioner in Playa

// LinearSolvers and the LinearProblems to form Fp, Ap, and Mp

// were defined when the PCDPreconditionerFactory was
constructed .

// This code takes the 2x2 block operator K of equation (2)

// and returns a PCD right preconditioner.

Preconditioner <double>

PCDPreconditionerFactory ::

createPreconditioner(const LinearOperator<double>& K) const

{

// Get subblocks from K and Fp, Mp, and Ap linear operators

// for PCD. Set up implicit inverses on F, Mp, and Ap.
LinearOperator<double> F = K. getBlock (0,0);
LinearOperator<double> FIlnv = inverse(F, FSolver_);
LinearOperator<double> Bt = K. getBlock (0,1);
LinearOperator<double> Fp = FpProb_.getOperator();
LinearOperator<double> Mp = MpProb_. getOperator () ;

LinearOperator<double> Mplnv = inverse (Mp, MpSolver.);
LinearOperator<double> Ap = ApProb_.getOperator();
LinearOperator<double> Aplnv = inverse (Ap, ApSolver_);

// Build identity operators.
LinearOperator<double> lu = identityOperator(F.domain());
LinearOperator<double> Ip = identityOperator(Bt.domain())

// Build PCD approximation to inverse Schur complement.
// Using deferred evaluation and implicit inverses.
LinearOperator<double> Xlnv = Mplnv % Fp x Aplnv;

// Make three 2x2 block operators for the PCD preconditioner

VectorSpace<double> rowSpace = K.range();

VectorSpace<double> colSpace = K.domain () ;

LinearOperator<double> Q1 = makeBlockOperator(colSpace,
rowSpace) ;

LinearOperator<double> Q2 = makeBlockOperator(colSpace,
rowSpace) ;

LinearOperator<double> Q3 = makeBlockOperator(colSpace,
rowSpace) ;
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// PCD continued :

// Populate the three block operators that make up the PCD
// preconditioner.
Ql.setBlock (0, 0, Flnv);
Ql.setBlock (1, 1, Ip);
Ql.endBlockFill();
Q2.setBlock (0, 0, lu);
Q2.setBlock (0, 1, —1.0«Bt);
Q2.setBlock (1, 1, Ip);
Q2.endBlockFill ();
Q3.setBlock (0, 0, lu);
Q3.setBlock (1, 1, —1.0«xXlInv);
Q3. endBlockFill ();

// The PCD preconditioner is the product of these
// three 2x2 systems.
LinearOperator<double> Plnv = Q1 x Q2 x Q3;

// Return a PCD right preconditioner.
return new GenericRightPreconditioner<double>(Plnv);
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viscosity to heat conduction, and § denotes a unit vector along the axis in
which gravity acts.

Linearizing at the level of the weak form, gives rise to a linear variational
problem for the Newton step for Navier—Stokes. The linear system for a
Newton step for the convection problem takes the form

F BT M u f1
-B 0 0 P = fo , (7)
My, 0 K T 13

where the matrices F' and B are the same as in linearized Navier—Stokes (2).
The matrix M; arises from the term (%T ,Vg), where g is the Cartesian di-
rection in which gravity acts (y in 2d, z in 3d). In 2d, if the velocity variables
in each direction are segregated, this has the form of M = (0, M T), where
M is a rectangular mass matrix. The matrix M, arises from the Jacobian
term (u-VTy,r), where Ty is the temperature in the current Newton iterate.
The matrix K comes from 5-(VT,Vr) + (ug - VT,r), so it is a standard
linear convection-diffusion operator.

A recently developed block preconditioner for this system [11] is given

T (NE G e

where N is the 2 x 2 block system from the Navier-Stokes equations (2).
Applying the preconditioner requires the (preconditioned) solution of the
linearized Navier—Stokes system N and of the scalar convection-diffusion
system K.

Implementation of this preconditioner in Playa uses many of the same
techniques as described in the previous examples. In particular, we make
use of deferred evaluation, implicit inverses, and block operators. For this
preconditioner, there is the added complication of a nested block structure.
The (0,0) block of the preconditioner (8) is itself a block operator. Playa
supports nested block structure, so implementation of this preconditioner
was straightforward. In Code Example 6, we show a fragment of code for
building the nested 2 x 2 operators for the preconditioner.

4 Some basic timing results

In order to demonstrate that our high-level interface does not degrade the
performance of basic linear algebra operations, we have tested some opera-
tions common to Playa and Epetra on a range of different platforms. Playa
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Code Example 6 Nested Blocks in Playa

// Set up nested block operator given subblock components
// (already built).

// Make spaces for inner 2x2 block system.

int nBlocks = 2;

Array<VectorSpace<double> > space2x2inner(nBlocks);

space2x2inner [0] = F.domain();

space2x2inner[1] = Bt.domain();

VectorSpace<double> blkSp2x2inner = blockSpace(space2x2inner);

LinearOperator<double> N = makeBlockOperator(blkSp2x2inner ,
blkSp2x2inner);

.setBlock (0,0,F);

.setBlock (0,1,Bt);

.setBlock (1,0,B);

.setBlock(1,1,C);

.endBlockFill ();

22222

// Make 2x2 Jacobian matrix [N MMI; MM2 K]

Array<VectorSpace<double> > space2x2outer(nBlocks);

space2x2outer [0] = N.domain();

space2x2outer [1] = Ml.domain();

VectorSpace<double> blkSp2x2outer = blockSpace(space2x2outer);

LinearOperator<double> blockJ = makeBlockOperator(

blkSp2x2outer ,

blkSp2x2outer);

LinearOperator<double> MMl = makeBlockOperator(M1.domain (),
blkSp2x2inner);

LinearOperator<double> MM2 = makeBlockOperator(blkSp2x2inner ,
M1l.domain());

MM1. setBlock (0,0,M1);

MM1. endBlockFill ();

MM2. setBlock (0,0 ,M2) ;

MM2. endBlockFill ();

blockJ.setBlock (0,0,N);

blockJ .setBlock (0,1,MM1);

blockJ .setBlock (1,0,MM2);

blockJ.setBlock (1,1,K);

blockJ.endBlockFill ();
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// Nested Blocks in Playa (cont.)

// Make nested 2x2 preconditioner operators
// P{=1} = [Ninv 0; 0 I] [I =MMI; 0 I] [I 0; 0 Kinv]

LinearOperator<double> lu = identityOperator(F.domain());
LinearOperator<double> Ip = identityOperator(Bt.domain());
LinearOperator<double> It = identityOperator(M1l.domain());
LinearOperator<double> lup = identityOperator(N.domain());
LinearOperator<double> Ninv = inverse (N, NSSolver);

LinearOperator<double> Pl = makeBlockOperator(blkSp2x2outer,
blkSp2x2outer);

LinearOperator<double> P2 = makeBlockOperator(blkSp2x2outer ,
blkSp2x2outer);

LinearOperator<double> P3 = makeBlockOperator(blkSp2x2outer,
blkSp2x2outer);

Pl.setBlock (0,0,Ninv);
Pl.setBlock(1,1,1t);
Pl.endBlockFill();

P2.setBlock (0, 0, lup);
P2.setBlock (0, 1, —1.0«MM1);
P2.setBlock (1, 1, It);
P2.endBlockFill ();

P3.setBlock (0, 0, lup);
P3.setBlock (1, 1, Kinv);
P3.endBlockFill ();

LinearOperator<double> Pinv = P1 % P2 x P3;
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relies on Epetra (and, in the future, potentially other vector types such as
Tpetra or PETSc) to provide data containers, and we can either forward the
evaluation of our expression templates to the underlying Epetra function or
else stream functors over the data provided by Epetra. In either case, our
baseline to compare against is Epetra — apart from O(1) overhead, Playa
performance should match that of the underlying vector library.

We consider three operations: the dot product of two vectors, compu-
tation of the vector 1-norm, and evaluation of a linear combination of two
vectors. The first two of these are reduction operations, mapping the input
vector(s) to a single number. The third example maps vectors to vectors.
In our timing results, the Playa implementation of the dot product sim-
ply forwards the function call to Epetra and reports the result. On the
other hand, the vector 1-norm is evaluated by means of streaming functors
over data chunks. In other words, Epetra provides a data container but
no arithmetic. Finally, the linear combination is evaluated by means of the
underlying Epetra operation. In each case, we repeated the calculation 100
times and report the average time.

We also tested our operations on several Unix-like architectures. We ran
tests in serial on the following platforms:

(a) Mac Pro desktop (dual quad-core 2.8GHz Xeon processors with 32GB
of RAM ) running OSX version 10.5, with the code compiled using gcc
version 4.4.4 installed from the MacPorts system.

(b) Dell Inspiron 1120 laptop with two 1.3 GHz AMD Athlon Neo K325
dual-core processors and 4GB of RAM running Ubuntu Linux and gcc
4.5.2.

(c¢) a Dell Precision M6500 laptop with dual 2.GHz quad-core i7 processors
and 16 GB of RAM running gcc version 4.4.3 on Ubuntu 10.04.

(d) a HP dual quad-core i7 machine with 16GB of RAM, compiled under
gee 4.5.2 on Ubuntu Linux

Figures 1- 4 show mostly what we expect. Although the basic FLOP
rates vary from machine to machine, we notice that Playa has an additional
cost relative to Epetra for small vectors, but that for moderate-sized vectors
the performance is identical. On the other hand, the performance of the
vector 1-norm, computed with a streaming functor, seems to vary across
platforms. In theory, the compiler should inline appropriate function calls
and produce loops comparable to what Epetra contains. However, it seems
that on some platforms, the compilers are not able to optimize through the
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several layers of templated C++ code to obtain the predicted performance.
Vector operations whose performance is a critical part of overall solver per-
formance should probably be implemented through delegation to a concrete
type rather than through a streaming functor.

We also performed similar tests with two other packages, Thyra and Tpe-
tra. We observed qualitatively similar behavior in that Thyra performance
had O(1) overhead relative to Epetra but asymptotically matched the per-
formance of Epetra. The performance of Tpetra, on the other hand, did not
always match that of Epetra. We believe that a similar issue holds for Tpe-
tra as for the vector 1-norm computation; T'petra linear algebra is delegated
to Kokkos [1], which is templated over an abstraction of computer hard-
ware. The computations are performed via functors mapped to hardware
through parallel for and reduction operations. Compiling through the tem-
plates presents a similar problem to Playa, but somewhat more pronounced
as there is an additional layer of templates due to hardware. Coaxing the
compilers to do the right thing on this sort of code seems to be an important
open question.

5 Implementation Issues

5.1 Handles and their uses

Handle objects are an essential part of the Playa design. Their most obvi-
ous use is to enable overloaded operations on runtime-polymorphic objects;
however, they also have numerous other uses. We outline just two exam-
ples: single point-of-contact error checking and safe management of object
relationships.

In every operation involving two or more vectors or operators, math-
ematical and structural compatibility of the operands should be checked.
The isCompatible () member function of VectorSpace is intended for this
very purpose. There is then an issue of which object or function has the
responsibility to perform these checks. The handle layer is a natural place
to put such checks.

A more important use of the handle layer is to set up safe object rela-
tionships. An example of an object relationship that is simple in concept
yet nontrivial to set up safely is the storage of a VectorSpace in a Vector.
Recall that a vector space — an object of some VectorSpaceBase derived
type — creates a vector via the createMember () function. The difficulty is
that the Derived VS instance cannot store an RCP pointing to itself (to do so
would create a memory leak). The resolution is to attach the space’s RCP

24



Run Time

Run Time
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Figure 2: Comparison of Playa and Epetra performance on platform
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Figure 3: Comparison of Playa and Epetra performance on platform (c)
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Figure 4: Comparison of Playa and Epetra performance on platform (d)
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to the vector after creation. The user can be asked to remember this step, or
the logic can be wrapped in nonmember constructors. A simple alternative
is to let the handle layer do the late binding, as in the following function.

Vector<Scalar> VectorSpace<Scalar >::createMember() const

{

Vector<Scalar> rtn = this—>ptr()—>createMember(*xthis);
return rtn,;

}

This enables safe object relationships in a manner transparent to the user.

5.2 Vector operations

Augmenting an abstract vector interface to include a new vector operation
is a vexing problem. In the original HCL, every vector operation required by
clients was represented as a pure virtual function in the base class. TSF con-
tinued this, while providing several simplifications such as a generic traits-
based adapter for concrete types. A more scalable solution was devised by
Bartlett [7], who realized that if reduction and transformation operations
were represented as objects, then a vector could have a single point of en-
try for all operations. The codes TSFCore and Thyra have been based on
this idea; in these codes, vector operations are done exclusively via RTOp
invocations.

In Playa an intermediate approach is taken: operations can be carried
out either by delegation to a concrete type, or by generic RT'Op. We con-
sider it likely that developers of low-level vector libraries will do a better job
optimizing their vector operations than we will, so we want to use their im-
plementations wherever possible. Nonetheless, no library will have thought
to implement every operation that might be needed by a client, so some
means of scalable (in developer time) extensibility is essential. Therefore,
Playa also provides a mechanism for application of generic operations via
templated member functions.

5.2.1 Functor-based vector operations

As an example of implementing a vector operation through a templated
functor, we show Playa’s elementwise vector product (“dot star” in MAT-
LAB). The .* operator does not exist in C++, so we use a member function
dotStar () instead of an overloaded operator; a Playa user would write this
code:
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Vector<Scalar> z = x.dotStar(y); // z =x .x y
The member function is implemented in two stages: a const member function

template <class Scalar> inline
Vector<Scalar> Vector<Scalar >::dotStar(const Vector<Scalar>&
other) const
{
Vector<Scalar> rtn = space().createMember();
rtn.acceptCopyOf(*this);
rtn.selfDotStar(other);
return rtn;

}

which calls a non-const member function that in turn calls a generic functor-
streaming function with a DotStar () functor as an argument.

template <class Scalar> inline
Vector<Scalar>& Vector<Scalar >::selfDotStar(const Vector<Scalar

>& other)
{
return applyBinaryFunctor(PlayaFunctors:: DotStar<Scalar >(),
other);
}

The DotStar() functor object simply provides an elementwise evaluation
operation,

template <class Scalar>
class DotStar

{

public:
DotStar () {}

Scalar operator()(const Scalar& x, const Scalar& y) const
{return xxy;}

+i

The applyBinaryFunctor () member function is templated on functor type,
so the streaming logic is written once and reused for all binary functors.
Similar application functions have been implemented for unary and ternary
transformation functors as well as unary and binary reduction functors. Re-
duction functors are templated on reduction target type. Reduction functors
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are necessarily stateful and so must also provide callbacks for initialization
and finalization.

There are several ways in which to improve the performance of the code
shown above. First, the two-stage call requires two loops over the data: one
for the copy in dotStar() (the copy is implemented as a functor applica-
tion) and another for the DotStar () functor application in selfDotStar ().
Second, a temporary is created. This could be avoided using deferred eval-
uation of an intermediate expression representation as described in the next
section.

It was initially our plan to implement all of Playa’s vector operations via
functors. However, as discussed in section 4, performance testing indicated
that functor-based operations did not give consistently good performance
across all platforms. Therefore, we implemented the critical operations for
iterative solves (updates, two-norms, and dot products) using delegation
to the concrete type. In the future, we envision a traits mechanism for
compile-time choice between functors and delegation for each concrete type.

5.3 Overloaded operations

The critical issue in efficient overloaded operations is to avoid creating tem-
porary vectors, which would result in O(N) overhead. We solve this prob-
lem using template metaprogramming to form expression representations,
followed by deferred evaluation of these expressions in a context where un-
necessary overhead can be avoided. Any expression representing a linear
combination of vectors is rendered at compile time into an object of class
LCN, which is templated on the number of terms and contains statically-
allocated arrays of vectors and coefficients. For example, the overloaded
scalar-vector multiplication operator produces a one-term linear combina-
tion (type LCN<Scalar,1>),

template <class Scalar> inline
LCN<Scalar, 1> operatorx(const Scalar& alpha,
const Vector<Scalar>& x)

{

return LCN<Scalar, 1>(alpha, x);

}

and the overloaded vector-LCN addition operator produces a two-term linear
combination object (type LCN<Scalar,2>).

template <class Scalar> inline
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LCN<Scalar, 2> operator+(const Vector<Scalar>& x, const LCN<
Scalar, 1I>& lc)

{

const Scalar one = Teuchos:: ScalarTraits<Scalar >::one();
return LCN<Scalar, 2>(one, x, lc);

}

Thus an expression such as ax + By is identified at compile time as a two-
term linear combination, and the effect of the overloaded multiplication
and addition operators is only to form an LCN object whose nodes contain
the scalars and shallow-copied vectors to be operated on. No numerical
calculations are done at this point. The overhead is O(1).

The expression embodied in an LCN object is only evaluated numerically
upon assignment or other conversion to a vector. For example, the code
for the overloaded += operator shows how a two-term linear combination
formed through overloaded operations is forwarded to a low-level update ()
function, in which numerical computations are done.

template <class Scalar> inline
Vector<Scalar>& Vector<Scalar >::operator+=(const LCN<Scalar, 2>&

Ic)
{
const Vector<Scalar>& x = lc.vec(0);
const Scalar& alpha = Ic.coeff(0);
const Vector<Scalar>& y = lc.vec(1);
const Scalar& beta = Ic.coeff(1);
const Scalar one = Teuchos:: ScalarTraits<Scalar >::one();

TEUCHOS_TEST_FOR_EXCEPTION (! this —>space () .isCompatible (
x.space()),
std :: runtime_error ,
"Spaces this=" << this—>space() <<
<< x.space() << " are not compatible in operator+=()");

" "

and other="

this—>update(alpha, x, beta, y, one);

return xthis;

}

The next example shows the overloaded vector assignment operator. In the
event that the target of the assignment is an existing vector of compatible
space, we can simply overwrite its entries with the result of the evaluation,
with no memory allocation needed. If the target of the assignment is null
or needs reshaping, allocation is done.
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template <class Scalar> inline
Vector<Scalar>& Vector<Scalar >::operator=(const LCN<Scalar, 3>&

{

}

Ic)

const Vector<Scalar>& x = lc.vec(0);

const Scalar& alpha = Ic.coeff(0);

const Vector<Scalar>& y = lc.vec(1);

const Scalar& beta = Ic.coeff(1);

const Vector<Scalar>& z = lc.vec(2);

const Scalar& gamma = lIc.coeff(2);

const Scalar zero = Teuchos:: ScalarTraits<Scalar >::zero();

TEUCHOS_TEST_FOR_EXCEPTION (!y.space().isCompatible(x.space()),
std :: runtime_error ,
"Spaces x=" << x.space() << " and y="
<< y.space() << " are not compatible in operator=(axx + bxy
+ cxz)");

TEUCHOS_TEST_FOR_EXCEPTION (!z.space().isCompatible(x.space()),
std :: runtime_error ,

"Spaces x=" << x.space() << " and z="
<< z.space() << " are not compatible in operator=(axx + bxy
+ cxz)");

if (this—>ptr().get() '= 0 && this—>space() = x.space())

{
/+ If the LHS exists and is from the same space as the RHS
% vectors, use the update operation to compute

* (xthis) = zerox(xthis) + alphaxx + betaxy + cxz
*/
this—update(alpha, x, beta, y, gamma, z, zero);
}
else
{

/+* If the vectors are from different spaces, or if the LHS
x (s null, form the RHS vector and overwrite the LHS's ptr
x with it. x/
Vector e = lc.eval();
this—ptr() = e.ptr();

}

return xthis;

These functions are specialized (in the sense of partial template special-
ization) to two-term and three-term linear combinations. Specialization to
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linear combinations of other sizes is a programming chore that can be done
once and for all for any given linear combination size. The general case is
dealt with by writing a function templated on linear combination size.

6 Conclusion

6.1 Results

We have demonstrated the possibility of a very efficient overloaded operator
syntax using expression templates on polymorphic reference-counted handles
to vector objects. Our experiments indicate that our overloaded operations
are indistinguishable in performance from direct calls to Epetra for objects
with dimension greater than 100, as shown in the comparisons. Playa’s
compact representation of block-structured operators, implicit inverses and
transposes, and operator overloading has enabled the easy development of
block preconditioners for problems such as incompressible flow and thermal
fluids. Importantly, Playa builds on the successes of many existing Trilinos
packages without replicating functionality, increasing their usability without
impeding the robustness or performance. This suggests a real possibility for
Playa maturing into a development environment for production-ready high-
level algorithms.

6.2 Future directions

Yet, arriving at such a position will require some additional development.
For one, our functor-based approach for computing on data chunks does
not perform reliably across platforms. This will be an important issue to
resolve. Second, there are some minor inefficiencies internal to some of our
implicit classes that careful profiling and optimization will improve (for ex-
ample, compound operators for temporary vectors at each application). A
third opportunity will be to include more vector, matrix, and solver tools
within the Playa interface (e.g. Tpetra, PETSc). Doing so should also en-
able greater portability to emerging multicore-based architectures, including
GPU and hybrid platforms. Finally, ongoing research aims to expand Playa’s
capabilities by developing tools such as nonlinear solvers and optimization
algorithms entirely within the Playa framework.
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