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We examine the effect of using complexity-reducing relations [?] to generate optimized code for the
evaluation of finite element variational forms. The optimizations are implemented in a prototype
code named FErari, which has been integrated as an optimizing backend to the FEniCS Form
Compiler, FFC [?; ?]. In some cases, FErari provides very little speedup, while in other cases, we
obtain reduced local operation counts of a factor of as much as 7.9 and speedups for the assembly
of the global sparse matrix of as much as a factor of 2.8 (see Figure 9).
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1. INTRODUCTION

Projects such as the FEniCS Form Compiler (hence, FFC) [?; ?; ?], Sundance [?; ?;
?], and deal.II [?] aim to automate important aspects of finite element computation.
In the case of FFC, low-level code is generated for the evaluation of element stiffness
matrices or their actions, together with the local-global mapping. The existence of
such a compiler for variational forms naturally leads one to consider an optimizing

compiler for variational forms. What mathematical structure in the element-level
computations is tedious for humans to exploit by hand, but possible for a computer
to find? We have provided partial answers to this question in a series of papers [?;
?; ?]. These ideas have been implemented in a prototype code called FErari, and
we provide an empirical study of the optimizations implemented by FErari in this
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paper. Both FFC and FErari are part of the FEniCS project; for more information
about the software, we refer readers to the project web page [?].

FFC takes as input a multilinear variational form and generates code for evalu-
ating that form over affine elements. The formation of the local stiffness matrix on
a single element is expressed as a linear transformation (known at compile-time)
applied to a vector representing the geometry and coefficient data (known only at
run-time). The linear transformation depends on the variational form and finite
element basis, but not on the mesh. This means that the cost of generating and
optimizing the code is independent of the size of mesh, but depends strongly on
the complexity of the variational form and polynomial degree used. The gener-
ated code is completely unrolled. This internal kernel is then called for each of the
many elements of the mesh at run-time to compute the global sparse matrix. FFC
also supports a mode that calls level 2 BLAS [?] rather than generating unrolled
code. This typically gives comparable run-time performance and smaller executa-
bles. However, the optimizations we consider here are only possible to apply in the
context of unrolled code.

To a user of FFC, the optimizations are invoked simply with a -O flag, which
turns on a call to FErari and thence a modified code generator. It is important
to note that the optimizations considered are similar to, but typically beyond the
abilities of general-purpose compilers to detect. In assessing the efficacy of these
techniques at reducing run-time, we focus on the construction of the sparse matrix
and its matrix-free application for a variety of variational forms. In particular, we
study the “pure” effect of the FErari optimizations as well as the optimizations
relative to the cost of inserting into a sparse matrix data structure.

While several fairly theoretical papers [?; ?; ?] have shown that reductions in
arithmetic cost are possible to obtain, there are only very limited tests of the prac-
tical impact of the proposed optimizations. With some notable exceptions, such
as reported in Figure 9 below, the optimizations provide somewhat disappointing
empirical results, such as only a few percent speedup. However, it is still important
to include these tests in the literature to bring some completeness to the theoretical
work. In many cases, the poor speedups are due to local computation (what we op-
timize) being dominated by the cost of insertion into global sparse data structures.
As memory access is typically very slow compared to floating point arithmetic, this
may not be surprising. However, it is possible that the optimizations considered
here could perform better in practice in other situations with lower memory traffic,
such as element-by-element or static condensation techniques. That said, one does
obtain significant global speedups in some cases. For the set of test cases examined
below, we obtain a factor of 2.8 global speedup for the assembly of the global sparse
matrix of the weighted advection operator for quartics on tetrahedra (Figure 9).

2. FINITE ELEMENT ASSEMBLY AND THE ELEMENT TENSOR

In finite elements, the nonlinear and linear algebraic problems come from evaluating
the variational forms on the finite element basis functions. In our work on FFC
and FErari, we have focused on evaluating multilinear forms over affine elements,
and we continue to do so here.
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The typical example is the bilinear form for Poisson’s equation,

a(v, u) =

∫
Ω

∇v · ∇u dx. (1)

If {φj}
N
j=1 is a finite element basis defined on some triangulation T of the domain

Ω, the global stiffness matrix is

Ai = a(φi1 , φi2), (2)

where i = (i1, i2) is a multiindex.
The standard algorithm [?; ?; ?] for computing the matrix A is known as as-

sembly; it is computed by iterating over the cells of the mesh T and adding from
each cell the local contribution to the global sparse matrix A. A similar process can
compute a global action, in which A is applied to some vector u without explicitly
forming A.

The integral defining a multilinear form a may be written as a sum of integrals
over the cells K of a triangulation T of the domain Ω:

a =
∑
K∈T

aK , (3)

and thus

Ai =
∑
K∈T

aK(φi1 , φi2 ). (4)

For Poisson’s equation, the element bilinear form aK is thus given by aK(v, u) =∫
K
∇v · ∇u dx. Finite element bases are constructed so that each aK is zero except

for a few basis functions.
For affine elements, as we consider here, the shape functions are constructed

once on a reference element K0 and mapped to each element of the mesh via an
affine mapping FK . In doing so, one must construct a “local-global mapping” that
relates an ordering of the element shape functions to the global basis functions. The
contribution of element K to the global matrix A is then evaluated in two stages.
First, a dense element matrix is computed by evaluating aK on the shape functions
for K. We call this element matrix AK . Then, each entry of AK is summed into
the appropriate location in the global sparse matrix as defined by the local-global
mapping. The first stage is dominated by floating point computation, the second
requires more substantial memory access.

Our work in [?; ?] has focused on a general paradigm for efficiently constructing
AK . It has long been known that precomputing certain integrals on the reference
element can speed up computation of the element tensor, especially for bilinear
forms with straight-sided elements. A general approach to precomputing certain
integrals was first introduced in [?; ?] and later formalized and automated in [?;
?]. A similar approach was implemented in early versions of DOLFIN [?; ?; ?], but
only for piecewise linear elements.

As an example, we consider here the computation of the element matrix AK for
the Laplacian. When the mapping FK from the reference cell is affine (Figure 1),
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X1 = (0, 0) X2 = (1, 0)
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Fig. 1. The (affine) mapping FK from a reference cell K0 to some cell K ∈ T .

we have for the Laplacian

AK
i =

∫
K

∇φK
i1
· ∇φK

i2
dx =

∫
K

d∑
β=1

∂φK
i1

∂xβ

∂φK
i2

∂xβ

dx, (5)

whence a change of variables yields

AK
i =

∑
α∈A

A0
iαGα

K ∀i ∈ IK , (6)

where A and IK are sets of allowed multiindices (depending on the spatial dimen-
sion and the discretizing polynomial spaces). More simply, we can write

AK = A0 : GK , (7)

where

A0
iα =

∫
K0

∂Φi1

∂Xα1

∂Φi2

∂Xα2

dX,

Gα
K = detF ′

K

d∑
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

.

(8)

We refer to the tensor A0 as the reference tensor and to the tensor GK as the
geometry tensor. For more details and extensions of this notation to a wide class
of multilinear forms, we refer the reader to our previous work [?; ?].

In [?; ?; ?], we have explored special mathematical structure that leads to reduced
operation counts. However, it was studied only in a limited case what the net impact
of FErari optimizations when the cost of global assembly is counted as well.
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3. A FRAMEWORK FOR OPTIMIZATION

In this section, we present an overview of our framework for optimization of vari-
ational form evaluation. Two different approaches are presented. The first is a
coarse-grained strategy based on phrasing the tensor contraction (7) as a matrix-
vector or matrix-matrix multiplication that may be computed by an optimized
library call. The second, which is what FErari implements, exploits the structure
of the tensor contraction to find an optimized computation with a reduced operation
count.

3.1 Tensor contraction as a matrix-vector product

To evaluate the element tensor AK , one must evaluate the tensor contraction (7). A
simple approach would be to iterate over the entries {AK

i }i∈IK
of AK and for each

entry AK
i compute the value of the entry by summing over the set of indices A.

However, by an appropriate reshaping of the tensors AK , A0 and GK , one may
phrase the tensor contraction as a matrix–vector product and call an optimized
library routine for the computation of the matrix–vector product, such as the level
2 BLAS routine DGEMV. We write matrix–vector product as as aK = Ā0gK , where
aK and gK are AK and GK reshaped into vectors and Ā0 is A0 reshaped into a
matrix.

Of course, once the computation of one aK may be computed as a matrix-vector
product, the computation of {aKi}M

i=1 for some M elements of the mesh can nat-
urally be encoded as a matrix-matrix multiplication. Using DGEMM in such a
context is an example of coarse-grained optimization, making good use of cache
in a large computation. Such an approach necessarily overlooks problem-specific
optimizations such as we find in FErari, but may be very effective in many cir-
cumstances. It is to be expected that which approach is preferable will depend
strongly on how much structure FErari finds and how well the resulting algorithms
are mapped onto hardware, as well as whether the computation is large enough for
DGEMM to have good performance. We do not explore the coarse-grained strategy
further in this paper.

3.2 Complexity-reducing relations

The matrix Ā0 is computed at compile-time by FFC, and it typically possesses sig-
nificant structure that can be exploited to reduce the amount of arithmetic needed
to multiply it by a vector gK at run-time. It is also helpful to think of the product
Ā0gK as a collection of vector dot products, where vectors a0

i are the rows of Ā0.
As an example, we consider forming the weak Laplacian on triangles using

quadratic Lagrange basis functions. Ā0 is shown in Table I. We have displayed
the index into the unflattened A0 in the first column, and the rest of row i is the
flattened vector a0

i . So, the process of forming AK for some triangle K is first to
compute the geometry vector gK and then to form the matrix-vector product Ā0gK .
In this case, we will obtain a vector aK of length 36, which will be reshaped to the
6 × 6 element tensor AK . This is then inserted into the global stiffness matrix via
the local-global mapping.

To optimize the evaluation of the element tensor, we look for dependencies be-
tween the vectors {a0

i }i∈IK
, or equivalently the rows of Ā0 that can be used to
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(0, 0) 0.5 0.5 0.5 0.5
(0, 1) 0.16666666667 0.0 0.16666666667 0.0
(0, 2) 0.0 0.16666666667 0.0 0.16666666667
(0, 3) 0.0 0.0 0.0 0.0
(0, 4) 0.0 -0.66666666667 0.0 -0.66666666667
(0, 5) -0.66666666667 0.0 -0.66666666667 0.0
(1, 0) 0.16666666667 0.16666666667 0.0 0.0
(1, 1) 0.5 0.0 0.0 0.0
(1, 2) 0.0 -0.16666666667 0.0 0.0
(1, 3) 0.0 0.66666666667 0.0 0.0
(1, 4) 0.0 0.0 0.0 0.0
(1, 5) -0.66666666667 -0.66666666667 0.0 0.0
(2, 0) 0.0 0.0 0.16666666667 0.16666666667
(2, 1) 0.0 0.0 -0.16666666667 0.0
(2, 2) 0.0 0.0 0.0 0.5
(2, 3) 0.0 0.0 0.66666666667 0.0
(2, 4) 0.0 0.0 -0.66666666667 -0.66666666667
(2, 5) 0.0 0.0 0.0 0.0
(3, 0) 0.0 0.0 0.0 0.0
(3, 1) 0.0 0.0 0.66666666667 0.0
(3, 2) 0.0 0.66666666667 0.0 0.0
(3, 3) 1.3333333333 0.66666666667 0.66666666667 1.3333333333
(3, 4) -1.3333333333 -0.66666666667 -0.66666666667 0.0
(3, 5) 0.0 -0.66666666667 -0.66666666667 -1.3333333333
(4, 0) 0.0 0.0 -0.66666666667 -0.66666666667
(4, 1) 0.0 0.0 0.0 0.0
(4, 2) 0.0 -0.66666666667 0.0 -0.66666666667
(4, 3) -1.3333333333 -0.66666666667 -0.66666666667 0.0
(4, 4) 1.3333333333 0.66666666667 0.66666666667 1.3333333333
(4, 5) 0.0 0.66666666667 0.66666666667 0.0
(5, 0) -0.66666666667 -0.66666666667 0.0 0.0
(5, 1) -0.66666666667 0.0 -0.66666666667 0.0
(5, 2) 0.0 0.0 0.0 0.0
(5, 3) 0.0 -0.66666666667 -0.66666666667 -1.3333333333
(5, 4) 0.0 0.66666666667 0.66666666667 0.0
(5, 5) 1.3333333333 0.66666666667 0.66666666667 1.3333333333

Table I. The flattened reference tensor for quadratic Lagrange elements on triangles. The first
column gives the index of the element tensor to which the row corresponds, and the rest of the
columns in the row are the entries of the flattened vector.

reduce the cost of forming the matrix-vector product. We may only look for struc-
ture in {a0

i }i∈IK
, as the gK vectors are only known at run-time. For example, if

two vectors a0
i and a0

i′ are collinear (such as the rows (1,0) and (1,5) in Table I),
then a0

i · gK may be computed using a0
i′ · gK in only one multiply, and vice versa. If

the Hamming distance (number of different entries between ai
0 and ai′

0 ) is k, then
the result a0

i′ · gK can be computed from a0
i · gK in about k multiply-add pairs, and

vice versa. These kinds of relations are called “complexity-reducing relations”, and
they are related to common subexpressions. Note that using such a relationship
requires that the code for the dot products be unrolled. As with FFC, there may
come a point at which code bloat outweighs gains in arithmetic cost, but we remark
that code optimized by FErari contains fewer arithmetic operations and hence is
smaller than the standard FFC output, but much larger than using the BLAS mode
of FFC.

In [?], we constructed a weighted, undirected graph, the vertices of which were
the vectors a0

i and the weights of whose edges were the pairwise distances under a
complexity-reducing relation (the cost of computing one entry in the element matrix
from another). We proved that a minimum spanning tree of this graph encodes a
minimal-arithmetic (in a specific sense) algorithm for evaluating the product of Ā0
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with an arbitrary input vector.
In Figure 2, we show the dependency graph generated by FErari. The arrows

indicate dependency rather than implication. That is, the arrow from (0,0) to (1,1)
indicates that the result of computing a0

(1,1)gK is used to compute a0
(0,0)gK . Hence,

the implied flow of computation is from right to left, and disconnected components
in the graph are independent of each other.

As one extension of this technique, we notice that many of the vectors may be
computed effectively by ignoring multiplication by zero. For example, entry (1,3)
in Table I only has one nonzero entry. It makes sense to generate code for forming
a0
(1,3)gK explicitly instead of using a complexity-reducing relation. In this case, we

have “snipped” the edge from the entry (1,3) to its parent in the minimum spanning
tree before generating code and thus this entry has no outgoing arrows. Hence, we
properly have a forest rather than a tree.

Many other kinds of structure may be found in Ā0. For example, in many cases
one can prove that the gK tensor has symmetries along certain axes. We used
this, for example, in [?; ?], but have yet not automated the detection of such
structure. Also, frequently three or more rows of Ā0 will be linearly dependent. A
first attempt at exploiting this structure is found in [?], but our present work is
limited to complexity-reducing relations.

4. BENCHMARK RESULTS

For a range of forms and polynomial degrees, we report several quantities for form-
ing the matrix and its action. First, we report the base operation count |IK | |A|
for forming the element tensor AK , as well as the operation counts generated by
FFC1 and the FErari optimizations. Having generated code for the local element
computation from both FFC and FErari, we compare the run-time for these codes
being executed several times. This measures the efficacy of FErari at exactly the
point it seeks to optimize. Then, to provide a broader context, we present the
speedup obtained in the global assembly process, when the overhead of sparse data
structures is included.

In each case, we generated code for the local and global computation both with
and without FErari optimizations. This code was compiled and run on an IBM
Thinkpad T60p with 2GB of RAM and a dual core Intel T2600 chip running at
2.16 GHz. The operating system was Ubuntu Linux with kernel 2.6.17-10-386. The
compiler was g++ version 4.1.2 using optimization flag -O2 on all variational forms
except the weighted Laplacian operator and action using quartics in 3D. The com-
piler and machine could only handle optimization mode -O0 in these cases. This
illustrates a challenge with our approach to finite element code generation based on
the tensor representation (7). Since straight-line code is generated for the compu-
tation of the element tensor, complicated forms or high-dimensional finite element
spaces may lead to generation of large amounts of code which the C++ compiler
is not able to handle, particularly in optimized mode. For these forms, generating
code based on quadrature rather than tensor contraction with FFC/FErari could
be more practical.

1FFC reduces the base operation count by omitting computation of zeros when the element tensor
is sparse.
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Fig. 2. Dependency graph for forming the element stiffness matrix for the Laplacian using
quadratic Lagrange triangles as determined by FErari.
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For two-dimensional problems, we used a regular triangulation based on subdi-
viding a 64×64 square mesh into right triangles, resulting in a total of 4,225 vertices
and 8,192 triangles. For three dimensions, we used a 16 × 16 × 16 partition of the
unit cube into 4,913 vertices and 24,576 tetrahedra. The timing was performed
adaptively to ensure that at least one second of CPU time elapsed for a set of at
least ten repetitions for each test case. For the sparse matrix data structure, a
simple std::vector<std::map<unsigned int, double> > was used, which was
found competitive with insertion into a sparse PETSc matrix.

In most cases, we find decent speedup in the operation count, although it does not
always translate into a speedup in the runtime for the local computation. FErari
is currently architecture-unaware. Rearranging the matrix-vector computation in a
way that makes poor use of registers, for example, can more than offset reductions
in the actual amount of arithmetic. A better result would be obtained by somehow
combining the graph-based optimizations with an architecture model, or using a
special-purpose compiler such as Spiral [?].

Moreover, even a speedup in local computation does not always improve the
global cost of assembling a matrix or vector. If a relatively small amount of work
is required to compute AK , then the cost of assembling it into the global matrix
or vector may dominate; reductions in arithmetic are not significant. On the other
hand, when the construction of AK is relatively expensive, then speedup in the
construction of the global matrix or vector can be realized by reduction of arithmetic
in the local computation. In our empirical results, we observe a tendency of FErari
to provide better global speedups for more complicated variational forms.

4.1 Laplacian

First, we consider the Laplacian, with the variational form

a(v, u) =

∫
Ω

∇v · ∇u dx. (9)

We use Lagrange polynomials Pk of degree k = 1, 2, . . . , 5 on triangles and degree
k = 1, 2, . . . , 4 on tetrahedra.2

In each case, FErari provides up to about a factor of three improvement in
operation count. The reduction in operation count, local computation time, and
global computation time required is plotted in Figure 3. The reduction in arithmetic
reduces the run-time to evaluate the local stiffness matrix (multiplying by ḡK) by
a factor of 1.5 to 2 in both two and three dimensions. However, the reduction does
not have a major impact on the global time to assemble the matrix. In this case,
there are very few arithmetic operations needed to construct the local matrix, and
the cost of inserting into the global matrix overshadows the gains FErari provides.

We also consider the matrix action as needed in a Krylov solver. Assembling
into a global vector is less expensive than into a global matrix, and we see better
speedups in evaluating the action of the Laplacian operator. In this case, FFC
and FErari generate code for evaluating (9) with u a member of the finite element
space. Speedup of this operation is felt at each iteration of a Krylov method and so

2The polynomial degree on tetrahedra was limited by available resources to compute the opti-
mization.
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Fig. 3. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the Laplacian (9).

translates directly into decreased solve time. The matrix Ā0 has the same entries
as for forming the stiffness matrix, but has a different shape. In this case, the shape
is |Pk|× (d2|Pk|). Note that FErari does not do as well for the action as for forming
the matrix. Although the entries of Ā0 are the same as before, the difference in
shapes complicates finding collinear relationships. When the rows have only d2 (4
or 9) entries for the stiffness matrix, more collinearity is found than when there
are |Pk| times as many entries. However, finding Hamming distance relations is as
effective as before. Despite the smaller reduction in operation count, the effect of
the optimizations on run-time is much greater than in forming the matrix, as we can
see by comparing Figure 4 to Figure 3. A global speedup of about 10% is observed
for degrees three through five in two dimensions, and a speedup of 20%–40% for
quadratics through quartics in three dimensions. Again, only a small improvement
is observed for low order methods.

4.2 Weighted Laplacian

Now, we consider the form

a(v, u, w) =

∫
Ω

w∇v · ∇u dx, (10)

for a fixed weight w where we assume that v, u, w all come from the same Lagrange
finite element space. In this case, the presence of the coefficient w makes the
local form more expensive to evaluate. The matrix Ā0 now has |Pk|

2 rows and
d2|Pk| columns. However, the graph of the global matrix for this form is the same
as for the constant coefficient case, assuming the same basis and mesh are used.
Consequently, the cost of assembly is exactly the same once AK is constructed.
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Fig. 4. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the action of the Laplacian (9).

Again, FErari reduces the operation count and run-time for the local computation
considerably. Given that the arithmetic cost is much larger than for the constant-
coefficient case, it is not surprising that the global speedups are much better, as
seen in Figure 5.

As before, Ā0 has the same entries but a different shape when the action of the
form is considered. Now, the shape is |Pk| × (d2|Pk|

2). While FErari does not
reduce the operation count for the matrix action as significantly as it does for the
matrix itself, the global speedups are more significant (Figure 6).

4.3 Advection

Next, we consider the advection operator

a(v, u) =

∫
Ω

v(β · ∇u) dx, (11)

where β is some constant vector and consider forming the global stiffness matrix
and its action. For the matrix, the dimension of Ā0 is |Pk|

2×d3. The advection β is
defined as a piecewise constant vector-valued Lagrange function which has d degrees
of freedom on each element. As a result, the matrix Ā0 is physically of dimension
|Pk|

2×d3, but the number of nonzero elements scales like |Pk|
2×d2. This is because

the reference tensor A0 generating the matrix Ā0 is formed as an outer product with
Φα1

[α2] = δα1α2
, that is, component α2 of the piecewise constant vector-valued

basis function Φα1
. Precontracting the reference tensor along dimensions α1, α2

would thus reduce the size of the matrix Ā0 to |Pk|
2 × d2. Low-order elements

like piecewise constants and linears often generate particular structures that can be
used for further optimizations. Such optimizations are not handled by FErari and
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Fig. 5. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the weighted Laplacian (10).
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Fig. 6. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the action of the weighted Laplacian (10).
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Fig. 7. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the advection operator (11).

are an interesting venue for further research.
As with forming the Laplacian, the reduced operation counts do not significantly

affect the global runtime (Figure 7). The operation counts and speedups for the
matrix action are found in Figure 8. Global speedup is again most significant for
higher order elements in three dimensions.

4.4 Weighted advection in a coordinate direction

Finally, we consider the advection operator oriented along a coordinate axis, but
with the velocity field varying in space (projected into the finite element space):

a(v, u, w) =

∫
Ω

vw
∂u

∂x1
dx, (12)

We consider forming the matrix and its action for a fixed weight w. This operator
is a portion of the trilinear momentum advection term in the Navier–Stokes equa-
tions. For constructing the matrix, we observe a nice speedup in local computation,
although in two dimensions this has only a marginal effect on the global run-time
for assembly. However, we gain significantly for higher-order elements in three di-
mensions, where we see a global speedup with 180% (a factor 2.8) for quartics. The
operation counts for the local matrix construction and action are shown in, and the
speedups are shown in Figures 9 and 10.

4.5 Speedup versus work

As we noted before, reducing floating-point arithmetic is expected to be more sig-
nificant to the global computation when the individual entries in the local matrix
or vector are already expensive to compute. As a test of this, we plot the speedup
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Fig. 8. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the action of the advection operator (11).
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Fig. 9. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the weighted advection operator (12).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Benchmarking domain-specific compiler optimizations · 15

1 2 3 4 5

Polynomial degree

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

F
E
ra

ri
 s

p
e
e
d
u
p
 v

e
rs

u
s
 F

F
C

Weighted advection action

Op count 2d

Op count 3d

Local 2D
Local 3D
Global 2D
Global 3D

Fig. 10. Speedup in operation count, local run-time and global run-time for using FErari versus
FFC only for the action of the weighted advection operator (12).

of FErari over FFC against the number of columns in each reference operator Ā0 in
Figure 11. We do this for all orders and forms, considering matrices and their ac-
tions separately. Although it is not an exact relation (as to be expected), Figure 11
does indicate a general trend of speedup increasing with the base cost of work per
entry.

4.6 Compile times

It is important to quantify the additional compile-time cost of using FErari within
FFC. In some situations, especially in a just-in-time compilation, the significant
additional cost will outweigh the potential run-time gains. In this section, we
report compile times for a few forms as an example. It should be remembered,
however, that FErari is currently implemented in Python and far from tuned for
performance. A better implementation should improve these compile times.

Tables II and III give the compile times for FFC without and with FErari op-
timizations respectively. We also report the time for compiling the C++ code
generated by FFC with GCC (g++). We note a few interesting details from these
numbers. First, we note that the FErari optimizations may take considerable time,
in particular for high degree polynomials and forms containing coefficients. Fur-
ther, we note that it may also take considerable time to compile the generated
code. Finally, we note that GCC may in some cases run faster if the generated
code has already been optimized by FErari. This gain is small compared to the
cost of running FErari, and is directly attributable to the resulting unrolled code
having fewer operations.
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Fig. 11. The global speedup that FErari produces over FFC is plotted against the number of
columns in the associated reference matrix Ā0, which is a measure of the work required to compute
each entry of AK .

Form Degree FFC GCC GCC -O2

Laplacian operator 1 0.016 2.3 2.3
Laplacian operator 2 0.035 2.2 2.5

Laplacian operator 3 0.13 2.5 3.7
Weighted Laplacian operator 1 0.029 2.2 2.4
Weighted Laplacian operator 2 0.26 2.8 5.2
Weighted Laplacian operator 3 2.3 9.1 130

Table II. Compile times in seconds for FFC, GCC and GCC with optimization -O2 for a set of
forms.

Form Degree FFC -O GCC GCC -O2

Laplacian operator 1 0.12 2.1 2.3
Laplacian operator 2 4 2.2 2.5
Laplacian operator 3 68 2.4 3.3
Weighted Laplacian operator 1 0.23 2.2 2.4

Weighted Laplacian operator 2 22 2.6 4.5
Weighted Laplacian operator 3 760 7.2 78

Table III. Compile times in seconds for FErari-optimized FFC, GCC and GCC with optimization
-O2 for a set of forms.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Benchmarking domain-specific compiler optimizations · 17

5. CONCLUSIONS

Several things emerge from our empirical study of optimizing FFC with FErari.
In certain contexts, FErari can provide tens of percent to a few times speedup in
runtime in forming or applying stiffness matrices. Moreover, these cases tend to
be the computationally harder ones (three dimensions, higher order polynomials).
However, FErari is not without its costs. It dramatically adds to the compile-time
for FFC, and when used for simple forms can actually hinder runtime.

Besides improving the run-time performance of finite element codes generated by
FFC and FErari, our results shed some light on where FErari could be improved
and in how a fully functional optimizing compiler for finite elements might be de-
veloped. First, our calculations did little to optimally order the degrees of freedom;
better ordering algorithms should decrease the cost of insertion. Second, algorithms
trying to maximize performance must have some awareness of the underlying com-
puter architecture. The success of Spiral in signal processing suggests this should
be possible. Moreover, knowing when to do what kinds of optimization, such as
FErari’s fine-grained optimization versus a coarse-grained level 3 BLAS approach,
must be determined. This must also be compared against when quadrature-based
algorithms might be effective, as well as whether the stiffness matrix should be
explicitly constructed, statically condensed, or applied without being constructed.
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