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Abstract. We develop upwind methods which use limited high resolution corrections in the
spatial discretization and local time stepping for forward Euler and second order time discretizations.
L∞ stability is proven for both time stepping schemes for problems in one space dimension. These
methods are restricted by a local CFL condition rather than the traditional global CFL condition,
allowing local time refinement to be coupled with local spatial refinement. Numerical evidence
demonstrates the stability and accuracy of the methods for problems in both one and two space
dimensions.
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1. Introduction. Hyperbolic conservation laws model a wide range of physi-
cally interesting phenomena such as gas dynamics, shallow water flow, and advection
of contaminants. Conservative high resolution methods with explicit time discretiza-
tion have proven effective in capturing the sharp, moving fronts common in these
applications. It is well known that such methods require the time step to satisfy a
CFL condition in order to guarantee stability.

Local spatial refinement is often introduced in order to resolve these fronts more
efficiently. However, this local refinement reduces the allowable time step for the ex-
plicit time discretizations typically employed. Rather than considering a fully implicit
approach, in which the step size is often constrained by the nonlinear convergence any-
way, we consider a method which allows the time step to vary spatially and satisfy a
local CFL condition. In this way, we can increase the efficiency of the time stepping
significantly in certain situations.

Another situation where local time stepping is useful is when modeling transport
of some quantity by a highly varying velocity field. The advection of a species is
described by an equation of the form

ct +∇ · (uc) = q,(1)

where c is the concentration of the species, u is the velocity of the fluid transporting
the species, and q represents source/sink terms. High resolution schemes have be-
come popular for these problems, primarily because they are conservative and satisfy
a maximum principle. The CFL constraint on the time step is determined by the
ratio of the mesh spacing and the magnitude of the velocity. In certain cases, specif-
ically in the presence of injection or production wells, the magnitude of u can vary
substantially throughout the domain. In these situations, even if the mesh spacing is
uniform, using a global CFL time step can be very restrictive, and local time step-
ping can result in substantial savings in computation time. It is important that the
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local time stepping preserve the conservation and maximum principle properties of
the underlying method. This situation was explored in some detail from a practical
viewpoint in [3], and we will explore it from a more theoretical viewpoint here.

Local time stepping for one-dimensional scalar conservation laws was first pro-
posed in Osher and Sanders [11]. They gave a thorough analysis of a first order spatial
discretization with a local forward Euler time stepping scheme. This scheme allows
each element to take either an entire time step or some fixed M smaller steps. In
[3], the first author examined local time stepping for advection equations of the form
(1), using high resolution schemes with slope limiters. Numerical results in two space
dimensions were presented.

Another approach to local time stepping involves automatically taking smaller
time steps where the mesh is refined. Berger and Oliger developed such an approach
in [1], in which refined grids are laid over regions of the coarse mesh. These fine grids
can have different orientation than the coarse one, and need not be nested. When the
problem is integrated in time, small time steps are taken on the refined mesh and large
time steps on the coarse mesh. Information is then passed between the grids by means
of injection and interpolation. This approach allows higher order time integration,
as the computation for each time step is done independently once the information is
passed at the beginning of the time step.

In other work, Kallinderis and Baron [8] coupled the time refinement to the spatial
refinement but used a single nonuniform mesh rather than multiple meshes. This work
presented several methods (all first order) of handling the interface between regions
with different time steps.

Flaherty et al. [5] have developed a parallel, adaptive discontinuous Galerkin
method with a local forward Euler scheme which relies on interpolating values in time
at interfaces between time steps of different sizes. This scheme, however, does not
appear to conserve flux along these interfaces. Also, only first order in time methods
are discussed.

In this paper, we seek to extend the work in [11] and [3] in two ways. First,
we will show a maximum principle for a local forward Euler method when limited
slopes are included. Second, we will show that the main ideas of local forward Euler
discretizations may be extended to second order in time by way of the TVD Runge–
Kutta methods of Gottlieb and Shu [6] and Shu [13]. A stability result for a constant
coefficient case will be derived for this higher order method. We will also indicate
how to extend this result to nonlinear problems. This analysis shows that we only
need to satisfy a local CFL condition on each element.

The paper is outlined as follows. First, in section 2, we formulate a high resolu-
tion local forward Euler time discretization that employs some limited correction to
the piecewise constant solution. In section 2.1, a maximum principle is derived for
this approach. Then, a local time stepping procedure based on a second order time
discretization is described in section 3, and a maximum principle for a simple case is
given in section 3.1. Some extensions and implementation details are also discussed in
this section. Finally, numerical results validating the theory are presented in section 4.

2. A high resolution method. We first consider the scalar conservation law

ct + f (c)x = 0,(2)

together with the initial condition

c(x, 0) = c0(x).(3)
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We will partition the real line into intervals Ij = {x : xj− 1
2
≤ x < xj+ 1

2
}. We use

the difference operator ∆+ to denote a forward difference. That is, ∆+cj ≡ cj+1 − cj
for some quantity c. A similar definition holds for ∆− with ∆−cj ≡ cj − cj−1. By
integrating (2) over each Ij and using some consistent, Lipschitz numerical flux h at
the cell edges, we obtain the semidiscrete scheme

dcj
dt

= − 1

∆xj
∆+h(cj−1, cj),(4)

where cj is an approximation to the integral average of c over Ij . Examples of h include
the Godunov flux and the Lax–Friedrichs flux. It is important that h is nondecreasing
in the first variable and nonincreasing in the second variable. The initial condition
is defined by simple projection. A standard forward Euler discretization can also be
obtained in the obvious way.

In order to improve the accuracy of the above approach, we incorporate higher
order “corrections” into the method. There are several ways of constructing these
corrections. These include the piecewise linear reconstruction used in the monotone
upwind scheme for conservation laws (MUSCL) of van Leer [14], the ENO reconstruc-
tion schemes of Harten and Osher [7], and the Runge–Kutta discontinuous Galerkin
methods of Cockburn and Shu [2]. We shall not deal exclusively with any specific
method but require certain properties of whichever is used. Since we are interested
in second order accuracy, all of our examples assume linear approximations in space
in each interval Ij .

After constructing the corrections and limiting them, we add them to the means
to construct more accurate left and right states for the Riemann solutions. The
corrections are denoted by tildes. Left states at an interface xj+1/2 shall be denoted

as cj+ c̃j ≡ cj+ 1
2 ,L

and right states as cj+1−˜̃cj+1 ≡ cj+ 1
2 ,R

. In this way, the numerical

flux at the edge is given by h(cj+ 1
2 ,L
, cj+ 1

2 ,R
).

Vital to the analysis is the assumption that the corrections introduce no new
extrema into the solution. This allows corrections derived from the minmod slope
limiter (described below) but rules out those derived from the modifiedminmod limiter
of Shu [12] and the ENO schemes as introduced by Harten and Osher [7]. We can
quantify this restriction as

−θ ≤ ∆+
˜̃cj

∆+cj
≤ 1(5)

and

−θ ≤ −∆+c̃j
∆+cj

≤ 1,(6)

where θ ≥ 0.
The number θ is a chosen parameter which appears in the CFL condition. For

example, see [2]. Geometrically, θ is related to the largest allowable ratio of differences
between left and right states at consecutive edges relative to the means. This ratio can
be allowed to be larger than 1, and we will see that such a situation will necessitate
a restriction of the time step in order to guarantee a maximum principle. Consider
the cells j and j+1 in Figure 1. The value cj+ 1

2 ,L
− cj− 1

2 ,L
≥ cj+1 − cj ; however, the

differences have the same sign. Thus

0 ≤
cj+ 1

2 ,L
− cj− 1

2 ,L

cj+1 − cj = 1 +
∆+c̃j
∆+cj

,(7)
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j-1 j j+1

j-1/2,L
c

c
j+1/2,L

Fig. 1. Slopes increase ratio of left states to means.

and if θ satisfies (6), then

0 ≤
cj+ 1

2 ,L
− cj− 1

2 ,L

cj+1 − cj ≤ 1 + θ.(8)

Specifically, suppose that we compute a slope, δcj , using the minmod limiter.
Thus,

δcj =

{
min

( |∆+cj |
∆+xj

,
|∆−cj |
∆−xj

)
∗ sgn (∆+cj) if sgn (∆+cj) = sgn (∆−cj) ,

0 otherwise.
(9)

Set c̃uj =
∆xj

2 δcj . Then set

c̃j =

{
c̃uj if |c̃uj | ≤ |∆±cj |,
0 otherwise.

(10)

This last limiting step is necessary only in the case of nonuniform mesh. Finally,
˜̃cj = c̃j . The corrections then have the property that

sgn

(
c̃j

∆±cj

)
≥ 0.(11)

We can thus make the bound

1 +
∆+c̃j
∆+cj

≤ 1 +
c̃j+1

∆+cj
≤ 2.(12)

We also have

1 +
∆+c̃j
∆+cj

≥ 1− c̃j
∆+cj

≥ 0(13)
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and

1− ∆+
˜̃cj

∆+cj
≥ 1− c̃j+1

∆+cj
≥ 0.(14)

Hence, (5) and (6) hold automatically with the choice θ = 1.

More generally, suppose corrections c̃uj and ˜̃c
u

j are computed by some means, and
θ is chosen such that 0 ≤ θ ≤ 1. Define

c̃j =

{
c̃uj if 2|c̃uj | ≤ θ|∆±cj |,
0 otherwise,

(15)

with an analogous definition for ˜̃cj . Then

1 +
∆+c̃j
∆+cj

≥ 1− |c̃j+1|
|∆+cj | −

|c̃j |
|∆+cj | ≥ 1− θ ≥ 0(16)

and

1 +
∆+c̃j
∆+cj

≤ 1 + θ.(17)

We now present the first order local time discretization. It is a straightforward ex-
tension of the method in [11]. The only difference is that the flux terms are computed
using the corrected quantities cj+1/2,L, cj+1/2,R rather than piecewise constants. We
allow each element to take either a whole time step or some fixed M substeps per
main time step.

We begin by noting that the intervals Ij form a partition of the real line. In
addition to the spatial partition, we also introduce the temporal partition of [0, T )
into time intervals [tn, tn+1), n = 0, . . . , N − 1, with t0 = 0 and tN = T . We denote
∆tn ≡ tn+1 − tn and define λnj ≡ ∆tn

∆xj
. In order to describe the local time stepping

scheme, we will need to further partition the time steps on certain elements. We
denote by Cn the set of all indices j such that a single time step is taken from tn to
tn+1 on Ij . On the rest of the elements, we partition the time step [tn, tn+1) into the
union of substeps [tn+ηl , tn+ηl+1), l = 0, . . . ,M − 1. Further, {σk}Mk=1 is a sequence
of positive numbers summing to unity. The numbers ηl are given as the cumulative
sum of the σk, that is, ηl =

∑l
k=1 σk, and η0 = 0. Correspondingly, the substeps in

the time interval are given by tn+ηl+1 = tn+ηl + σl+1∆t
n. Notice that the elements

on which the local steps are taken may change over time.
With this notation established, we can modify the predictor-corrector scheme of

Osher and Sanders to a so-called high resolution scheme in space.
Following [11], for each k = 1, . . . ,M − 1, the “predictor” is defined by

cn+ηk

j =

{
cnj , j ∈ Cn,

cnj − λnj
∑k−1

l=0 σl+1∆+h(c
n+ηl

j−1/2,L, c
n+ηl

j−1/2,R), j /∈ Cn,
(18)

and the “corrector” is

cn+1
j = cnj − λnj

M−1∑
l=0

σl+1∆+h(c
n+ηl

j− 1
2 ,L
, cn+ηl

j− 1
2 ,R

).(19)

Notice that if j− 1, j, j+1 ∈ Cn, then the method on Ij reduces to forward Euler
with a step size of ∆tn.
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2.1. A maximum principle. In this section, we present a maximum principle
for the method (18)–(19). The maximum principle will verify that L∞ stability is
attainable with only local assumptions regarding the mesh, time step, velocity, and
corrections. It is vital to this analysis that we use a “strict” limiter (i.e., one that
does not introduce new extrema).

We introduce some notation for the scheme as follows. We define terms involving
the differences of the corrections relative to the means:

κj,1 ≡ 1− ∆−˜̃cj
∆−cj

(20)

and

κj,2 ≡ 1 +
∆−c̃j
∆−cj

,(21)

where we may have a superscript of n,n + ηl, etc. Note that (5) and (6) give us the
bounds 0 ≤ κj,1, κj,2 ≤ 1 + θ. We also define the coefficients γj,1 and γj,2 as the local
Lipschitz coefficients of h. That is,

γn+ηl

j,1 ≡ −Λn+ηl

j


h

(
cn+ηl

j+ 1
2 ,L
, cn+ηl

j+ 1
2 ,R

)
− h

(
cn+ηl

j+ 1
2 ,L
, cn+ηl

j− 1
2 ,R

)
cn+ηl

j+ 1
2 ,R

− cn+ηl

j− 1
2 ,R


(22)

and

γn+ηl

j,2 ≡ −Λn+ηl

j


h

(
cn+ηl

j+ 1
2 ,L
, cn+ηl

j− 1
2 ,R

)
− h

(
cn+ηl

j− 1
2 ,L
, cn+ηl

j− 1
2 ,R

)
cn+ηl

j+ 1
2 ,L

− cn+ηl

j− 1
2 ,L


 ,(23)

where

Λn+ηl

j =

{
λnj if j − 1, j or j + 1 ∈ Cn,

σl+1λ
n
j otherwise.

(24)

If the flux f is smooth enough, then we can, as in [11], reduce the Lipschitz constants
to a local supremum of f ′(c). Further, we define the terms

αj,1 ≡ γj,1κj,1(25)

and

αj,2 ≡ γj,2κj,2.(26)

By our assumptions (5) and (6) and the assumed monotonicity properties of h (h
nondecreasing in its first argument, nonincreasing in its second), we have αj,1 ≥ 0,
αj,2 ≤ 0, and thus

αj,1 − αj,2 ≥ 0.(27)

For each j at each time tn+ηl , we require the local CFL condition

1− αn+ηl

j,1 + αn+ηl

j,2 ≥ 0.(28)
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Here, we pause to discuss the relation between the terms (5)–(6) and the CFL
condition (28). We require that

αn+ηl

j,1 − αn+ηl

j,2 ≤ 1,(29)

or

γn+ηl

j,1 κn+ηl

j,1 − γn+ηl

j,2 κn+ηl

j,2 ≤ 1.(30)

If the corrections are all zero, then each κ term is simply 1. However, as in Figure 1,
our κ terms are only bounded by 1+θ. Consequently, in order to satisfy (28), we must
possibly take a smaller time step than we would if we were not using the corrections.
Equivalently, we could write our CFL condition as do Cockburn and Shu [2]:

γn+ηl

j,1 − γn+ηl

j,2 ≤ 1

1 + θ
.(31)

The L∞ stability result of [11] depends upon showing that the operator which ad-
vances the solution forward is monotone. However, with the addition of the correction
terms, the operator ceases to be monotone, and we must take a different approach.
We begin by examining the basic global time stepping method (or j ∈ Cn ∀ j). The
method is

cn+1
j = cnj − λnj

[
h
(
cnj+ 1

2 ,L
, cnj+ 1

2 ,R

)
− h

(
cnj− 1

2 ,L
, cnj− 1

2 ,R

)]
.(32)

We can obtain L∞ stability as follows. Add and subtract h(cn
j+ 1

2 ,L
, cn

j− 1
2 ,R

) in

(32) and multiply and divide by the proper differences, and we have

cn+1
j = cnj + αn

j,1

(
cnj+1 − cnj

)
+ αn

j,2

(
cnj − cnj−1

)
,(33)

or

cn+1
j =

(
1− αn

j,1 + α
n
j,2

)
cnj + αn

j,1c
n
j+1 − αn

j,2c
n
j−1.(34)

Then, by (27) and (28), we see that

|cn+1
j | ≤ (

1− αn
j,1 + α

n
j,2

) |cnj |+ αn
j,1|cnj+1| − αn

j,2|cnj−1|(35)

≤ sup
j

|cnj |.

By making similar arguments in the context of the local time stepping method,
we have the following stability result.

Proposition 2.1. Assume (5), (6), and (28) hold, and the numerical flux h(u, v)
is nondecreasing in u and nonincreasing in v; then for n > 0,

sup
j

|cnj | ≤ sup
j

|c0j |,

where cnj is defined by (18)–(19).

Proof. The proof follows from looking separately at the cases in which j ∈ Cn

and j /∈ Cn.



HIGHER ORDER LOCAL TIME STEPPING 2263

We begin with the case of j /∈ Cn. In this case, we may use the same technique
as in the global time stepping case recursively to bound the solution at time n+ 1 in
terms of the solution at time n.

|cn+ηl

j | =
∣∣∣cn+ηl−1

j − σl+1λ
n
j∆+h

(
c
n+ηl−1

j− 1
2 ,L

, c
n+ηl−1

j− 1
2 ,R

)∣∣∣(36)

=
∣∣∣cn+ηl−1

j + α
n+ηl−1

j,1

(
c
n+ηl−1

j+1 − cn+ηl−1

j

)
+ α

n+ηl−1

j,2

(
c
n+ηl−1

j − cn+ηl−1

j−1

)∣∣∣
= |cn+ηl−1

j |
(
1− αn+ηl−1

j,1 + α
n+ηl−1

j,2

)
+ α

n+ηl−1

j,1 |cn+ηl−1

j+1 | − αn+ηl−1

j,2 |cn+ηl−1

j−1 |
≤ max

j−1≤k≤j+1
|cn+ηl−1

k |.

The α terms satisfy the same sign conditions as their global time stepping counter-
parts, so

|cn+ηl

j | ≤ max
j−1≤k≤j+1

|cn+ηl−1

k |.(37)

If j∗ ∈ [j − 1, j + 1] is the element on which the maximum occurs, and if j∗ ∈ Cn,
then we are done for this element, as we have the solution bounded in terms of values
at time n. If j∗ /∈ Cn, then we apply this argument recursively.

Now, suppose that j ∈ Cn. Using (18) in (19),

cn+1
j = cnj − λnj

M−1∑
l=0

σl+1∆+h
(
cn+ηl

j− 1
2 ,L
, cn+ηl

j− 1
2 ,R

)
(38)

=
M−1∑
l=0

σl+1

(
c
n+ηl−1

j − λnj∆+h
(
cn+ηl

j− 1
2 ,L
, cn+ηl

j− 1
2 ,R

))

=
M−1∑
l=0

σl+1

[
c
n+ηl−1

j + α
n+ηl−1

j,1

(
c
n+ηl−1

j+1 − cn+ηl−1

j

)

+ α
n+ηl−1

j,2

(
c
n+ηl−1

j − cn+ηl−1

j−1

)]

=

M−1∑
l=0

σl+1

[
c
n+ηl−1

j

(
1− αn+ηl−1

j,1 + α
n+ηl−1

j,2

)

+ α
n+ηl−1

j,1 c
n+ηl−1

j+1 − αn+ηl−1

j,2 c
n+ηl−1

j−1

]
.

Again, using the monotonicity of h and (28), we have the sign conditions for the α
terms, and

|cn+1
j | ≤

M−1∑
l=0

σl+1

[
|cn+ηl−1

j |
(
1− αn+ηl−1

j,1 + α
n+ηl−1

j,2

)
(39)

+ α
n+ηl−1

j,1 |cn+ηl−1

j+1 | − αn+ηl−1

j,2 |cn+ηl−1

j−1 |
]

≤
M−1∑
l=0

σl+1 max
j−1≤k≤j+1

|cn+ηl−1

k |.
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Now, each term |cn+ηl−1

k | may be bounded by prior information. If k ∈ Cn, then

c
n+ηl−1

k = cnk and the bound is obvious. Otherwise, the above bound for j /∈ Cn

applies, and we are done.
Note that while cnj remains constant in time on Ij , we might have to modify the

correction terms on Ij at intermediate times if j ∈ Cn and j − 1 /∈ Cn or j + 1 /∈ Cn

to avoid adding extrema to the solution.
Note also that for general problems, the CFL condition (28) for substeps after

the first when j /∈ Cn cannot be verified a priori without adjusting the time step at
each substep. However, examining (25) and (26), we have uniform bounds on the κ
terms by doing appropriate limiting. Moreover, with some knowledge of f , we can
bound the γ terms locally depending on f ′(c) and the local mesh spacing. Thus we
can estimate an upper bound on the α terms over regions of the domain, which can
be used to set the local time steps over these regions. We have used this approach
successfully in practice.

3. A second order time stepping scheme. We now turn to developing a
local time stepping procedure based on a formally second order method. We are
again interested in integrating the semidiscrete scheme

dcj
dt

= − 1

∆xj
∆+h(cj−1/2,L, cj−1/2,R).(40)

We first describe the basic method we are using, which is a second order Runge–
Kutta scheme (in particular, Heun’s method), shown to be TVD in [13, 6]. Then, we
formulate the scheme for handling the interface between two regions with different
time steps. We will assume the basic method holds for some distance away from the
interfaces.

Heun’s method for integrating (40) is given by

cn+1
j = cnj − λnj∆+h(c

n
j−1/2,L, c

n
j−1/2,R),(41)

wn+1
j = cn+1

j − λnj∆+h(c
n+1
j−1/2,L, c

n+1
j−1/2,R),(42)

cn+1
j =

1

2

(
cnj + wn+1

j

)
.(43)

Here cn+1
j+1/2,L = cn+1

j + c̃
n+1
j , with an analogous definition for cn+1

j+1/2,R, where the

corrections are computed as in (5)–(6). This method is nothing more than a convex
combination of forward Euler steps and the initial value. Correspondingly, using the
properties of the forward Euler method analyzed in the previous section, one easily
obtains stability for this scheme.

Proposition 3.1. For the scheme (41)–(43), with corrections limited as in (5)–
(6) and a CFL time-step constraint as in (28), we have

sup
j

|cnj | ≤ sup
j

|c0j |.

For now, we are interested in computing at the interface on the space-time mesh
shown in Figure 2. Thus, the time step in interval Ij+1 is ∆t and in Ij , ∆t/2. For
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Fig. 2. Local time stepping mesh.

simplicity, we assume the time step is ∆t for intervals to the right of xj+1/2 and ∆t/2
for intervals to the left of xj+1/2. We will also assume for simplicity that f(c) = uc,
where u > 0. We will describe the method and state conditions which the corrections
c̃ should satisfy to ensure a maximum principle. We will then describe in more detail
how the corrections may be constructed so as to satisfy these conditions. Finally, we
will describe the method when the situation in Figure 2 holds and u < 0, and then
discuss generalizations to a nonlinear flux function and to the case with M steps.

Thus, assuming f(c) = uc, where u > 0, to compute the solution in elements Ij
and Ij+1, we use the following procedure.

Scheme I (u > 0).

(i) Compute corrections c̃nj−1, c̃
n
j , and c̃

n,1
j+1 by some means and limit them so

that (44) is satisfied.

(ii) c
n+ 1

2
j = cnj − uλn

j

2

[
cnj + c̃nj − (

cnj−1 + c̃
n
j−1

)]
.

(iii) Compute c̃
n+1/2
j−1 , c̃

n+1/2
j , and c̃n,2j+1 so that (45) is satisfied.

(iv) w
n+ 1

2
j = c

n+ 1
2

j − uλn
j

2 [c
n+ 1

2
j + c̃

n+ 1
2

j − (c
n+ 1

2
j−1 + c̃

n+ 1
2

j−1 )].

(v) c
n+ 1

2
j = 1

2 (c
n
j + w

n+ 1
2

j ).

(vi) Define c̃nj+1 ≡ 1
2 (c̃

n,1
j+1 + c̃

n,2
j+1).

(vii) cn+1
j+1 = c

n+1/2
j+1 − uλnj+1[c

n
j+1 + c̃

n
j+1 − 1

2 (c
n
j + c̃nj + c

n+ 1
2

j + c̃
n+ 1

2

j )].

(viii) Compute c̃
n+ 1

2
j−1 , c̃

n+ 1
2

j , and c̃
n+1,1
j+1 so that (46) is satisfied.

(iv) cn+1
j = cnj − uλn

j

2 [c
n+ 1

2
j + c̃

n+ 1
2

j − (c
n+ 1

2
j−1 + c̃

n+ 1
2

j−1 )].

(x) Compute c̃
n+1
j−1 , c̃

n+1
j , and c̃

n+1,2
j+1 so that (47) is satisfied.

(xi) wn+1
j = cn+1

j − uλn
j

2 [cn+1
j + c̃

n+1
j − (cn+1

j−1 + c̃
n+1
j−1 )].

(xii) cn+1
j = 1

2 (c
n+ 1

2
j + wn+1

j ).

(xiii) Define c̃
n+1
j+1 ≡ 1

2 (c̃
n,1
j+1 + c̃

n,2
j+1).

(xiv) wn+1
j+1 = cnj+1 − uλnj+1[c

n
j+1 + c̃

n
j+1 − 1

2 (c
n+ 1

2
j + c̃

n+ 1
2

j + cn+1
j + c̃

n+1
j )].

(xv) cn+1
j+1 = 1

2

(
cnj+1 + w

n+1
j+1

)
.
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The corrections should satisfy the following conditions to guarantee a maximum prin-
ciple:

−θ ≤ − c̃
n
j − c̃nj−1

cnj − cnj−1

, − c̃
n,1
j+1 − c̃nj
cnj+1 − cnj

≤ 1,(44)

−θ ≤ − c̃
n+ 1

2

j − c̃n+ 1
2

j−1

c
n+ 1

2
j − cn+ 1

2
j−1

, − c̃
n,2
j+1 − c̃

n+ 1
2

j

cnj+1 − cn+ 1
2

j

≤ 1,(45)

−θ ≤ − c̃
n+ 1

2
j − c̃n+ 1

2
j−1

c
n+ 1

2
j − cn+ 1

2
j−1

, − c̃
n+1,1
j+1 − c̃n+ 1

2

j

cn+1
j+1 − cn+1/2

j

≤ 1,(46)

−θ ≤ − c̃
n+1
j − c̃n+1

j−1

cn+1
j − cn+1

j−1

, − c̃
n+1,2
j+1 − c̃n+1

j

cn+1
j+1 − cn+1

j

≤ 1.(47)

3.1. A maximum principle for the second order method. In this section,
we derive a maximum principle for Scheme I above. The maximum principle argument
allows for the method to have a time step on one cell that would violate the CFL
condition on the adjacent cell. In particular, we assume

u∆tn

2∆xj
≤ 1

1 + θ
(48)

and

u∆tn

∆xj+1
≤ 1

1 + θ
,(49)

which is the usual CFL condition for grid blocks Ij and Ij+1.
Away from the interface, where the time step among adjacent cells is the same,

the stability of the method is easily demonstrated. We summarize the result in the
following proposition.

Proposition 3.2. Assume a time step of size ∆tn for all elements to the right
of xj+1/2 and size ∆tn/2 for all elements to the left of xj+1/2, where ∆tn satisfies
(48) and (49). Then, for Scheme I above with f(c) = uc where u > 0, with corrections
satisfying (44)–(47) on Ij and Ij+1 and (5)–(6) elsewhere, we have

sup
j

|cnj | ≤ sup
j

|c0j |.(50)

Proof. For all blocks except Ij and Ij+1, the bound |cn+1
i | ≤ supj |cnj | follows

from the arguments used to prove Propositions 2.1 and 3.1. Furthermore, the only
difference between the computation on Ij and the standard method is that there are
somewhat different restrictions on the corrections, namely, they should satisfy (44)–

(47). Thus, one can easily show that |cn+ 1
2

j |, |wn+ 1
2

j |, |cn+ 1
2

j , |cn+1
j |, |wn+1

j | and hence

|cn+1
j | are all bounded above by supj |cnj |.
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The solution on Ij+1 must be more carefully analyzed. We will first show a
maximum principle for |cn+1

j+1 |. Then, this will be used to show maximum principles

for |wn+1
j+1 | and |cn+1

j+1 |.
Consider cn+1

j+1 . The argument will proceed by the standard technique of choosing
the CFL condition and using the restrictions on the corrections to guarantee that
cn+1
j+1 is a convex combination of previous values. We define

κ1 = 1 +
c̃n,1j+1 − c̃nj
cnj+1 − cnj

(51)

and

κ2 = 1 +
c̃n,2j+1 − c̃

n+ 1
2

j

cnj+1 − cn+ 1
2

j

.(52)

We can write the computation of cnj+1 as

(53)

cn+1
j+1 = cnj+1 −

u∆tn

∆xj+1

[(
cnj+1 + c̃

n
j+1

)− 1

2

((
cnj + c̃nj

)− (
c
n+ 1

2
j + c̃

n+ 1
2

j

))]

= cnj+1 −
u∆tn

2∆xj+1

[
cnj+1 + c̃

n,1
j+1 −

(
cnj + c̃nj

)
+ cnj+1 + c̃

n,2
j+1 −

(
c
n+ 1

2
j + c̃

n+ 1
2

j

)]

= cnj+1 −
u∆tn

2∆xj+1

[
κ1

(
cnj+1 − cnj

)
+ κ2

(
cnj+1 − cn+ 1

2
j

)]

= cnj+1

[
1− u∆tn

2∆xj+1
(κ1 + κ2)

]
+

u∆tn

2∆xj+1
κ1c

n
j +

u∆tn

2∆xj+1
κ2c

n+ 1
2

j .

We note that the coefficients of the terms sum to 1. By (44) and (45), κi ≥ 0, i = 1, 2,
and

1− u∆tn

2∆xj+1
(κ1 + κ2) ≥ 0(54)

if the time step is chosen such that (49) is satisfied.

By the above-stated bound on |cn+ 1
2

j |, we can take the absolute value of each side
of (53) and obtain

|cn+1
j+1 | = |cnj+1|

[
1− u∆tn

2∆xj+1
(κ1 + κ2)

]
+

u∆tn

2∆xj+1
κ1|cnj |+

u∆tn

2∆xj+1
κ2|cn+ 1

2
j |(55)

≤ sup
j

|cnj |.

Next, consider wn+1
j+1 . We define two new terms:

κ3 = 1 +
c̃
n+1,2
j+1 − c̃n+ 1

2
j

cn+1
j+1 − cn+ 1

2
j

(56)

and

κ4 = 1 +
c̃
n+1,1
j+1 − c̃n+1

j

cn+1
j+1 − cn+1

j

.(57)
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The method can be written as

wn+1
j+1 = cn+1

j+1 − u∆tn

∆xj+1

[
cn+1
j+1 + c̃

n+1
j+1 − 1

2

(
c
n+ 1

2
j + c̃

n+ 1
2

j + cn+1
j + c̃

n+1
j

)]
(58)

= cn+1
j+1 − u∆tn

2∆xj+1

[
cn+1
j+1 + c̃

n+1,1
j+1

−
(
c
n+ 1

2
j + c̃

n+ 1
2

j

)
+ cn+1

j+1 + c̃
n+1,2
j+1 −

(
cn+1
j + c̃

n+1
j

)]
= cn+1

j+1 − u∆t

2∆xj+1

[
κ3

(
cn+1
j+1 − cn+ 1

2
j

)
+ κ4

(
cn+1
j+1 − cn+1

j

)]

= cn+1
j+1

[
1− u∆tn

2∆xj+1
(κ3 + κ4)

]
+

u∆tn

2∆xj+1
κ3c

n+ 1
2

j +
u∆tn

2∆xj+1
κ4c

n+1
j .

As before, the coefficients sum to 1. By a similar argument, (46) and (47) give the
nonnegativity of each κ term, and we have the same CFL restriction (49) as above.
Taking the absolute value of each side of (58), we see that

|wn+1
j+1 | ≤ max

(
|cn+1

j+1 |, |cn+ 1
2

j |, |cn+1
j |

)
,

and each of these terms is bounded by the solution at time n. Finally

|cn+1
j+1 | =

∣∣∣∣12 (
cnj+1 + w

n+1
j+1

)∣∣∣∣
≤ 1

2
|cnj+1|+

1

2
|wn+1

j+1 |
≤ sup

j
|cnj |.

To summarize, our method is conservative (the flux used at the right edge of
element Ij is equal to that used at the left edge of Ij+1). We have demonstrated
stability subject only to local CFL restrictions. Next we discuss the limiting of the
corrections so that the conditions (44)–(47) are satisfied. Later, we will present nu-
merical evidence demonstrating that local time stepping does not appear to degrade
the accuracy of the method.

3.2. Computing and limiting the corrections. We discuss in slightly more
detail the computation of the c̃ terms. We assume as before that θ is chosen so that
0 ≤ θ ≤ 1.

First, assume c̃nj , c̃
n
j−1, and c̃

n,1
j+1 are computed so that (44) is satisfied, say, using

(15). We then set

c̃n,2j+1 =

{
c̃n,1j+1 if 2|c̃n,1j+1| ≤ θ|cnj+1 − cn+1/2

j |,
0 otherwise.

(59)

In a similar way, corrections c̃
n+1/2
j and c̃

n+1/2
j−1 are computed so that the first inequal-

ity in (45) is satisfied, and c̃
n+1/2
j is limited so that

2|c̃n+1/2
j | ≤ θ|cnj+1 − cn+1/2

j |.(60)

Hence, one can show

0 ≤ κ1, κ2 ≤ 1 + θ.(61)
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Proceeding, c̃
n+1/2
j and c̃

n+1/2
j−1 are computed so that the first inequality in (46)

is satisfied, and so that

2|c̃n+1/2
j | ≤ θ|cn+1

j+1 − cn+1/2
j |;(62)

c̃
n+1,1
j+1 is computed so that it also satisfies

2|c̃n+1,1
j+1 | ≤ θ|cn+1

j+1 − cn+1/2
j |.(63)

Similarly, c̃
n+1
j−1 , c̃

n+1
j , and c̃

n+1,2
j+1 are computed so that (47) is satisfied. Thus

0 ≤ κ3, κ4 ≤ 1 + θ.(64)

3.3. The case u < 0. Consider Figure 2 again, now with f(c) = uc and u < 0.
This case is analogous to the situation in which u > 0 and the picture in Figure 2 is
reversed, namely, the local time steps are to the right of the interface. In this case,
to compute the solution in elements Ij and Ij+1, we use the following procedure.

Scheme II (u < 0).

(i) Compute corrections c̃nj , c̃
n,1
j+1, and c̃

n
j+2 so that (65) is satisfied.

(ii) c
n+ 1

2
j = cnj − uλn

j

2 [cnj+1 − c̃n,1j+1 − (cnj − c̃nj )].
(iii) Compute c̃

n+1/2
j and c̃n,2j+1 so that (66) is satisfied.

(iv) w
n+ 1

2
j = c

n+ 1
2

j − uλn
j

2 [cnj+1 − c̃n,2j+1 − (c
n+ 1

2
j − c̃n+ 1

2

j )].

(v) c
n+ 1

2
j = 1

2 (c
n
j + w

n+ 1
2

j ).

(vi) Define c̃nj+1 ≡ 1
2 (c̃

n,1
j+1 + c̃

n,2
j+1).

(vii) cn+1
j+1 = cnj+1 − uλnj+1

[
cnj+2 − c̃nj+2 −

(
cnj+1 − c̃nj+1

)]
.

(viii) Compute c̃
n+ 1

2
j , c̃

n+1,1
j+1 , and c̃

n+1
j+2 so that (67) is satisfied.

(ix) cn+1
j = c

n+1/2
j − uλn

j

2 [cn+1
j+1 − c̃n+1,1

j+1 − (c
n+ 1

2
j − c̃n+ 1

2
j )].

(x) Compute c̃
n+1
j and c̃

n+1,2
j+1 to satisfy (68).

(xi) wn+1
j = cn+1

j − uλn
j

2 [cn+1
j+1 − c̃n+1,2

j+1 − (cn+1
j − c̃n+1

j )].

(xii) cn+1
j = 1

2 (c
n+ 1

2
j + wn+1

j ).

(xiii) Define c̃
n+1
j+1 ≡ 1

2 (c̃
n+1,1
j+1 + c̃

n+1,2
j+1 ).

(xiv) wn+1
j+1 = cnj+1 − uλnj+1[c

n+1
j+2 − c̃n+1

j+2 − (cn+1
j+1 − c̃n+1

j )].

(xv) cn+1
j+1 = 1

2

(
cnj+1 + w

n+1
j+1

)
.

The conditions on the corrections in this case are

−θ ≤ c̃n,1j+1 − c̃nj
cnj+1 − cnj

,
c̃nj+2 − c̃n,1j+1

cnj+2 − cnj+1

≤ 1,(65)

−θ ≤ c̃n,2j+1 − c̃
n+1/2
j

cnj+1 − cn+1/2
j

,
c̃nj+2 − c̃n,2j+1

cnj+2 − cnj+1

≤ 1,(66)
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−θ ≤ c̃
n+1,1
j+1 − c̃n+1/2

j

cn+1
j+1 − cn+1/2

j

,
c̃
n+1
j+2 − c̃n+1,1

j+1

cn+1
j+2 − cn+1

j+1

≤ 1,(67)

−θ ≤ c̃
n+1
j+2 − c̃n+1,2

j+1

cn+1
j+2 − cn+1

j+1

,
c̃
n+1,2
j+1 − c̃n+1

j

cn+1
j+1 − cn+1

j

≤ 1.(68)

These conditions lead to the following result. The proof is left to the reader.
Proposition 3.3. Assume a time step of size ∆tn for all elements to the right of

xj+1/2 and size ∆tn/2 for all elements to the left of xj+1/2, where ∆tn satisfies (48)
and (49) (with u replaced by −u). Then, for Scheme II above with f(c) = uc where u <
0, with corrections satisfying (65)–(68) on Ij and Ij+1 and (5)–(6) elsewhere, we have

sup
j

|cnj | ≤ sup
j

|c0j |.(69)

3.4. Extension to a nonlinear flux function. The extension of the methods
above to a more general numerical flux h essentially combines the ideas of Schemes I
and II above. In particular, the method is as follows.

Scheme III (general flux function).
(i) Compute corrections c̃nj−1, c̃

n
j , c̃

n,1
j+1, and c̃

n
j+2 so that (44) and (65) are satis-

fied.
(ii) c

n+ 1
2

j = cnj − λn
j

2 [h(cnj + c̃nj , cj+1 − c̃n,1j+1)− h(cnj−1 + c̃
n
j−1, c

n
j − c̃nj )].

(iii) Compute c̃
n+1/2
j−1 , c̃

n+1/2
j , and c̃n,2j+1 so that (45) and (66) are satisfied.

(iv) Compute w
n+ 1

2
j by

w
n+ 1

2
j = c

n+ 1
2

j − λnj
2

[
h(c

n+ 1
2

j + c̃
n+ 1

2

j , cnj+1 − c̃n,2j+1)− h(cn+ 1
2

j−1 + c̃
n+ 1

2

j−1 , c
n+ 1

2
j − c̃n+ 1

2

j )
]
.

(v) c
n+ 1

2
j = 1

2 (c
n
j + w

n+ 1
2

j ).

(vi) Define c̃nj+1 ≡ 1
2 (c̃

n,1
j+1 + c̃

n,2
j+1).

(vii) Compute cn+1
j+1 by

cn+1
j+1 = cnj+1 − λnj+1

[
h(cnj+1 + c̃

n
j+1, c

n
j+2 − c̃nj+2)

−1

2
(h(cnj + c̃nj , c

n
j+1 − c̃n,1j+1) + h(c

n+ 1
2

j + c̃
n+ 1

2

j , cnj+1 − c̃n,2j+1))

]
.

(viii) Compute c̃
n+ 1

2
j−1 , c̃

n+ 1
2

j , c̃
n+1,1
j+1 , and c̃

n+1
j+2 so that (46) and (67) are satisfied.

(ix) Compute cn+1
j by

cn+1
j = c

n+ 1
2

j − λnj
2

[
h(c

n+ 1
2

j + c̃
n+ 1

2
j , cn+1

j+1 − c̃n+1,1
j+1 )− h(cn+ 1

2
j−1 + c̃

n+ 1
2

j−1 , c
n+ 1

2
j − c̃n+ 1

2
j )

]
.

(x) Compute c̃
n+1
j−1 , c̃

n+1
j , and c̃

n+1,2
j+1 so that (47) and (68) are satisfied.

(xi) Compute wn+1
j by

wn+1
j = cn+1

j − λnj
2

[
h(cn+1

j + c̃
n+1
j , cn+1

j+1 − c̃n+1,2
j+1 )− h(cn+1

j−1 + c̃
n+1
j−1 , c

n+1
j − c̃n+1

j )
]
.

(xii) cn+1
j = 1

2 (c
n+ 1

2
j + wn+1

j ).
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(xiii) Define c̃
n+1
j+1 ≡ 1

2 (c̃
n,1
j+1 + c̃

n,2
j+1).

(xiv)

wn+1
j+1 = cn+1

j+1 − ∆tn

∆xj+1

[
h(cn+1

j+1 + c̃
n+1
j+1 , c

n+1
j+2 − c̃n+1

j+2 )

−1

2

(
h(c

n+ 1
2

j + c̃
n+ 1

2
j , cn+1

j+1 − c̃n+1,1
j+1 ) + h(cn+1

j + c̃
n+1
j , cn+1

j+1 − c̃n+1,2
j+1 )

)]
.

(xv) cn+1
j+1 = 1

2

(
cnj+1 + w

n+1
j+1

)
.

3.5. Extension to M steps. Now suppose we take M steps in grid block Ij to
one step in block Ij+1. The easier extension of the method described above is for the
case where M is even, although an extension to M odd can also be made.

Assume M is even. When M = 2, note that to compute cn+1
j+1 we used the values

cnj up through c
n+1/2
j . The same is true in general. We compute c

n+1/2
j by taking

M/2 steps in block Ij . The average of the fluxes along edge j + 1/2 over these steps
is used to compute cn+1

j+1 , just as above. The computation of wn+1
j+1 is analogous. We

take M/2 steps to compute cn+1
j+1 , starting with c

n+1/2
j , and the average of the fluxes

along edge j + 1/2 is used to compute wn+1
j+1 .

The maximum principle argument can be carried through with appropriate lim-
iting of the corrections. Similar to the case M = 2, at each substep i, i = 1, . . . ,M/2,
we compute a correction c̃n,ij+1 in block Ij+1 so that the analogues of (44), (45), (65),
and (66) are satisfied. The final correction c̃nj+1 is the average of all of these substep

corrections. Similarly, once cn+1
j+1 is computed, corrections c̃

n+1,i
j+1 are computed at each

substep so that the analogues of (46), (47), (67), and (68) are satisfied, and c̃
n+1
j+1 is

computed by averaging these corrections.

4. Numerical results. Here we present results examining the accuracy and
stability of the method in section 3.

4.1. Linear example: Smooth problem. We will first show how local time
stepping affects the errors and stability in the case of a smooth linear problem. Con-
sider initial and boundary conditions such that the true solution is sin(π(x− t)). The
space-time domain is [0, 1]2. We have the following cases:

1. Uniform mesh of width ∆x, global time step ∆t = 2∆x
3 .

2. Region [0, 0.5] refined to ∆x
2 , time step globally refined to ∆t = ∆x

3 .

3. Region [0, 0.5] refined to ∆x
2 , time step on [0, 0.5] reduced (locally) by a factor

of 2.
Examining Tables 1, 2, and 3, we see that the rate of convergence in L2 in all

three cases is around 1.5, which is to be expected for a minmod-limited method.
Conceivably, the local time stepping could incur an O(h

1
2 ) error which a constant

time step would not incur. Thus, we turned off the limiter on the slopes and saw that
the local stepping does not degenerate the order of accuracy, as we see second order
convergence in Tables 4 and 5.

4.2. Linear example: Rough problem. Now that we have seen that the local
time stepping scheme does not degenerate the accuracy of the approximation, we will
show that the method is indeed stable with a local CFL condition. Consider the
linear model case of f (c) = c with c(x, 0) = 1 for x < 0 and c(x, 0) = 0 for x > 0. At
t = 0.5, the true solution is a front at x = 0.5. Consider the following situations:
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Table 1
Case 1: Uniform mesh, global time step.

∆x L2 error L1 error
.2500D+00 .1447D+00 .1205D+00
.1250D+00 .4995D-01 .3827D-01
.6250D-01 .1821D-01 .1422D-01
.3125D-01 .6033D-02 .4248D-02
.1562D-01 .1955D-02 .1287D-02
.7812D-02 .6291D-03 .3714D-03
rate: 1.56 1.66

Table 2
Case 2: Local refinement, global time step.

∆x L2 error L1 error
.2500D+00 .1145D+00 .9424D-01
.1250D+00 .4116D-01 .2646D-01
.6250D-01 .1461D-01 .8774D-02
.3125D-01 .4869D-02 .2550D-02
.1562D-01 .1586D-02 .7236D-03
.7812D-02 .5112D-03 .1965D-03
rate: 1.56 1.77

Table 3
Case 3: Local refinement, local time step.

∆x L2 error L1 error
.2500D+00 .1306D+00 .1030D+00
.1250D+00 .4304D-01 .2641D-01
.6250D-01 .1620D-01 .1018D-01
.3125D-01 .5981D-02 .3328D-02
.1562D-01 .2128D-02 .1052D-02
.7812D-02 .7441D-03 .3196D-03
rate: 1.48 1.63

Table 4
Uniform mesh and time step on [0, 1], unlimited slopes.

∆x L2 error L1 error
.2500D+00 .1380D+00 .1317D+00
.1250D+00 .4331D-01 .3371D-01
.6250D-01 .1147D-01 .9483D-02
.3125D-01 .2869D-02 .2417D-02
.1562D-01 .7079D-03 .6061D-03
.7812D-02 .1746D-03 .1509D-03
rate: 1.94 1.95

Table 5
Uniform mesh and local time step on [0, 1], unlimited slopes.

∆x L2 error L1 error
.2500D+00 .1290D+00 .1113D+00
.1250D+00 .3908D-01 .2951D-01
.6250D-01 .9640D-02 .7284D-02
.3125D-01 .2235D-02 .1785D-02
.1562D-01 .5294D-03 .4355D-03
.7812D-02 .1281D-03 .1078D-03
rate: 2.02 2.01
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Fig. 3. Global time stepping, model advective front.
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Fig. 4. Local mesh refinement creates instability.

1. Global uniform mesh, ∆x = 1
128 , global CFL number of 2

3 .
2. Refine the mesh on [0, 0.5] by a factor of 2, keep the same global time step.

(CFL number in first half of the domain is 4
3 .)

3. Refine the time step on [0, 0.5] by a factor of 2, giving a local CFL number of
2
3 everywhere.

Observe that the front is propagated stably in the first case in Figure 3 but when the
CFL condition is violated in the second case, we incur massive instability (Figure 4).
However, the local time stepping method, with its local CFL condition, gives a stable
and accurate approximation to the front in Figure 5.
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Fig. 5. Local time stepping restores stability.

4.3. Nonlinear example: Buckley–Leverett. Next, we examine a case where
the flux is nonlinear. The Buckley–Leverett problem, given by

f (c) =
c2

c2 + a (1− c)2 ,(70)

is a standard test problem arising in two-phase flow in porous media. This flux
function is Lipschitz but nonconvex. In the case of a = 0.25, it is known from
the Rankine–Hugoniot condition that the front is a rarefaction down to the point
where c = 0.44, and then the solution jumps to c = 0. See, for example, [10] for
a discussion. The Rankine–Hugoniot condition also gives that this front propagates
at a velocity of 1.62. We performed a series of numerical experiments on a uniform
mesh. First, we used global time stepping to verify that the code put the shock in
the right location with the correct jump. Then, we refined the time step in the first
half of the domain repeatedly in order to verify that the local time stepping did not
alter the method’s shock-capturing abilities. Each of these cases was run with a mesh
spacing of ∆x = 1

128 and a main time step of ∆t = 1
160 to time t = 0.5. The true

front should be at x = 0.81. These fronts were all near, though diffused, and further
spatial refinements gave sharper fronts at the right spot. Figure 6 shows these results.

Further, we show that we have stability only subject to a local CFL constraint.
Again, we consider three cases, with ∆xmax = 1

128 and ∆tmax = 1
160 . In each case,

the mesh width is 1
2∆xmax on [0, 0.5] and ∆xmax elsewhere.

1. Global time step ∆tmax.
2. Global time step 1

2∆tmax.
3. Local time stepping.

As seen in Figure 7, the large time step in the presence of the local refinement has
caused some mild instability with over- and undershoot. Due to the large velocity, this
mild oscillation has propagated out of the first part of the domain and into the second.
However, when the time step is refined either globally or locally in the presence of the
mesh refinement, the front is well approximated.
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Fig. 6. Local time stepping approximations to Buckley–Leverett front at x = 0.81.
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Fig. 7. Local time stepping cures instability caused by local mesh refinement.



2276 CLINT DAWSON AND ROBERT KIRBY

X

Y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
0.9
0.7
0.571429
0.428571
0.285714
0.142857
0

-0.142857
-0.285714
-0.428571
-0.571429
-0.7
-0.9

Fig. 8. Initial condition for Burgers’ equation, consisting of a cone of height 1 in the lower left
corner, and a cone of height −1 in the upper right corner.

5. Two-dimensional Burgers’ equation. The local time stepping schemes
described above have been extended to two space dimensions. The spatial discretiza-
tion we have employed is based on a high resolution method developed by Durlofsky,
Engquist, and Osher [4] for unstructured, triangular grids. The difference between
what we have implemented and the method in [4] is in the slope-limiting step. Three
different slopes are constructed using linear interpolation with the element and its
neighbors. Then the steepest slope which does not introduce overshoot/undershoot
at the edge boundaries is selected. The two methods differ in the case where no
slopes satisfy this condition. In our implementation, the slope is set to zero in this
case, whereas Durlofsky, Engquist, and Osher simply choose the interpolant with the
smallest gradient.

Some results for local time stepping applied to the transport equation (1), with
highly varying velocity fields, can be found in [9]. Here, we apply local time stepping
to the two-dimensional inviscid Burgers’ equation

ct + f (c)x + f (c)y = 0,(71)

where f (c) = c2

2 . We take as an initial condition a function consisting of two cone
shapes, one with height 1 and the other with height −1. The initial condition is
displayed in Figure 8.

In Burgers’ equation, larger concentrations give rise to larger velocities. Conse-
quently, the centers of the cones are advected along at a higher rate than the edges.
Moreover, the positive cone has positive velocity and the negative cone negative ve-
locity; thus, the cones approach each other and “collide” in the center of the domain.
This general behavior is given in Figure 9, where we have shown the solution at time
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Fig. 9. Global time stepping solution at T = 1.1.

T = 1.1. This solution was obtained using the method in [4], modified as mentioned
above, with Heun’s method used for the temporal integration. The finite element mesh
for this case, shown in Figure 10, consists of 15489 triangles and is unstructured.

An extension of the second order local time stepping scheme described previously
was implemented for this problem. In our implementation, the elements take either
the global CFL time step or a time step M times larger, assuming that this larger
time step does not violate the local CFL constraint. The time steps are redistributed
throughout the domain after each large time step. Numerical results for M = 2, 5,
and 10 were generated. Relative L1 and L2 errors between the local and global time
stepping solutions were computed at time T = 1.1. The relative L1 error is

ErrorL1 =

∑
E |cglobal(xE)− clocal(xE)|m(E)∑

E |cglobal(xE)|m(E)
,(72)

where the sum on E is over all elements, xE is the barycenter of element E, cglobal is
the global time stepping solution, clocal is the local time stepping solution, and m(E)
is the area of triangle E. A similar definition holds for the relative L2 error. These
errors are given in Table 6. Note that they are on the order of 1%.

Table 7 shows the CPU run times in seconds for each of these cases. Notice
a speedup of about 1.7–2.4 for the M :1 time stepping scheme over the global time
stepping scheme. For this problem, most elements near the peaks of the cones take
the smaller (global CFL) time step, as these elements have larger velocity. As the
simulation proceeds, the solution spreads and eventually more elements are forced to
take the smaller time step. This phenomenon is seen in Figures 11 and 12, where
the local time step distribution is plotted at times T = .1 and T = 1.1, respectively,
for the case M = 5. For the M = 10 case, the small time step region is more
extensive, because fewer elements meet the criterion necessary to take the larger time
step. Thus, any gains in increasing M are offset somewhat, and consequently there
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Fig. 10. Finite element mesh for Burgers’ equation test case.

Table 6
Relative L1 and L2 errors for M:1 time stepping schemes.

M Rel. L1 error Rel. L2 error
2 .0041 .0130
5 .0044 .0086
10 .0040 .0074

Table 7
Transport run times in seconds for M:1 time stepping schemes.

M Run time (sec)
1 2533
2 1480
5 1116
10 1075

is not a dramatic decrease in run time as we increase M for this problem. In Figure
13, we have plotted the percentage of elements taking the global CFL time step vs.
simulation time for M = 2, 5, and 10. Here we see that for M = 2, initially about
3.5% of the elements take the global CFL time step, and the percentage grows to
about 7% by the final time, T = 1.1. For M = 5, the range is from about 20% to
27%, and for M = 10, the range is about 28% to 37%. For M too large, of course, all
elements would be forced to take the global CFL time step.
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Fig. 11. Distribution of local time steps for M = 5 and T = .1. Lighter region indicates where
smaller time steps were taken.
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Fig. 13. Percentage of elements taking the global CFL time step as a function of simulation
time for M = 2 (solid line), M = 5 (+), and M = 10 (∗).

6. Conclusions. We have developed and proved maximum principles for local
time stepping schemes based on first and second order time discretizations, and piece-
wise linear spatial discretizations. Numerical results given here and in [9] indicate that
these local time stepping schemes exhibit similar accuracy and stability to the global
time stepping schemes upon which they are based, at a fraction of the computational
cost.

In this paper, we have not addressed the issue of whether our local time stepping
schemes satisfy additional properties (TVB, etc.) from which we could conclude that
the schemes converge to the entropy solution. However, all of our numerical results
to date indicate that the local time stepping solutions are almost identical to those
obtained by global time stepping. Thus, our experiences so far lead us to believe
that our local time stepping schemes inherit the convergence properties of the related
global scheme, though this has not been proven.
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