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Abstract
We apply a recently developed approach (Liaw 2013 J. Stat. Phys. 153
1022–38) to study the existence of extended states for the three-dimensional
discrete random Schrödinger operator at small disorder. The conclusion of
delocalization at small disorder agrees with other numerical and experimental
observations (see e.g. (Lagendijk et al 2009 Phys. Today 82 24–29)). Further the
work furnishes a verification of the numerical approach and its implementation.
Not being based on scaling theory, this method eliminates problems due to
boundary conditions, common to previous numerical methods in the field. At
the same time, as with any numerical experiment, one cannot exclude finite-
size effects with complete certainty. Our work can be thought of as a new
and quite different use of Lanczos’ algorithm; a posteriori tests show that the
orthogonality loss is very small. We numerically track the ‘bulk distribution’
(here: the distribution of where we most likely find an electron) of a wave
packet initially located at the origin, after iterative application of the discrete
random Schrödinger operator.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Consider the discrete three-dimensional (3D) Schrödinger operator, given by:

− � f (x) = −
∑
|i|=1

( f (x + i) − f (x)),
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when i is of the form (i1, i2, i3)T , ik ∈ Z, and consider an element δi(x) of l2(Z3) given by

δi(x) =
{

1 x = i ∈ Z
3,

0 else.

Let the random variables ωi be i.i.d. with uniform distribution in [−c/2, c/2], i.e. according
to the probability distribution P = c−1�iχ[−c/2,c/2]dx.

The 3D random discrete Schrödinger operator, formally given by

Hω = − � +
∑
i∈Z3

ωi < ·, δi > δi on l2(Z3), (1)

is the main object of study.
This operator has been studied extensively, see e.g. [10, 19] and the references therein.

The first part of the operator −� describes the movement of an electron inside a crystal with
atoms located at all integer lattice points Z

3. The perturbation
∑

i∈Z3 ωi < ·, δi > δi can be
interpreted as having the atoms randomly displaced around the lattice points. It is important
to notice that the perturbation is almost surely non-compact, so that classical perturbation
theory (e.g. Weyl–von Neuman theorem, which states the invariance of the essential spectrum
under compact perturbations) cannot be applied almost surely. It is known that the absolutely
continuous spectrum is deterministic, i.e. it occurs with probability one or zero, see e.g. [15].
Localization in the sense of exponentially decaying eigenfunctions was proved analytically
for disorders c above some threshold C0 (see e.g. [3, 6, 19]). Currently, the smallest threshold
in three dimensions is C0 = 100.6 (see table 1 in [18]).

Diffusion is expected but not proved for small disorder c > 0. We numerically determine
a regime of disorders for which the 3D discrete random Schrödinger operator does not
exhibit localization. Our calculations are based on the Lanczos algorithm [12] for determining
orthogonal bases for Krylov spaces [21]. Although we are not the first to use the Lanczos
algorithm (see e.g. [11, 20] and the references therein), our application of it is quite different.
In particular, our method is not based on scaling theory (for further discussion see [14]). In [17],
the Lanczos algorithm is employed to compute a set of eigenvalues and eigenvectors. A few
so-called interior eigenvectors and eigenvalues are calculated effectively by pre-conditioning
methods. However, we test for localization without computing eigenvalues or eigenvectors,
but only compute the distance between δ111 and the orbit of δ000. The orbit is the span of
{Hk

ωδ000 : k ∈ N ∪ {0}}, which is exactly a Krylov subspace. At each step of the Lanczos
iteration, we use the orthogonality of the generated vectors to update the distance of interest.
In this way, we maintain the low memory cost of a three-term recurrence, bypassing the need
to store any eigenvectors at all. In addition to this, we have performed some a posteriori tests
of the Lanczos algorithm on smaller cases to measure the degree to which orthogonality may
be lost.

Besides computational advantages, our approach also offers a different mathematical
perspective. By utilizing eigenvectors, it is (tacitly) assumed that all spectral points are in fact
eigenvalues, while our approach merely generates an orbit without attempting to rule out other
kinds of spectral points.

While the contributions of this paper are numeric, the method (see [14]) provides an
explicit analytic expression, which may yield a proof of the following numerically supported
main result.

Main result 1. For disorder c � 2.0, numerical experiments indicate that the 3D discrete
random Schrödinger operator does not exhibit Anderson localization with positive probability,
in the sense that it has non-zero absolutely continuous spectrum with probability 1.
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As was pointed out by one of the reviewers, the provided data sets in fact (non-rigorously)
suggest that a phase transition might happen near c ≈ 2.

Analogous numerical experiments [14] in dimension 2 suggest extended states for
c � 0.6.

We take a brief moment to allude to some aspects in the field, without attempting to
be exhaustive by any means. Initiated by [4], the topic of Anderson localization has grown
into a rich field that is researched by many communities. Even the meaning of localization
can be interpreted in several different ways. The interesting work by Aizenman and Warzel
concerning the Anderson model on the Bethe lattice (see [22] and the references therein)
suggests that there might be more than one transition point, depending on how the transition
is defined—spectrally, dynamically or statistically. (Due to memory requirements, numerical
experiments are not feasible for the geometry of the Bethe lattice, see section 7.)

The Thouless criterion uses the ratio g of the so-called Heisenberg time over the so-
called Thouless time as a measure of conductance. Localization is said to occur when
g < 1 (see e.g. [11] for further explanation). In scaling theory the dimensionless ratio g
is used as parameter in terms of which the scaling function gives the expected conductance
depending on the system size. The scaling function is determined for many materials. At the
moment it is not immediately clear how to directly compare scaling theory with the current
experiment.

In the review article [22] (also see [8, 13]), several other definitions of localization can be
found. Dynamical localization considers the supremum over all times of the part of the energy
that we expect to find at distance R from the initial state δ0. For example, strong exponential
dynamical localization means exponential decay of this energy in terms of R. By the RAGE
theorem, our numerical results indicate that we do not have strong dynamical localization (i.e.
of all orders). See [8, section 1.2] for more details. Alternatively, transport is measured by an
index in terms of the speed at which energy diffuses as time increases. For example, ballistic
transport is a special case.

The problem is also studied via the local eigenvalue statistics under finite volume
restrictions. Here delocalization is conjectured to correspond to GOE statistics. Localization
lengths are investigated in terms of the band width W of a Hermitian and symmetric random
matrix with uniformly distributed i.i.d. entries. The strength of the disorder is fixed. For
example, in dimension d = 1, numerical, theoretical and symmetry arguments [7] indicate
a localization length of order W 2 through a change in the local distribution of eigenvalues
from Poisson to GOE statistics. Much research has been conducted in this field, see e.g. [5]
and the many references therein. In two dimensions, the localization length is expected to
be exponentially large in W (see [2]), while in higher dimensions the localization length is
supposed to be macroscopic, and independent of W . A direct comparison with the work at
hand is not available. In our work in the two-dimensional setting [14], the situation is more
subtle. In particular, more concrete expressions for the localization lengths would provide
useful information for the two-dimensional experiment.

The key analytical tool to our method is stated in proposition 2 below. Section 3 is devoted
to a description of the numerical experiment. The numerical testing criterion we applied is
given by numerical criterion 4 below. Our numerical findings and the conclusions can be
found in section 4. In subsections 4.1 and 4.2, we study the averaged data and find further
numerical validation of our method. In section 5 we verify the performance of the method
in many examples. In subsection 5.3, we present the distribution of energies after repeated
application of the random operator of a wave packet initially located at the origin. We briefly
remark on computing and memory requirements in section 6 and on possible further projects
in section 7.
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2. Preliminaries

2.1. Singular and absolutely continuous parts of normal operators

Recall that an operator in a separable Hilbert space is called normal if T ∗T = T T ∗. By the
spectral theorem operator T is unitarily equivalent to Mz, multiplication by the independent
variable z, in a direct sum of Hilbert spaces

H = ⊕
∫

H(z) dμ(z)

where μ is a scalar positive measure on C, called a scalar spectral measure of T .
If T is a unitary or self-adjoint operator, its spectral measure μ is supported on the unit

circle or on the real line, respectively. Via Radon decomposition, μ can be decomposed into
a singular and absolutely continuous parts μ = μs + μac. The singular component μs can be
further split into singular continuous and pure point parts. For unitary or self-adjoint T we
denote by Tac the restriction of T to its absolutely continuous part, i.e. Tac is unitarily equivalent
to Mt

∣∣
⊕ ∫

H(z)dμac(z). Similarly, define the singular, singular continuous and the pure point parts
of T , denoted by Ts, Tsc and Tpp, respectively.

2.2. Key tool

As mentioned above delocalization is deterministic. Therefore demonstrating that it does not
occur with probability zero is sufficient to determine delocalization.

This following result makes our numerical experiment possible as it suffices to check the
evolution of only one vector through repeated operations by the Anderson Hamiltonian and
3D random Schrödinger operator.

Fix the vectors δ000 ∈ l2(Z3) and δ111 ∈ l2(Z3), i.e. 3-tensors with zero entries, except
for the (0, 0, 0)−position and the (1, 1, 1)−position, respectively, which equal 1.

Notice that

Dn
ω,c := dist

(
δ111, span

{
Hk

ωδ000 : k = 0, 1, 2, . . . , n
})

(2)

describes the distance between the unit vector δ111 and the subspace obtained taking the closure
of the span of the vectors δ000, Hωδ000, H2

ωδ000, . . . , Hn
ωδ000.

In numerical linear algebra, this space is called a Krylov subspace, and the Lanczos
algorithm [12] provides a classical approach for finding an orthonormal basis. Our distance
calculation (2) relies on the orthogonality of these vectors, iteratively updating the distance
with each new Krylov vector.

Jakšić–Last [9] showed that certain vectors are cyclic for the singular part (Hω)s almost
surely. In [14] it was showed that the vector δ000 is cyclic for the singular part (Hω)s almost
surely. So in order to show that the existence of absolutely continuous spectrum, it suffices to
show that δ000 is not cyclic for Hω. In other words, (Hω)ac is non-trivial. More concretely

Proposition 2. Consider the discrete random Schrödinger operator given by equation (1). Let
ωi, i ∈ Z

3, be i.i.d. random variables with uniform (Lebesgue) distribution on [−c, c], c > 0.
To prove delocalization (i.e. the existence of absolutely continuous spectrum with positive
probability), it suffices to find c > 0 for which the distance

Dω,c := lim
n→∞ Dn

ω,c > 0 (3)

with non-zero probability. (Notice that the limit exists by the monotone convergence theorem.)

Although it is not of immediate use to us here, we mention [1] that apart from the zero
vector any vector is cyclic almost surely.
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Figure 1. Typical trend for Dn
ω,c for n = 500 iterations and c = 0.3.

Remark 3. The converse of proposition 2 is not true. And we cannot draw any conclusions,
if the distance between a fixed (unit) vector and the subspace generated by the orbit of
another vector tends to zero. In particular, we cannot conclude that there must be localization.
Even if we show (3) for many or ‘all’ vectors (instead of just δ111), it could be possible
that the absolutely continuous part has multiplicity one and that δ000 is cyclic, that is,
l2(Z3) = clos span{Hk

ωδ000 : k ∈ N ∪ {0}}.

3. Method of numerical experiment

Consider the discrete random Schrödinger operator given by (1) with random variable ω

distributed according to the hypotheses of proposition 2.
By proposition 2, we obtain delocalization if we can find c > 0 for which (3) happens with

non-zero probability. Let us now explain precisely how we verify delocalization numerically,
leading up to the numerical criterion 4 below.

In the numerical experiment, we initially fix c and fix one computer-generated realization
of the random variable ω (with distribution in accordance to the hypotheses of proposition 2).
We then calculate the distances Dn

ω,c for n ∈ {0, 1, 2, . . .}.
Assuming that we know Dn

ω,c for n = 0, . . . , 500, let us find a lower estimate for
the limit

Dω,c = lim
n→∞ Dn

ω,c.

Figure 1 displays a typical trend for the distance Dn
ω,c as n increases. Notice that the graph

is decreasing, as is expected. Although it certainly appears that the limit does not go to 0, the
graph could have logarithmic decay, approaching zero very slowly. To attain an estimate for
Dω,c, which excludes the case of such slow decay, we re-scaled the graph by n−a, 0.1 � a � 2,
so that the x-axis is inverted and the y-intercept, yω,c, of a line of best fit will estimate Dω,c. The
choice of the parameter a aims at identifying the correct power law in the decay of Dn

ω,c,i.e.,
as Dω,c + Bn−1/a. Because the majority of the change in distance occurs in the first n = 119
points, they were omitted when re-scaling in order to obtain a better approximation as n → ∞.
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Figure 2. Figure 1 re-scaled using a = 1.65. Notice the fine y-scale and proximity to
the y-axis.

Figure 3. A closer look at a window in figure 2. The steeper line is used to determine
Lω,c, and the line of best fit provides yω,c. For this realization we have Lω,c = 0.958 5894
and yω,c = 0.958 6354.

This does not change the sign of the rescaling factor. Figure 2 shows the re-scaled graph for
n = 120, 121, 122, . . . , 500.

Subsection 3.2 describes the choice of a and why, for small values of c, Dω,c does not
decay to 0.

Since an approximating line is only an estimate, for further confidence in our results,
we also calculated the minimum y-intercept of all lines through two consecutive points and
call it Lω,c (see the steep line in figure 3). This is essentially the ‘worst case,’ and ought to

6
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Table 1. For n = 200 we present the data of 15 realizations for each c between 0.1 and
5, and four realizations for each c � 10 and c = 0.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
P 1 1 1 1 1 1 0.93
yω,c 0.958 69 0.9587 0.9586 0.9584 0.9582 0.9580 0.9573
Lω,c 0.958 63 0.9586 0.9585 0.9582 0.9579 0.9549 0.9454

c 0.7 0.8 0.9 1 1.5 2 2.5
P 0.93 1 0.93 0.8 1 0.87 1
yω,c 0.9573 0.9576 0.9559 0.9554 0.9540 0.9404 0.9447
Lω,c 0.9488 0.9569 0.9440 0.9455 0.9490 0.8748 0.8978

c 3 3.5 4 4.5 5 10 15
P 0.8 0.67 0.73 0.83 0.6 1 0.75
yω,c 0.9298 0.9105 0.8857 0.8843 0.8020 0.6458 0.0935
Lω,c 0.7765 0.6765 0.3895 0.3396 −0.3895 0.1098 −4.9095

c 20 25 30 35 40
P 0.25 0.75 0.25 0.75 0.25
yω,c −2.1507 −1.9412 −3.3271 −3.3301 −9.7171
Lω,c −19.1480 −16.9035 −20.5279 −52.8516 −52.4555

underestimate Dω,c, yielding the relationship

Lω,c � yω,c ≈ Dω,c.

We repeated this process for many values of c and multiple, different, computer-generated
instances of the random variable ω. We took the minimum of yω,c and Lω,c across all instances
of ω, with the intent to demonstrate that Dω,c is above 0 for many different ω.

In order to give confidence to our calculations to account for random error occurring in
the computer, we introduce the following restrictions even though proposition 2 only requires
that Lω,c > 0 .

Numerical Criterion 4. For a fixed value of c, we say that we have delocalization, if for at
least 90% realizations we obtain Lω,c > .9 > 0 and yω,c − Lω,c is of order 10−3. (Notice that
we only need non-zero probability by proposition 2, and remark 3.)

3.1. Notes on L
ω,c

In the computation of Lω,c, we divide numerically the difference of approximately equal
numbers Dn

ω,c − Dn−1
ω,c by a small number n−a − (n − 1)−a. This can have the effect of

magnifying roundoff error in floating point computations. We explain how this potential
problem is controlled here.

Most importantly, an a posteriori check is given by our restriction in the numerical
criterion 4, where we assume that yω,c − Lω,c is of order 10−3. Whence in the data used to
support the main result 1 for c � 2, the error introduced by this potential problem is small. It
might well be the case that this error causes some of the larger differences between yω,c − Lω,c

for values of c > 2, but we do not draw conclusions from those data points. In general, the
values of Lω,c should be thought of as rather crude lower estimates of the actual y-intercept.

Finally, please note that we only examine the values of Lω,c. In particular, we do not
substitute them into a subsequent calculation.
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Figure 4. A concave graph that yields no usable data (c = 6). The concave shape of the
data implies that yω,c is not necessarily a lower bound for Dω,c.

3.2. Choice of the re-scaling parameter

For each fixed c and ω, the re-scaling exponent a is chosen so that the re-scaled graph of the
distance function (see figure 2) satisfies the least square property; that is, the error with respect
to square-norm when approximating the graph by a line is minimal. With this exponent we
then find the corresponding linear approximation for the re-scaled distance function.

To find optimal a, we used the mesh a = 0.05 : 0.05 : 2. In table 1 we give the percentage
of usable trials (those for which an optimal a � 0.1 was found) for many values of c. Trials
are not usable if the re-scaling parameter a = 0.05 yields a concave graph. If this happens, we
do not obtain any information (according to remark 3). See figure 4 below. Note that a small
value (� 0.05) of a is ‘bad’, since the graph rescaled with a = 0.05 will be concave, and thus
it is not expected for a line of best fit to underestimate the limit of the distance.

A positive re-scaling factor implies that the graph in figure 1 will not decay to zero.
Indeed, using a re-scaling factor smaller than the optimal one will result in a convex graph for
the distances Dn

ω,c. And the y-intercept of the line lies below the value expected for D∞
ω,c.

4. Conclusions

As mentioned in section 3, for a fixed c we chose several realizations ω. For every value
of c, we took the minimum of the resulting quantities for yω,c and Lω,c (the y-intercept of
the approximating line and the minimum y-intercept of the lines passing through any two
consecutive points, respectively).

We present our observations for the Numerical Criterion 4 for n = 500. For fixed disorder,
we will comment in subsection 4.1 on the re-scaling parameters of averages over the distances
Dn

ω,c, n = 0, 1, 2, . . . , 200 and n = 0, 1, 2, . . . , 500.
The data in table 1 documents the data obtained for n=200 by taking 15 realizations for

each c between 0.1 and 5, and four realizations for each c � 10 and c = 0. By P we denote the
probability of finding a re-scaling factor a ∈ [0.1, 2]. For c � 2 a total of 173 out of 180 trials
yielded a good re-scaling factor (while by proposition 2 and remark 3 extended states follow

8
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Table 2. For n = 500 we present the data of 13 trials for c � 1 and four trials for all
other values.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
P 1 1 1 1 1 1 1
yω,c 0.958 69 0.958 66 0.958 56 0.958 38 0.958 13 0.9578 0.9575
Lω,c 0.958 68 0.958 65 0.958 54 0.958 33 0.958 04 0.9577 0.9573

c 0.7 0.8 0.9 1 1.5 2 2.5
P 1 1 1 1 1 1 1
yω,c 0.9570 0.9565 0.9559 0.9552 0.9520 0.9518 0.9523
Lω,c 0.9568 0.9563 0.9557 0.9549 0.9505 0.9489 0.9362

c 3 3.5 4 4.5 5 10 15
P 1 1 1 1 1 0.5 0.75
yω,c 0.9451 0.9556 0.9405 0.9271 0.9149 0.2600 −0.5149
Lω,c 0.9403 0.9318 0.9184 0.8829 0.7460 −5.0995 −13.8931

c 20 25 30 35 40
P 0.5 0.5 0.5 0.75 0.75
yω,c −2.8571 −1.5957 −2.5188 −2.2407 −3.1759
Lω,c −22.8975 −33.8175 −24.2294 −27.5353 −35.9414

from showing non-zero probability). The data for c > 2 is included to show the reader what
goes wrong. In accordance with remark 3, the data for c > 2 does not have any implications.

While for some c � 2.5, we have P � 0.9 the difference between yω,c and Lω,c is relatively
large, which means that the line from taking the least square approximation is likely not a
good approximation for the distances.

We also repeated the experiment for n = 500 and table 2 documents the findings. In these
trials, the first 119 entries were removed instead of the first 44, as in the n = 200 case. This
larger crop makes the data more stable by giving better estimates for yω,c and Lω,c and by more
consistently finding a usable rescaling factor a. We ran 13 trials for c � 1 and 4 trials for all
other values.

A good rescaling factor a was found for all 143 of the trials for c � 1 and all c � 2.0
satisfy Criterion 4, an improvement from the n = 200 case. Hence the final conclusion of this
numerical experiment is precisely the main result 1. According to remark 3 and criterion 4,
for c � 4, we do not have any conclusion.

4.1. Averages

In table 3, for each fixed c, we averaged the distances Dn
ω,c, n = 0, 1, 2, . . . , 200, of all our

realizations. For those averaged distances, we determined the re-scaling parameters ã, as well
as ỹc and L̃c in analogy. The significance of our findings is that the re-scaling factors ã are
‘roughly’ decreasing and rather well-behaved for c � 1.5. For larger disorder, ã becomes even
less stable, and cannot even be found for large enough disorder.

In table 4 we document the analogous quantities for the n = 500 trials. Note that there is
no rescaling factor for c = 20, while there is for that c in the n = 200 trials. The data sets are
not related to each other, aside from sharing the same disorder c.

4.2. Comparing n = 200 with n = 500

The n = 500 data gave better results than the n = 200 data. The probability of finding a
useable rescaling factor for n = 500 was higher than that of n = 200 for all but two values
of c. The average rescaling factor ã was similar between the two data sets. Finally, yω,c − Lω,c

9
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Table 3. Data for the averaged distances for n = 200. The re-scaling factors ã are
‘roughly’ decreasing and well-behaved for c � 1.5. For larger disorder, ã becomes less
stable.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
ã 2 1.9 1.65 1.5 1.3 1.1 0.95
ỹc 0.958 69 0.958 69 0.958 65 0.958 62 0.958 53 0.958 46 0.958 43
L̃c 0.958 63 0.958 62 0.958 57 0.958 54 0.958 46 0.958 39 0.958 35

c 0.7 0.8 0.9 1 1.5 2 2.5
ã 1.3 1 0.8 0.9 1 0.6 0.85
ỹc 0.9582 0.9584 0.9579 0.9578 0.9571 0.9539 0.9544
L̃c 0.9581 0.9583 0.9576 0.9576 0.9566 0.9532 0.9530

c 3 3.5 4 4.5 5 10 15
ã 0.65 0.3 0.55 0.65 0.5 0.5 0.3
ỹc 0.9485 0.9466 0.9345 0.9414 0.9217 0.8332 0.5312
L̃c 0.9461 0.9369 0.9255 0.9362 0.9077 0.6567 −0.2021

c 20 25 30 35 40
ã 0.1 0.85 0.45 N/A N/A
ỹc −0.3300 0.2928 −.0722 -3.0990 −5.1751
L̃c −3.2230 −0.1794 −0.8701 −16.7931 −17.1925

Table 4. Data for the averaged distances when taking n = 500.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
ã 2 1.75 1.35 1.2 1.1 1 1.05
ỹc 0.958 69 0.958 68 0.958 64 0.958 61 0.958 55 0.958 47 0.958 23
L̃c 0.958 68 0.958 67 0.958 63 0.958 60 0.958 53 0.958 44 0.958 19

c 0.7 0.8 0.9 1 1.5 2 2.5
ã 1.05 1.45 1.15 0.65 0.7 0.6 0.9
ỹc 0.958 06 0.957 86 0.958 05 0.957 95 0.9558 0.9543 0.9561
L̃c 0.958 01 0.957 81 0.957 99 0.957 87 0.9551 0.9531 0.9548

c 3 3.5 4 4.5 5 10 15
ã 0.55 0.6 0.65 0.35 0.15 0.25 0.3
ỹc 0.9506 0.9571 0.9479 0.9390 0.9244 0.7053 0.4991
L̃c 0.9481 0.9416 0.9406 0.9287 0.8987 0.2854 −0.8246

c 20 25 30 35 40
ã N/A 0.1 0.8 N/A N/A
ỹc 0.0569 −1.9658 −1.1264 0.0906 −2.1984
L̃c −1.2457 −9.1777 −5.9900 −0.4750 −9.3414

was smaller for the n = 500 data for small c, suggesting that the approximation given by yω,c

is better.

5. Further validation of the method and the numerical experiments

We have conducted the following tests. Most important is the a posteriori test of orthogonality
in the Lanczos algorithm in subsection 5.4.

5.1. Free discrete three-dimensional Schrödinger operator

When we apply the free discrete Schrödinger operator H = H0 to the vector δ000, it immediately
becomes clear that Hδ000 as well as all vectors Hnδ000, n ∈ N∪{0}, are symmetric with respect
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to the origin. In dimension d = 3, it is not hard to see that the distance between δ111 and the
orbit of δ000 under H is at least

√
7

2
√

2
≈ 0.9354. Indeed, we have

dist(δ111, clos span{Hnδ000 : n ∈ N ∪ {0}}) > min
x

dist(ux, δ111) =
√

7

2
√

2
,

where

ux = xδ−1−1−1 + xδ1−1−1 + xδ−11−1 + xδ−1−11xδ−1−11 + xδ−11−1 + xδ1−1−1 + xδ111,

the eight vertices of the length 2 cube centered at (0, 0, 0).
In the experiments for the free discrete 3D Schrödinger operator we obtained a y-intercept

of the approximating line approximately equals 0.958 6936. The re-scaled graph of distances
still had a convex shape, so the actual distance as n → ∞ would be bigger. In fact, we have
extracted our data an upper estimate of 0.958 6939 ≈ D500

ω,0. Therefore, the distance must lie
in the interval [0.958 6936, 0.958 6939].

5.2. Orthogonalization process

The c = 0 case shows a decrease in distance on only every other step. The symmetry caused by
the absence of random perturbations means the 3-tensor after orthogonalization has alternating
diamonds of zero and nonzero entries radiating from the origin, meaning the distance decreases
every second application of the operator, when there is a nonzero entry in the (1, 1, 1)-position.

5.3. Evolution under H
ω

of the bulk for small values of c

We observe the bulk distribution which determines the distance from the origin where we are
most likely to find an electron. Here, distance is measured by the taxicab method, so elements
of the same distance form a diamond in the 3D integer lattice. The bulk at this distance is the
Euclidean norm of the elements constituting the diamond.

To be precise, we consider the elements of the vector m500 and define

E(l, n) =
√ ∑

|i|+| j|+|k|=l

(mn)
2
i, j,k (4)

for the bulk E(l, n) of the vector mn at taxicab distance l from the origin. Here (mn)i, j,k refers
to the (i, j, k)-entry of the 2-tensor mn. Slightly abusing notation, we normalize mn and use
the same notation for the normalized sequence of vectors.

Figure 5 is the result of averaging four sets of data for values of c ranging from 0.1 to 1.
As expected, the energy remains closer to the origin as disorder increases.

5.4. Lanczos and orthogonality

The Lanczos algorithm is known to lose orthogonality in many instances, which could cast
doubt on our distance calculations. To test the accuracy for our problem, we stored the entire
Krylov subspace generated on a smaller problem instance (n = 150) and stored these as
columns of a matrix K. The quantity Q = ‖KT K − I‖∞ should deviate with zero in proportion
to the loss of orthogonality. In table 5, we measure the matrix ∞ norm for realizations for
several cases of c. We see that the Krylov vectors in these cases are in fact quite close to
orthogonal especially for c � 2.0, although the orthogonality seems to decrease as c grows.
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Figure 5. Bulk distribution of m500 for the disorders c = 0.1 : 0.1 : 1, averaged over the
four realizations for each value of c.

Table 5. Measuring the loss of orthogonality in Lancozs’ algorithm via the ∞ norm of
the matrix of orthogonalized vectors when n = 150.

c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Q 2.01e-11 7.2e-11 4.8e-11 4.4e-11 6.9e-11 9.6e-11 3.1e-11 4.8e-11

c 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Q 4.5e-11 2.4e-11 6.1e-9 1.3e-10 4.0e-10 9.2e-11 1.2e-9 7.3e-8 5.1e-9

6. On computing and memory requirements

Using methodology similar to that in [14], all of the information contained in the 3-tensor
is stored in one information vector. For this method, because of how the Hamiltonian acts,
it is important for computing purposes that each point in the 3-tensor is stored in a position
such that its neighbors along a coordinate axis are a consistent distance from that point in the
vector. This methodology allows the vector to be half the size necessary for containing every
point in a 3-tensor, but still approximately twice as large as is necessary. In order to explore
localization in higher dimensions, a more efficient method is needed since a generalization of
this code for dimension d has time complexity O(nd ).

We began with an implementation of the three-term Lanczos recurrence using this special
storage pattern. At each step, we compute the new orthogonal iterate and hence the distance
of δ1,1,1 to the updated subspace. Because of the 3D nature of our calculations, the memory
requirements are quite large. With our storage pattern, each of our three vectors in the Lanczos
recurrence requires, to leading term, 4n3 double-precision numbers. We also require a vector
of the same size to store the random potential ω, giving minimal storage requirements of about
16n3 double-precision numbers or, equivalently, 128n3 bytes. When n = 200, this corresponds
to just over a gigabyte of memory, and about 16 GB when n = 500.

Our simulations were run on a Dell Precision workstation with dual eight-core Intel
Xeon E5-2680 processors running at 2.7 GHz with 128GB of RAM. We used gfortran
version 4.4.7 with flags -O3 -ftree-vectorizer-verbose=2 -msse2 -funroll-loops
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-ffast-math, which, among other optimizations, enables instruction-level superscalar
parallelism. After prototyping our approach in MATLAB, we translated the code into
FORTRAN90, which provided much higher performance. Still, each realization for n = 500
required over an hour to perform. To make use of multiple processing cores, we wrapped our
FORTRAN90 routine into Python using the f2py package [16] and dispatched multiple jobs
using Python’s multiprocessing module. Due to the very large memory requirements, we
were only able to run about four jobs concurrently.

Both Python and MATLAB use a standard Mersenne Twister pseudorandom number
generator. Although we have not particularly checked for possible correlation between sites,
the Mersenne Twister has a period of 219 937 − 1 and passes numerous tests for statistical
randomness. The number of sites, even in three dimensions with n = 500, is far lower than
the Mersenne Twister’s period.

7. Further projects

An immediate area for further exploration would be to consider various geometries, rather than
simply the n-dimensional lattice. One geometry of interest is the Sierpinski gasket, starting at
one corner and building the various triangles as n increases. Preliminary results indicate that
a program modeling the free random Schrödinger operator on this geometry should run with
time complexity O(n

ln(3)

ln(2) ).

Unfortunately, it is not possible to conduct this numerical experiment for the Bethe lattice
due to memory requirements. Time complexity for the Bethe lattice with site number K being
O(Kn) means that with our current computers, we can roughly accomplish only n = 30
iterations in the binary tree (K = 2). One should note that even increasing the number of cores
by a factor of K (via parallelization) merely increases the number of steps by 1.

It should be possible to adapt the algorithm in subsection 5.3 to compare with various
notions of dynamical localization.
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