
SIAM J. SCI. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 2, pp. 827–841

GEOMETRIC OPTIMIZATION OF THE EVALUATION OF FINITE
ELEMENT MATRICES∗

ROBERT C. KIRBY† AND L. RIDGWAY SCOTT‡

Abstract. This paper continues earlier work on mathematical techniques for generating opti-
mized algorithms for computing finite element stiffness matrices. These techniques start from rep-
resenting the stiffness matrix for an affine element as a collection of contractions between reference
tensors and an element-dependent geometry tensor. We go beyond the complexity-reducing binary
relations explored in [R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel, SIAM J. Sci. Comput.,
28 (2006), pp. 224–240] to consider geometric relationships between three or more objects. Algo-
rithms based on these relationships often have even fewer operations than those based on complexity-
reducing relations.

Key words. finite element, variational form, optimized algorithm, graph theory

AMS subject classifications. 65N30, 65Y20, 68R05, 68R10

DOI. 10.1137/060660722

1. Introduction. In our recent work, we have presented mathematical and com-
putational techniques for the automatic generation of optimized code for evaluating
local stiffness matrices for finite elements. These techniques are applicable to multi-
linear variational forms over affine elements using general basis functions. Beginning
in [10], we suggested that the local evaluation of the stiffness matrix for multilinear
forms for a single affine element could be written as contractions of a set of reference
tensors, with a single tensor encoding the geometry and coefficients.

This formulation allows us to generate code for the innermost part of a finite
element computation. The FEniCS form compiler, FFC [11, 12], takes a variational
form and approximating space as input. As output, it produces a function that maps
the geometry and material coefficients for any element in an unstructured mesh to
the element stiffness matrix. It also generates the higher-level code that loops over
all elements in a mesh, computing the element stiffness matrices and inserting them
into a global sparse matrix. The current implementation of FFC is fully functional
for multilinear forms with arbitrary order Lagrange elements, and works for general
unstructured meshes in one, two, or three space dimensions. In [12], we show how
the technique can be applied to more general variational forms, curved elements, and
H(div) or H(curl) elements. Although our techniques can be applied to quadrilateral
or hexahedral meshes, spectral element techniques that work dimension by dimension
are probably more effective.

The innermost computational kernel of the FFC-generated code is the collection
of tensor contractions on each element of a mesh. Since this code is a single function
executed over all elements of a mesh, it makes sense to find optimizations that allow
us to perform the computations for an arbitrary element as efficiently as possible.

∗Received by the editors May 24, 2006; accepted for publication (in revised form) October 11,
2006; published electronically April 24, 2007.

http://www.siam.org/journals/sisc/29-2/66072.html
†Department of Computer Science, University of Chicago, Chicago, IL 60637-1581 (robert.c.

kirby@ttu.edu). This author’s work was supported by the U.S. Department of Energy Early Ca-
reer Principal Investigator Program under award DE-FG02-04ER25650.

‡The Computation Institute and Departments of Computer Science and Mathematics, University
of Chicago, Chicago, IL 60637-1581 (ridg@cs.uchicago.edu).

827

828 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

In [10], we noticed that relations exist between the reference tensors that allow one
to perform all the contractions needed to compute a single element matrix in many
fewer arithmetic operations than would otherwise seem necessary. Our rather crude
heuristic for exploiting these dependencies allowed us to generate code that was no-
tably faster than the standard method for forming local stiffness matrices on our test
problems.

Then, in [13], we formalized part of the optimization process in [10] by introducing
the concept of complexity-reducing relations. These are derived from metrics that
model the cost of computing one of the tensor contractions once another contraction
has been computed. This theory effectively translates optimizations based on pairwise
dependencies between the reference tensors into a minimum spanning tree. While the
strategy is quite effective at reducing the operation count for many variational forms,
it does not address how to utilize relations between three or more reference tensors,
such as when one reference tensor may be written as a linear combination of two others.
In this paper, we study efficient algorithms for detecting such geometric relations and
hence finding fast algorithms for building finite element stiffness matrices.

Our attempts to mechanize the optimization of evaluating finite element matri-
ces bear strong resemblance to projects in other areas. In [2], a tool is developed
for synthesizing high-performance FORTRAN code for high-dimensional structured
tensor contractions arising in quantum chemistry. The authors search for ways of re-
ducing operation counts by heuristics for common subexpression elimination. While
our techniques seem to search for a wider class of arithmetic dependencies, their work
pushes harder on data locality and other architecture and performance-related issues.
Other attempts to mathematize the derivation of efficient numerical code include the
FLAME project of van de Geijn and coworkers for dense linear algebra [8, 3] and the
SMART project of Egner and Püschel in signal processing [6]. The latter project has
developed a code that takes a (symbolic representation of) a matrix such as the dis-
crete Fourier transform as input and factors it via representation theory into a short
sequence of sparse structured matrices. Their techniques automatically replicate the
Cooley–Tukey algorithm [4], but also find fast algorithms for other, more complicated,
transforms. Many other projects, such as ATLAS [20] and SPIRAL [19], attempt to
map a given algorithm as closely as possible to a given computer architecture.

We begin the remainder of this paper by reviewing the formulation of the local
matrix computation as tensor contractions and stating the abstract computational
problem to optimize in section 2. Then, we study our geometric optimization process
in section 3. This includes both an expected quadratic-time algorithm for detecting
coplanarity among a set of input vectors as well as using such relations to speed up
the finite element computation. These ideas generalize readily to higher-dimensional
dependencies, which we do at the end of this section. In section 4, we study the actual
reduction of operation count generated by our algorithms. In many cases for both the
Laplacian and weighted Laplacian, it gives reduction in arithmetic superior to that of
complexity-reducing relations. This leads us to consider how the two approaches can
be combined into a single optimization process. While we do not have a good answer
to this yet, we discuss a simple heuristic and also phrase the issue as a combinatorial
optimization problem in section 5. Throughout the paper, readers familiar with the
subjects of finite linear spaces and ordered ternary relations may find many of the
concepts somewhat familiar. To focus on the exposition of the algorithms and appli-
cation to finite element computation, we defer these issues and make several remarks
on these relationships in section 6.

OPTIMIZATION OF EVALUATION OF FE MATRICES 829

2. Background. As in previous work, we let {Vi}ri=1 be a given set of finite-
dimensional function spaces defined on a triangulation T = {e} of a domain Ω ⊂ R

d.
We consider multilinear forms a defined on the product space V1 × V2 × · · · × Vr:

a : V1 × V2 × · · · × Vr → R.(2.1)

In finite element methods, a is an integral of products of (derivatives) of its arguments.
We are interested in forming the element tensor AK for each K ∈ Th. This element

tensor depends on the basis chosen for each function space. We let {ϕ1
i }M1

i=1, {ϕ2
i }M2

i=1,

. . . , {ϕr
i }Mr

i=1 be bases of V1, V2, . . . , Vr over K, and let i = (i1, i2, . . . , ir) be a multi-
index. The multilinear form a then defines a rank r tensor given by

AK
i = a(ϕ1

i1 , ϕ
2
i2 , . . . , ϕ

r
ir).(2.2)

For affine elements such as triangles and tetrahedra, AK is evaluated by mapping
each K to a fixed reference element K̂. As we have written extensively about this
representation elsewhere, we recall the Laplacian as an example here. For other
examples and a more general representation theorem for a class of variational forms,
we refer the reader to [11, 12].

We let FK be the affine map from K̂ to K. We denote by x the coordinates on
K and by X the coordinates on K̂. We identify φj

i = Φj
i ◦F−1

K , and by the chain rule
we obtain

AK
i =

∫
e

∇ϕe,1
i1

(x) · ∇ϕe,2
i2

(x) dx

= detF ′
e

∂Xα1

∂xβ

∂Xα2

∂xβ

∫
E

∂Φ1
i1

(X)

∂Xα1

∂Φ2
i2

(X)

∂Xα2

dX = A0
iαG

α
e .

(2.3)

In [13], we abstracted the computation of AK to the following scenario. Let
V ⊂ R

d with |V | = n < ∞. By default, for any g ∈ R
d, we may compute {vtg : v ∈ V }

in nd multiply-add pairs (hence MAPs). However, the kinds of V that arise in finite
element methods often possess special structure, so that the overall process may be
performed on a general g in many fewer MAPs. In order to formalize an optimization
procedure based on pairs of vectors in V , we introduced the notion of complexity-
reducing relations. These are distance measures ρ such that if ρ(u, v) = k, then utg
may be computed using vtg in no more than k MAPs. For example, if u, v are colinear,
then we may define ρ(u, v) = 1, since if u = αv, then utg = α(vtg). However, we
left unstudied how to exploit relations between three or more members of V , such as
when three vectors lie in a two-dimensional subspace.

The point of this work is to formalize and employ these geometric relations in
optimizing the computation of element stiffness matrices. Throughout this work, we
shall present illustrations of our geometric notions on a particular set of vectors. In
this case, we will work with the vectors from the Laplacian reference tensor for cubic
Lagrange elements over triangles. We will use the symmetry transformation described
in [13] to map from R

4 to R
3 and work only with the triangular part of the matrix. A

table of the vectors can be found in Table 2.1. In particular, we recall that many of
the vectors are zero or else equal or colinear to other vectors. Hence, the number of
vectors among which we need to consider coplanar relations is actually much smaller.
In Table 2.2, we show the entries of the reference tensor after removing the zero entries
and all but one of any collection of equal or colinear vectors.

830 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

Table 2.1

Reference tensor entries for Laplacian with cubic polynomials on triangles.

(0, 0) 0.42500 0.85000 0.42500
(0, 1) -0.08750 -0.08750 0.00000
(0, 2) 0.00000 -0.08750 -0.08750
(0, 3) -0.03750 -0.07500 -0.03750
(0, 4) -0.03750 -0.07500 -0.03750
(0, 5) 0.03750 0.37500 0.33750
(0, 6) 0.03750 -0.63750 -0.67500
(0, 7) -0.67500 -0.63750 0.03750
(0, 8) 0.33750 0.37500 0.03750
(0, 9) 0.00000 0.00000 0.00000
(1, 1) 0.42500 0.00000 0.00000
(1, 2) 0.00000 0.08750 0.00000
(1, 3) 0.03750 0.71250 0.00000
(1, 4) 0.03750 -0.30000 0.00000
(1, 5) -0.03750 0.00000 0.00000
(1, 6) -0.03750 0.00000 0.00000
(1, 7) 0.33750 0.30000 0.00000
(1, 8) -0.67500 -0.71250 0.00000
(1, 9) 0.00000 0.00000 0.00000
(2, 2) 0.00000 0.00000 0.42500
(2, 3) 0.00000 -0.30000 0.03750
(2, 4) 0.00000 0.71250 0.03750
(2, 5) 0.00000 -0.71250 -0.67500
(2, 6) 0.00000 0.30000 0.33750
(2, 7) 0.00000 0.00000 -0.03750
(2, 8) 0.00000 0.00000 -0.03750
(2, 9) 0.00000 0.00000 0.00000
(3, 3) 1.68750 1.68750 1.68750

(3, 4) -0.33750 0.67500 -0.33750
(3, 5) 0.33750 0.33750 0.00000
(3, 6) 0.33750 0.33750 0.00000
(3, 7) 0.00000 0.33750 0.33750
(3, 8) 0.00000 -1.68750 -1.68750
(3, 9) -2.02500 -2.02500 0.00000
(4, 4) 1.68750 1.68750 1.68750
(4, 5) -1.68750 -1.68750 0.00000
(4, 6) 0.33750 0.33750 0.00000
(4, 7) 0.00000 0.33750 0.33750
(4, 8) 0.00000 0.33750 0.33750
(4, 9) 0.00000 -2.02500 -2.02500
(5, 5) 1.68750 1.68750 1.68750
(5, 6) -0.33750 -1.35000 -1.35000
(5, 7) 0.00000 -0.33750 0.00000
(5, 8) 0.00000 -0.33750 0.00000
(5, 9) 0.00000 2.02500 0.00000
(6, 6) 1.68750 1.68750 1.68750
(6, 7) 0.00000 1.68750 0.00000
(6, 8) 0.00000 -0.33750 0.00000
(6, 9) -2.02500 -2.02500 0.00000
(7, 7) 1.68750 1.68750 1.68750
(7, 8) -1.35000 -1.35000 -0.33750
(7, 9) 0.00000 -2.02500 -2.02500
(8, 8) 1.68750 1.68750 1.68750
(8, 9) 0.00000 2.02500 0.00000
(9, 9) 4.05000 4.05000 4.05000

Table 2.2

Reference tensor entries for Laplacian using cubics on triangles, after zero entries and all but
one entry from any set of equal or colinear entries have been removed.

(0, 3) -0.03750 -0.07500 -0.03750
(0, 5) 0.03750 0.37500 0.33750
(0, 6) 0.03750 -0.63750 -0.67500
(0, 7) -0.67500 -0.63750 0.03750
(0, 8) 0.33750 0.37500 0.03750
(1, 3) 0.03750 0.71250 0.00000
(1, 4) 0.03750 -0.30000 0.00000
(1, 6) -0.03750 0.00000 0.00000
(1, 7) 0.33750 0.30000 0.00000
(1, 8) -0.67500 -0.71250 0.00000
(2, 3) 0.00000 -0.30000 0.03750

(2, 4) 0.00000 0.71250 0.03750
(2, 5) 0.00000 -0.71250 -0.67500
(2, 6) 0.00000 0.30000 0.33750
(2, 8) 0.00000 0.00000 -0.03750
(3, 3) 1.68750 1.68750 1.68750
(3, 4) -0.33750 0.67500 -0.33750
(4, 7) 0.00000 0.33750 0.33750
(5, 6) -0.33750 -1.35000 -1.35000
(5, 9) 0.00000 2.02500 0.00000
(6, 9) -2.02500 -2.02500 0.00000
(7, 8) -1.35000 -1.35000 -0.33750

3. Geometric relations. As with complexity-reducing relations, we will con-
sider the following abstract problem. Suppose that {vi}ni=1 ≡ V ⊂ R

d is a finite col-
lection of vectors. We desire to derive a process by which {vtig}ni=1 may be constructed
efficiently. This process must take an arbitrary g ∈ R

d as an input. Effectively, this
corresponds to a matrix-vector multiplication Ag, where the elements of V form the
rows of A. Such a process may then be encoded in some low-level C or FORTRAN
program and used as the innermost computation for building finite element matrices.
As finding such a process is a “compile-time” process that need only be performed
once per variational form and set of basis functions, one may be willing to perform a
relatively expensive computation to obtain it.

OPTIMIZATION OF EVALUATION OF FE MATRICES 831

If any u, v ∈ V are equal or colinear, then utg may be computed in zero or one
operation using vtg. If such relations occur in V , we need only search for copla-
narity among the noncolinear elements of V . Similarly, when we search for higher-
dimensional dependencies, we will want to filter out coplanarity.

Definition 3.1. V ⊂ R
d with k + 1 ≤ |V | < ∞ is k-independent if there exists

no linearly dependent subset of k + 1 vectors.
Definition 3.2. Let U ⊂ V have a k-dimensional span. Then U is k-maximal

if there exists no U ⊂ U ′ such that U and U ′ have the same span.
It stands to reason that if there are many linear dependencies among the vectors,

this should allow us to construct {vtig}ni=1 efficiently, for if w = αu + βv, then wtg
may be computed in only two MAPs once utg and vtg are known. In the rest of the
section, we study a process to make thorough use of these dependencies. We first
examine the case of two-dimensional dependencies, and then move on to present the
general case.

Now, suppose that V is 1-independent (no two vectors are colinear or equal). Two
issues must be resolved to make use of coplanar dependencies in computing the dot
products. First, we must enumerate all of the 2-maximal subsets of V . Second, we
must find a way to construct {vtig}ni=1 in such a way that as many of the dot products
are computed by using linear relations as possible. Equivalently, as few dot products
as possible should be performed explicitly.

3.1. Search algorithms. The first step one might take in finding the 2-maximal
sets is obvious; loop over all triples of vectors. This process runs in O(n3) time, and the
innermost check for coplanarity will typically require O(d3) operations (for example,
Gaussian elimination or singular value decomposition). It then remains to determine
the 2-maximal sets from the coplanar triples. To do this, let (G,E) be a graph where
G = {{i, j, k} : dim span{vi, vj , vk} = 2} and an edge is drawn between {i, j, k} and
{i′, j′, k′} if |{i, j, k} ∩ {i′, j′, k′}| = 2. Then the connected components of this graph
encode the 2-maximal sets. Actually, the vertices of a connected component are a set
of sets of vector labels; one must take the union of all sets of labels in each connected
component.

The 2-maximal sets may be enumerated much more effectively. By assumption,
each pair of elements in V spans a plane. If we consider two pairs of vectors (these
pairs may share a common vector), then we should be able to determine whether they
correspond to the same plane or not.

Rather than searching for equality among the planes themselves, we will work
a necessary condition for equality, leading to Algorithm 1 below. Let Π : R

d → R
3

be some full-rank linear transformation. We compute {Πvi}ni=1. Then, if {vi, vj}
and {vi′ , vj′} encode the same two-dimensional subspace, then of necessity so do
{Πvi,Πvj} and {Πvi′ ,Πvj′}. Conveniently, each is a pair of vectors in R

3, so its cross
product provides a vector normal to the spanned plane. If {vi, vj} and {vi′ , vj′} span
the same plane, then ni,j = Πvi × Πvj and ni′,j′ = Πvi′ × Πvj′ must be colinear. We
have already seen in [13] that we may search for colinearity among a set of vectors
in expected linear time by using hash tables. We form a table T whose keys n are
the unique normal vectors to the pairs of projected vectors and whose values are
sets of vector indices. Consequently, this entire process runs in expected (thanks to
hashing) O(n2) time and has a lower dependence on d than the brute force algorithm.
Furthermore, this hash table maps the normal vector to the set of all vectors that lie
in the projected plane, so we do not need to find connected components as above.

Of course, some information is lost when mapping vectors from R
d down to R

3.

832 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

It is possible that the mappings of vectors are coplanar while the vectors themselves
are not. The candidates for 2-maximal sets are table values T [n] containing more
than two indices. We must first verify that each set of vectors is indeed 2-dependent.
If it is not, we may recur to find its 2-independent subsets by selecting a new Π. In
practice, however, the size of these sets is much smaller than |V |, so even using brute
force followed by connected components is effective.

Algorithm 1. One phase of projection-based algorithm for determining 2-
maximal sets. This process finds candidates for 2-maximal sets, and we verify and
possibly recur on each.

Given {vi}ni=1 ⊂ R
d, n < ∞, 1-independent.

Compute Π ∈ R
3,d, a full-rank transformation.

Let T be an (initially empty) hash table mapping vectors in R3 to sets of integers
in [1, n].
for i=1 to n do

Compute Πvi
end for
for i = 1 to n do

for j = i + 1 to n do
ni,j = Πvi × Πvj
Normalize ni,j to have the unit ∞-norm and first nonzero entry positive.

end for
end for
for i = 1 to n do

for j = i + 1 to n do
if ni,j is a key of T then

T [ni,j] ← T [ni,j] ∪ {i, j}
else
T [ni,j] ← {i, j}

end if
end for

end for
Output T [n] for each key n of T such that |T [n]| > 2.

It is interesting to know how close to being optimal this algorithm is. To know
this requires knowing just how many common planes there can be. Consider a set
of vectors in three dimensions, for simplicity, in the positive orthant (x ≥ 0, y ≥ 0,
z ≥ 0). Now consider the projection of the vectors on the triangle T defined by

x + y + z = M, x ≥ 0, y ≥ 0, z ≥ 0,(3.1)

where M > 0 could be arbitrary, but we will take it to be sufficiently large to simplify
our notation. Three such vectors lie in a plane through the origin if and only if the
projections onto T are collinear. We now construct a set of n points with O(n2)
common planes.

Let k be a positive integer, and consider the points in the rectangular lattice

(i, j), i = 1, . . . , 2k, j = 1, 2, 3.(3.2)

We see that for each point with j = 0 we can associate k lines going through three
points, and thus there are at least 2k2 common planes. Figure 3.1 shows an example
with k = 4 showing only four of the eight sets of four planes for i = 1, 2, 3, 4.

OPTIMIZATION OF EVALUATION OF FE MATRICES 833

Fig. 3.1. Example of lattice with k = 4. For each point on the lower line, there are exactly four
planes. Only the planes for i = 1, 2, 3, 4 are shown.

Since the number of planes to be determined is quadratic in the number of initial
vectors, a quadratic algorithm for determining them is the best we would expect as a
worst-case bound.

3.2. Generators. Now, let P be the set of all 2-maximal subsets of V . We
would like to use V and P to infer an efficient process for computing {vtig}ni=1 for
arbitrary g. In order to do this, we will identify a (hopefully small) subset S ⊂ V
by which we may recursively construct the rest of the members of V via pairwise
linear combinations. Once this construction is found, it will tell us how to efficiently
compute the dot products. That is, we start with S and will compute {vtg : v ∈ S}
by brute force. Then, we find all v ∈ V − S with v in the span of two members of S.
We then let S1 be the union of all such v and S. This implies that we can compute
each element of {vtg : v ∈ S1 − S} in two MAPs. We then identify all v ∈ V − S1

spanned by two members of S1, letting S2 be the union S1 with all such v. Again, if
v ∈ S2 − S1, then vtg may be computed in two MAPs. If S is chosen suitably, then
this process will yield Si = V for some i < ∞. We will call such a set S a generator.
Then, the total arithmetic cost for computing {vtig}ni=1 is no greater than d|S| MAPs.
The goal is then to find a generator with as few elements as possible.

Theorem 3.3. For any g ∈ R
d, the computation {vtig}ni=1 may be computed in

d|S| + 2|V − S| MAPs, where S is a generator for V .
We will initially develop these ideas geometrically rather than graph-theoretically,

although later we will present the essential problem over a graph. However, our
eventual goal for code generation is to find some sort of a dependence graph that tells
us which vectors are constructed from which. The leaves (having no out-neighbors)
are the members of S. All nodes not in S will have two out-neighbors. If v has two
out-neighbors w, x, then {v, w, x} must be 2-dependent; the computation of vtg will be
performed using this linear relation rather than explicitly. A topological sorting of this
graph such that each vertex follows its out-neighbors will allow all the dot products
to be performed in an appropriate sequence. Straightline code for each dot product
(corresponding to an entry of the element stiffness matrix) can then be generated. An
example dependence graph is shown in Figure 3.2; this is for the vectors in Table 2.2
for the cubic Lagrange basis on triangles.

Without loss of generality, we will assume that every element of V is contained in
at least one P ∈ P. If some v ∈ V does not lie in a plane with any two other items,
then vtg must always be computed explicitly anyway. Such vertices are isolated points
in a dependence graph, having no in- or out-neighbors.

We may refer to the above process of recursively taking linear combinations of S
as a geometric closure.

Definition 3.4. Let S ⊂ V . The geometric 2-closure of S, denoted S̄, is defined

834 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

Fig. 3.2. Generation graph for a 1-independent subset of vectors for the Laplacian using cubic
Lagrange elements.

as follows. First, if v ∈ S, then v ∈ S̄. Second, if v ∈ V and there exist any w, x ∈ S̄
such that {v, w, x} is 2-dependent, then v ∈ S̄. We emphasize that this definition is
recursive.

Remark 1. The term closure is appropriate, as the operation mapping S to
its geometric 2-closure is an abstract closure operation. That is, the operation is
increasing (S ⊆ S̄), idempotent (¯̄S = S̄), and monotone (S ⊆ T → S̄ ⊆ T̄).

Definition 3.5. If S̄ = V , then S generates V or is a generator. If no S′ ⊂ S
also generates V , then S is a minimal generator. Finally, if no minimal generator
has lower cardinality than S, then we say S is a minimum generator.

Our terminology here is intentionally analogous to the maximal and maximum
independent set problems from algorithmic graph theory. An independent set is a sub-
set of a graph’s vertices so that no two vertices are connected by an edge. A maximal
independent set is an independent set not contained in any larger independent set.
A maximum independent set is a maximal independent set with cardinality no less
than any other maximal independent set. While simple efficient algorithms exist for
finding a maximal independent set, finding a maximum independent set is NP -hard
[9]. The algorithm we study below may have similar properties; while it might not
always find a minimum generator, it finds a minimal one. The hardness of finding
a minimum generator and the difference in size between the minimal generator that
our algorithm finds and a minimum generator are all open questions; we will make an
additional remark about this later.

Our algorithm is based on the plane graph of the 2-maximal sets.
Definition 3.6. Let P be the 2-maximal subsets of {vi}ni=1. Then the plane

graph (P, E) is a graph whose vertices are the 2-maximal sets. An edge is drawn
between two 2-maximal sets P1 and P2 if and only if |P1 ∩ P2| = 1.

Equivalently, we may consider the plane graph to be a complete but weighted
graph, where the edge weights indicate the number of items shared between two 2-
maximal sets. This perspective will be more helpful in the next section, where we
consider higher-dimensional geometric dependencies.

In certain simple circumstances, it is possible to infer or at least bound the size
of a minimum generator based on properties of the plane graph. We present these
results here.

Theorem 3.7. Let P ′ ⊆ P cover V . That is, each v ∈ V is contained in at
least one P ∈ P ′. Then there exists a generator for V containing no more than 2|P ′|
elements.

Proof. Let S contain two elements from each P ∈ P ′. Then clearly S̄ = V , since
P ′ covers V .

Theorem 3.8. Let P ′ ⊆ P cover V , and let the associated subgraph of the plane

OPTIMIZATION OF EVALUATION OF FE MATRICES 835

graph be connected. Then there exists a generator for V containing no more than
1 + |P ′| elements.

Proof. Choose two elements u, v ∈ P ∈ P ′. Let u, v ∈ S. The closure of {a, b} will
contain all of P and one member of each neighbor of P . Select one additional member
of each neighbor to add to S. Continue breadth first through the whole (connected)
graph.

These bounds are pessimistic; frequently much smaller generators can be found.
It seems that the exact size depends not only on the connectivity of the plane graph,
but also on how vectors are shared between planes. We leave this question aside and
turn to algorithms for finding a generator.

3.3. Finding a minimal generator. Algorithm 2 is a simple greedy algorithm
for finding a minimal generator. This works by assigning priorities to each 2-maximal
set in P. These priorities indicate how many items should be selected from that set
to “close” it. Initially, these priorities will all be 2. When the priority of some P is
two, then no vectors in it have been found by the process yet. If the priority is 1,
then one vector has been found; selecting another allows the remainder of P to be
added to the closure. At each step of our algorithm, we select a 2-maximal set P with
minimal priority. Then, we add elements from P to build the generator set G. After
updating the generator and what has been found, the priorities of neighboring planes
are updated. Note that a simple modification of this algorithm builds a dependence
graph. When items of a plane are selected as generators, they are added as roots of
the dependence graph. The rest of the items of a plane are inserted with appropriate
arrows.

Algorithm 2. Finding a minimal generator.

Given V,P, and the plane graph
Let G = {} be the (initially empty) generator.
Let Q be an empty priority queue.
Let D = {} be the set of points generated by G.
for P ∈ P do
Q[P] ← 2

end for
while Q not empty do

Let P be an item from Q with minimal priority m.
Remove P from Q.
Select {vij}mj=1 new generator elements from P −D.
G ← G ∪ {vij}mj=1

D ← D ∪ P
for P ′ adjacent to P in the plane graph do

Q[P ′] ← max(0, 2 − |P ′ ∩D|)
end for

end while

Algorithm 2 bears some similarity to some well-known algorithms. Like Dijkstra’s
[5] and Prim’s [18] algorithms, it relies on a priority queue to make a locally optimal
choice. However, it is not the vertices of the graph (the 2-maximal sets) but the
members of those vertices that are of primary interest. Still, the similarity suggests
that an optimality proof of this algorithm may be possible. On the other hand, we
recall our remarks above regarding the similarity to maximum independent sets.

836 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

3.4. Exploiting higher-dimensional dependencies. The discussion of the
earlier subsection readily generalizes to higher-dimensional dependencies. Interest-
ingly, both Algorithms 1 and 2 are simple to extend. We explain both of these here.

To handle general k-dependencies, we assume as input a (k− 1)-independent set.
(The generator for a (k − 2)-independent set is (k − 1)-independent.) In practice,
this means an iterative process by which we find a minimal generator for one order
of linear dependence, remove the generated elements, and then proceed to the next
higher order. Rather than pairs of vectors, we consider sets of k vectors, each of
which spans a k-dimensional Euclidean space. We let Π : R

d → R
k+1. Then we

compute the generalized cross product that maps k elements of R
k+1 to the unique

(up to scaling) vector normal to the inputs. Equivalently, the full singular value
decomposition could be used to find a normal vector. (It produces an orthonormal
basis both for the column space of a matrix and its orthogonal complement.) Then
these O(nk) normals are searched for colinearity via a hash table, and matches are
verified and recurred upon as necessary.

The analogue of Algorithm 2 is likewise very similar. Instead of a plane graph,
we make use of a “hyperplane graph” with edges weighted based on the length of
intersection (between 0 and k− 1, inclusive). The initial priorities are set to k rather
than 2. The rest of the algorithm is exactly the same.

4. Empirical results. We present a study of using our geometric techniques for
the Laplacian on tetrahedra, showing how many dependencies of each order we find.
In Table 4.1, we report the number of vectors that are found to be equal or colinear
to some other vector, and the number of vectors in the generator for each order

Table 4.1

Results of optimizing the evaluation of the Laplacian on tetrahedra using Lagrange elements
of degrees two through four. For each degree k, the top portion of the table indicates the number
of vectors (n), the length of each vector (d), the number of vectors that are zero (num zero), and
the number of vectors removed from the search space because they were equal or colinear to another
vector. The remaining three portions of the table describe the results of searching successively for
linear dependencies of degrees two, three, and four. Each portion states the number of vectors with
which the search process began, the number of vectors that have that order of dependency, the size of
the generator (including independent elements), and the number of MAPs in the optimized algorithm.
The final row indicates the number of MAPs in the algorithm generated using complexity-reducing
relations, as described in [13].

2 3 4
n 55 210 630
d 6 6 6

Num zero 0 0 0
Num equal 6 42 150

Num colinear 0 44 73
Size for 2-search 49 146 432

Num with 2-dependency 49 145 372
Generator size 6 8 67

MAPs 105 327 1112
Size for 3-search 6 8 67

Num with 3-dependency 0 0 41
Generator size 6 8 47

MAPs 105 327 1072
Size for 4-search 6 8 47

Num with 4-dependency 0 5 44
Generator size 6 7 18

MAPs 105 330 1045
CRR MAPs 101 370 1118

OPTIMIZATION OF EVALUATION OF FE MATRICES 837

Table 4.2

Results of optimizing the first contraction stage for the weighted Laplacian on triangles. See
Table 4.1 for more details about the row and column labels. Blanks indicate computations that could
not be completed.

2 3 4
n 63 165 360
d 6 10 15

Num zero 14 22 32
Num equal 15 23 33

Num colinear 2 2 2
Size for 2-search 33 119 294

Num with 2-dependency 32 67 112
Generator size 11 92 252

MAPs 110 910 3808
Size for 3-search 11 92 252

Num with 3-dependency 7 39 86
Generator size 9 78 217

MAPs 104 818 3394
Size for 4-search 9 79

Num with 4-dependency 9 53
Generator size 6 59

MAPs 98 717
CRR MAPs 115 683 3726

of dependency. We also report the number of MAPs in the optimized algorithm.
Comparing to the results in [13], we see that geometry can be at least as effective
at reducing arithmetic as complexity-reducing relations. On triangles, however, the
vectors are already so short that reducing the cost by geometric relations is much less
practical.

We remark that, going from third- to fourth-order dependencies, the number of
MAPs increases. This is due to the fact that a vector with one nonzero entry was
written as a linear combination of four other vectors; greater care in a production-level
implementation would prevent this.

We also consider the weighted Laplacian on triangles as in [13],

aw(v, u) =

∫
Ω

w(x)∇v(x) · ∇u(x) dx,(4.1)

with reference and geometric tensors given by

A0
iα =

∫
E

Φα1
(X)

∂Φi1(X)

∂Xα2

∂Φi2(X)

∂Xα3

dX(4.2)

and

Gα
e = wα1 detF ′

e

∂Xα2

∂xβ

∂Xα3

∂xβ
,(4.3)

respectively. In [13], we remarked that Ge is the outer product of the coefficient
with the geometric tensor for the standard Laplacian ((GL)e). With this in mind, we
could perform all of the contractions (of larger tensors) as in the constant coefficient
case and search for geometric relations. However, in this case, no geometric relations
between vectors were discovered. This suggests that geometric optimization is likely
not as good a default optimization strategy as complexity-reducing relations. On the
other hand, we may also perform the computations in stages as in [13]. Here, we

838 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

consider the case

Ae
i =

(
A0

i,(α1,α2,α3)
wα1

) (
GL

)(α2,α3)

e
,(4.4)

in which case we consider contractions with the coefficient first. This may be op-
timized, but the subsequent stage of contracting with GL is performed at full cost.
Note that we obtain some benefit, finding vectors that are zero, equal, or colinear. We
also compare to Table 4.8 in [13] to see that geometric optimization with second order
dependencies leads to a slightly better result than complexity-reducing relations for
quadratics and almost as good for cubics. We also see that substantial additional im-
provements are made by searching for third- and fourth-order dependencies for cubics.
Third-order dependencies are also significant for quartics, but even with our efficient
search algorithms, fourth-order search was beyond the capacities of our prototype
Python implementation.

5. Combined optimization. In [13], we reduced the construction of an opti-
mized algorithm based on binary relations to a well-known graph construction. In the
geometric context, the problem is equivalent to finding a generator. It is natural to
look for an effective way of using both binary and geometric relations to give a greater
overall reduction of arithmetic than using either separately. Rather than describing
an algorithm for finding the exact optimum, we describe first a combinatorial struc-
ture, which, if it were found, would be the optimum. Then we describe a heuristic
modification of Prim’s algorithm that outperforms binary relations alone. Finally, we
pose the problem in terms of an optimization problem over all permutations of V .

Essentially, we want to construct a rooted, weighted tree or forest with all the
vectors as nodes. Each node either will be a leaf node, if the corresponding dot product
is performed explicitly, or will have one or more neighbors, depending on whether the
corresponding computation is performed via a complexity-reducing relation or a linear
combination. Each node is also assigned a weight based on the cost of using either
explicit computation, a complexity-reducing relation, or a linear dependence. Of all
possible spanning forests, we desire to find one with minimal weight.

While such a structure probably cannot be found efficiently, the idea appropriately
generalizes both the dependence graph and the minimum spanning tree. If we neglect
all the linear relations and focus only on a complexity-reducing relation, a (rooted)
minimum spanning tree exactly solves the problem. On the other hand, if we were
to neglect the complexity-reducing relation, we would wind up with a dependence
graph (augmented slightly if we had found equality or colinearity among vectors).
We have implemented a straightforward generalization of Prim’s algorithm in which
each time a vector v is added to the tree, if it and another member of the tree are
coplanar with a vector w not already added in the tree, a labeled edge is drawn from v
and w. While this approach finds (provably and in practice) more efficient algorithms
than using complexity-reducing relations alone, the current naive implementation and
search through coplanar relations at each step makes the code impractical for anything
beyond very simple problems at the present time.

Finally, we may pose the optimal computation as a combinatorial optimization
problem over all permutations of V . In effect, the exact solution to this problem allows

any previous computation to be employed at each step. To each ordering {vi}|V |
i=1 of

V we can assign a weight. This weight is a sum over weights for each vi. The weight

OPTIMIZATION OF EVALUATION OF FE MATRICES 839

of v1 is always w(v1) = m. For i > 1, we define

wR(vi) =

{
2, ∃j, k < i : R({vi, vj , vk}),
m, otherwise,

(5.1)

to indicate whether vi is linearly dependent on two of its predecessors, and also define

wρ(vi) = min
j<i

ρ(vi, vj)(5.2)

to indicate how expensive it is to compute vtig using the complexity-reducing relation
ρ. Finally, define

w(vi) = min(wR,i, wρ,i).(5.3)

Let V be the set of all permutations of V . Our goal is to solve the minimization
problem

min
V

|V |∑
i=1

w(vi).(5.4)

6. Related mathematics. Our present context seems to be related to many
other mathematical structures, especially when we consider the 2-maximal sets on a
1-independent set of Euclidean vectors. We describe these relations here, restricting
ourselves to this case.

6.1. Finite linear spaces. Most strikingly, the set of vectors V and the set of
all planes spanned by them are an instance of a finite linear space [1]. Finite linear
spaces are a logical precursor to finite geometries; they specify an incidence relation
between points and lines such that any two points lie on a unique line, and each line
contains at least two points. In our situation, the vectors in V are the points, and
the 2-maximal sets are lines. (Formally, we must also include with the set 2-maximal
sets all pairs of vectors that do not already lie in some 2-maximal set.) The research
literature on finite linear spaces seems focused on fundamental questions of structure
and relationships, such as whether spaces with particular properties exist, or when
they may be embedded into finite affine or projective planes; algorithms over finite
linear spaces seem less studied. We have been unable to locate any notion of geometric
closures or generators such as we have described above; the idea may be new.

On the other hand, we have found reference to the plane graph used in section 3.
Finite linear spaces, and the weaker notion of partial linear spaces (in which any two
points may or may not be colinear) are naturally interpreted as hypergraphs. In
[14], Klein and Margraf restate the Erdős–Faber–Lovász conjecture (see [7]) that the
chromatic index of a linear hypergraph on v points is at most v, in terms of properties
of the intersection graph of the hypergraph. This graph is defined exactly in the same
way as our plane graph.

6.2. Ternary relations. We may consider coplanarity in Euclidean space as an
unordered ternary relation, R. Given a set of three vectors, {x, y, z}, R gives truth
if they are linearly dependent and falsity otherwise. Other work has made use of
ordered ternary relations. The theory of ordered ternary relations has been used to
provide a notion of betweenness for some time [15]. Recent applications have also
appeared in [17], which is based on a technical report [16] that provides a historical

840 ROBERT C. KIRBY AND L. RIDGWAY SCOTT

survey of the use of ordered ternary relations as a type of geometry, as does [15]. In
[15], ternary relations associated with a metric d are studied. More precisely, one can
define T (x, y, z) to hold if and only if d(x, y) + d(y, z) = d(x, z). If we take d(x, y)
to be the acute angle between the lines x and y, then T (x, y, z) is the coplanarity
relation we consider here. However, the fact that y can be viewed as between x and z
plays no significant role for us, so we have not further explored the theory of ordered
ternary relations.

6.3. Topology. Our notion of geometric closure is, at least on the surface, dif-
ferent from topological closure. The union of two 2-maximal sets need not be geomet-
rically closed (indeed, this is even beneficial, as it makes the generator much smaller
and hence the algorithm we find more efficient). Therefore, the geometrically closed
sets (and hence geometric closure) cannot be used to define a topology through closed
sets. It may be possible to define some kind of filter or neighborhood base, but we
have not pursued this further.

6.4. Matroids. As we deal heavily with linear independence (and more partic-
ularly linear dependence) among a set of vectors, it seems that there should be some
connection to matroids [21]. Matroids also provide a notion of closure. For vector
matroids, the closure involves anything that is linearly dependent on something in
the set. On the other hand, our notion of closure requires a low-dimensional linear
dependence; only linear dependence on two vectors in the set is allowed (recursively)
rather than linear dependence on any number of items. It may be possible in the
future to interpret our context as a nonstandard matroid. Doing so would likely open
up new algorithmic perspectives on the issue.

7. Conclusions and future work. Searching for linear dependence among the
entries of the reference tensor can be a powerful technique for optimizing the eval-
uation of finite element stiffness matrices. The potential for improving our current
implementation, integrating them with tools such as FFC [12, 11], and combining
geometric and binary optimization is great. On the other hand, we have left several
open issues, both practical and theoretical.

On the practical side, a more efficient implementation of the geometric search al-
gorithms in C++ would allow us to study more detailed forms. Providing an interface
to FFC would allow these optimizations to be used in practice, much as complexity-
reducing relations are now available. While these issues are fairly straightforward,
finding ways of tackling (or reformulating) the combinatorial optimization problem
discussed above will be much more challenging.

On the theoretical side, we lack understanding about the structure of the mini-
mum generator problem. If our algorithm does not always find a minimum, is finding
the minimum truly difficult? How well does our greedy algorithm approximate the
minimum? Perhaps more light will be shed on this problem by better understanding
exactly what mathematical structures we are dealing with. As we saw in section 6,
there is tantalizing similarity to finite linear spaces and matroids, among other struc-
tures. Making a more precise connection to an appropriate mathematical structure
would clarify optimal generators greatly.

REFERENCES

[1] L. M. Batten and A. Beutelspacher, The Theory of Finite Linear Spaces: Combinatorics
of Points and Lines, Cambridge University Press, Cambridge, 1993.

OPTIMIZATION OF EVALUATION OF FE MATRICES 841

[2] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva,

X. Gao, R. J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C.-C. Lam,

Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov,
Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry
models, Proc. IEEE, 93 (2005), pp. 267–292.

[3] P. Bientinesi, E. S. Quintana-Ort́ı, and R. A. van de Geijn, Representing linear algebra
algorithms in code: The FLAME application programming interfaces, ACM Trans. Math.
Software, 31 (2005), pp. 27–59.

[4] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297–301.

[5] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[6] S. Egner and M. Püschel, Automatic generation of fast discrete signal transforms, IEEE
Trans. Signal Process., 49 (2001), pp. 1992–2002.

[7] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica,
1 (1981), pp. 25–42.

[8] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, FLAME: Formal
linear algebra methods environment, ACM Trans. Math. Software, 27 (2001), pp. 422–455.

[9] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–104.

[10] R. C. Kirby, M. Knepley, A. Logg, and L. R. Scott, Optimizing the evaluation of finite
element matrices, SIAM J. Sci. Comput., 27 (2005), pp. 741–758.

[11] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Trans. Math. Software, 32
(2006), pp. 417–444.

[12] R. C. Kirby and A. Logg, Efficient compilation of a class of variational forms, ACM Trans.
Math. Software, 33 (2007), to appear.

[13] R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel, Topological optimization of the
evaluation of finite element matrices, SIAM J. Sci. Comput., 28 (2006), pp. 224–240.

[14] H. Klein and M. Margraf, On the linear intersection number of graphs, preprint, 2003,
http://arXiv.org/PS cache/math/pdf/0305/0305073.pdf.

[15] R. Mendris and P. Zlatoš, Axiomatization and undecidability results for metrizable between-
ness relations, Proc. Amer. Math. Soc., 123 (1995), pp. 873–882.

[16] K. Nehring, A Theory of Qualitative Similarity, Technical Report 10, U.C. Davis, Davis, CA,
1997; available online at http://www.econ.ucdavis.edu/working papers/97-10.pdf.

[17] K. Nehring and C. Puppe, Diversity and dissimilarity in lines and hierarchies, Math. Social
Sci., 45 (2003), pp. 167–183.

[18] R. Prim, Shortest connection networks and some generalizations, Bell System Tech. J., 36
(1957), pp. 1389–1401.

[19] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,

F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
SPIRAL: Code generation for DSP transforms, Proc. IEEE, 93 (2005), pp. 232–275 (special
issue on “Program Generation, Optimization, and Adaptation”).

[20] R. C. Whaley and J. Dongarra, Automatically tuned linear algebra software, in Proceed-
ings of SuperComputing 1998: High Performance Networking and Computing, 1998 (CD-
ROM); available online at http://www.cs.utsa.edu/∼whaley/papers/atlas sc98.ps.

[21] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math., 57 (1935),
pp. 509–533.

