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Abstract. We present a topological framework for finding low-flop algorithms for evaluating
element stiffness matrices associated with multilinear forms for finite element methods. This frame-
work relies on phrasing the computation on each element as the contraction of each collection of
reference element tensors with an element-specific geometric tensor. We then present a new concept
of complexity-reducing relations that serve as distance relations between these reference element ten-
sors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by
computing a minimum spanning tree. We present experimental results for some common multilinear
forms showing significant reductions in operation count and also discuss some efficient algorithms for
building the graph we use for the optimization.
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1. Introduction. Several ongoing projects have led to the development of tools
for automating important aspects of the finite element method, with the potential for
increasing code reliability and decreasing development time. By developing libraries
for existing languages or new domain-specific languages, these software tools allow
programmers to define variational forms and other parts of a finite element method
with succinct, mathematical syntax. Existing C++ libraries for finite elements include
DOLFIN [6, 7], Sundance [16, 17] and deal.II [2]. These rely on some combination
of operator overloading and object orientation to present a high-level syntax to the
user. Other projects have defined new languages with their own grammar and syntax,
such as FreeFEM [20], GetDP [5], and Analysa [1]. Somewhere between these two
approaches is the FEniCS Form Compiler, FFC [13, 15] developed primarily by the
second author. This Python library relies on operator overloading to define varia-
tional forms, but rather than relying on the Python interpreter to evaluate the forms,
FFC generates low-level code that can be compiled into other platforms, especially
DOLFIN.

While these tools are effective at exploiting modern software engineering to pro-
duce workable systems, we believe that additional mathematical insight will lead to
even more powerful codes with more general approximating spaces and more powerful
algorithms. For one, work by the first author [9, 10] shows how the Ciarlét definition
of the finite element leads to a code for arbitrary order elements of general type. This
code, FIAT, is used by FFC and is currently being integrated with Sundance. Sec-
ond, the first three authors together with Knepley [11, 12], studied how to efficiently
(in the sense of operation count) evaluate local stiffness matrices for finite element
methods. All entries of the local stiffness matrix for an element e may be expressed
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as the contraction of some reference element tensor with a “geometric” tensor. To
build the n × n stiffness matrix for one element, one must contract this tensor with
n2 reference element tensors. We saw that there are relations between many of these
tensors (equality, colinearity, small Hamming distance) that, if exploited, lead to an
algorithm with significantly fewer floating point operations.

In [11], we devised a crude algorithm that searched for and exploited these
dependencies, generating simple Python code for evaluating the local stiffness matrix
for the Laplacian on triangles given the geometric tensor. In this paper, we set the
optimization process in a more abstract graph/topological context. In Section 2, we
express the calculation for some finite element operators as tensor contractions. These
ideas are more fully developed in [13], where the first two authors show how this tensor
structure may be used to implement a compiler capable of generating the reference
tensors and hence code for building the stiffness matrices for general multilinear forms.
In Section 3, introduce the idea of complexity-reducing relations, which are a kind of
distance relations among the tensors that serve to model the cost of complexity in
computing the contractions. Using these ideas, we show how to derive an algorithm
for performing the computation that is optimal in a certain sense. We demonstrate the
reduction in operation count for several finite element operations in Section 4. After
this, we show how this efficient algorithm may be derived more efficiently through
some search procedures in Section 5 and make some conclusions and remarks about
ongoing work in Section 6.

2. Finite element formulation. The finite element method is a general method-
ology for the discretization of differential equations. A linear (or linearized) differential
equation for the unknown function u is expressed in the form of a canonical variational
problem and the discrete approximation U of u is sought as the solution of a discrete
version of the variational problem [4, 3]: Find U ∈ V such that

a(v, U) = L(v) ∀v ∈ V̂ , (2.1)

where (V̂ , V ) is a pair of suitable discrete (typically piecewise polynomial) function
spaces, a : V̂ × V → R a bilinear form and L : V̂ → R a linear form.

The variational problem (2.1) corresponds to a linear system Aξ = b for the
expansion coefficients ξ ∈ R

M of the discrete function U in a basis {ϕi}
M
i=1 for V .

If {ϕ̂i}
M
i=1 is the corresponding basis for V̂ , the entries of A and b are given by

Aij = a(ϕ̂i, ϕj) and bi = L(ϕ̂i) respectively. When we consider consider general
multilinear forms below, the multilinear form a is represented by a tensor A.

2.1. Multilinear forms. Let now {Vi}
r
i=1 be a given set of discrete function

spaces defined on a triangulation T = {e} of Ω ⊂ R
d. We consider a general multi-

linear form a defined on the product space V1 × V2 × · · · × Vr:

a : V1 × V2 × · · · × Vr → R. (2.2)

Typically, r = 1 (linear form) or r = 2 (bilinear form), but forms of higher arity appear
frequently in applications and include variable coefficient diffusion and advection of
momentum in the incompressible Navier–Stokes equations.

Let {ϕ1i }
M1

i=1, {ϕ
2
i }

M2

i=1, . . . , {ϕ
r
i }

Mr

i=1 be bases of V1, V2, . . . , Vr and let i = (i1, i2, . . . , ir)
be a multiindex. The multilinear form a then defines a rank r tensor given by

Ai = a(ϕ1i1 , ϕ
2
i2
, . . . , ϕrir ). (2.3)
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In the case of a bilinear form, the tensor A is a matrix (the stiffness matrix), and in
the case of a linear form, the tensor A is a vector (the load vector).

To compute the tensor A by assembly, we need to compute the element tensor Ae

on each element e of the triangulation T of Ω [13]. Let {ϕe,1i }
n1

i=1 be the restriction to

e of the subset of {ϕ1i }
M1

i=1 supported on e and define the local bases on e for V2, . . . , Vr
similarly. The rank r element tensor Ae is then given by

Ae
i = ae(ϕ

e,1
i1

, ϕ
e,2
i2

, . . . , ϕ
e,r
ir

). (2.4)

2.2. Evaluation by tensor representation. The element tensor Ae can be
efficiently computed by representing Ae as a special tensor product. If the multilinear
form a is given by an integral over the domain Ω, then each entry Ae

i of Ae is given
by an integral over the element e. By a change of variables and a series of linear
transformations, we may rewrite this integral as an integral over a reference element
E. In particular, when the map from the reference element E is affine, the linear
transformations of derivatives can be moved outside of the integral to obtain a repre-
sentation of the element tensor Ae as a tensor product of a constant tensor A0 and a
tensor Ge that varies over the set of elements,

Ae
i = A0iαG

α
e , (2.5)

or more generally a sum Ae
i = A

0,k
iα Gα

e,k of such tensor products, where i and α are
multiindices and we use the convention that repetition of an index means summation
over that index. We refer to A0 as the reference tensor and to Ge as the geometric
tensor. The rank of the reference tensor is the sum of the rank r = |i| of the element
tensor and the rank |α| of the geometric tensor Ge. As we shall see, the rank of the
geometric tensor depends on the specific form.

In [13], we present an algorithm that computes the tensor representation (2.5) for
fairly general multilinear forms. This algorithm forms the foundation for the FEniCS
Form Compiler, FFC [15].

As an example, we consider here the tensor representation of the element tensor
Ae for Poisson’s equation −∆u(x) = f(x) with homogeneous Dirichlet boundary
conditions on a domain Ω. The bilinear form a is here given by a(v, u) =

∫

Ω
∇v(x) ·

∇u(x) dx and the linear form L is given by L(v) =
∫

Ω
v(x)f(x) dx. By a change of

variables using an affine map Fe : E → e, we obtain the following representation of
the element tensor Ae:

Ae
i =

∫

e

∇ϕe,1i1 (x) · ∇ϕe,2i2 (x) dx

= detF ′e
∂Xα1

∂xβ

∂Xα2

∂xβ

∫

E

∂Φ1i1(X)

∂Xα1

∂Φ2i2(X)

∂Xα2

dX = A0iαG
α
e ,

(2.6)

where A0iα =
∫

E

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX, Gα
e = detF ′e

∂Xα1

∂xβ

∂Xα2

∂xβ
, and Φj

ij
= ϕ

e,j
ij
◦ Fe

for j = 1, 2. We see that the reference tensor A0 is here a rank four tensor and the
geometric tensor Ge is a rank two tensor. In [11], we saw that dependencies frequently
occur between A0i and A0j for many multiindices i, j that can reduce the overall cost
of computation.
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3. Optimizing stiffness matrix evaluation.

3.1. An abstract optimization problem. Since all of the computation to
evaluate a local stiffness matrix for a multilinear form is tensor contraction, we may
just as easily consider them as vectors and contraction as the Euclidean inner product.
To formalize the optimization process then, we let Y = {yi}ni=1 be a collection of n
vectors in R

m. In the most general case, this is a collection rather than a set, as
some of the items in Y may be identical. Corresponding to Y , we must find a process

for computing for arbitrary g ∈ R
m the collection of items {

(

yi
)t
g}ni=1. Throughout

this paper, we will measure the cost of this as the total number of multiply-add pairs
(MAPs) required to complete all the dot products. This cost is always bounded by nm,
but we hope to improve on that. This could be alternatively formalized as building
an abstract control-flow graph for performing the dot products that is equivalent to
the naive process but contains a minimal number of nodes. Our techniques, however,
rely on structure that is not apparent to traditional optimizing compilers, so we prefer
the present formulation.

We seek out ways of optimizing the local matrix evaluation that rely on notions
of distance between a few of the underlying vectors. The Euclidean metric is not
helpful here; we focus on other, discrete measures of distance such that if y and z are
close together, then ytg is easy to compute once ztg is known (and vice versa). Many
of the dependencies we considered in [11] were between pairs of vectors — equality,
colinearity, and Hamming distance. Here, we develop a theory for optimizing the
evaluation of finite element matrices under binary relations between the members of
the collection. This starts by introducing some notions of distance on the collection of
vectors and finds an optimized computation with respect to those notions by means
of a minimum spanning tree.

3.2. Complexity-reducing relations. Definition 3.1. Let ρ : Y × Y →
[0,m] be symmetric. We say that ρ is complexity-reducing if for every y, z ∈ Y

with ρ(y, z) ≤ k < m, ytg may be computed using the result ztg in no more than k

multiply-add pairs.

The topological structure induced by complexity-reducing relations may not be a
metric space, as we do not require a triangle inequality to hold. We shall remark on
this further below.

Example 1. Let e+(y, z) = d(1 − δy,z), where δy,z is the standard Kronecker

delta. Then, e+ is seen to be complexity-reducing, for if e+(y, z) = 0, then ytg = ztg

for all g ∈ R
m and hence the former requires no arithmetic once the latter is known.

Similarly, we can let e−(u, v) = e+(u,−v), for if u = −v, then computing utg from

vtg requires only a sign flip and no further floating point operations.

Example 2. Let

c(y, z) =







0, y = z

1, y = αz for someα ∈ R, α 6= 0, 1
m, otherwise

(3.1)

Then c is complexity-reducing, for ytg = (αz)tg = α(ztg), so ytg may be computed

with one additional floating point operation once ztg is known.

Example 3. Let H+(y, z) be the Hamming distance, the number entries in which
y and z differ. Then H+ is complexity-reducing. If H+(y, z) = k, then y and z differ

in k entries, so the difference y− z has only k nonzero entries. Hence, (y− z)tg costs
k multiply-add pairs to compute, and we may write ytg = (y − z)tg + ztg. By the

same argument, we can let H−(y, z) = H+(y,−z).
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Theorem 3.2. Let ρ1 and ρ2 be complexity-reducing relations. Define

ρ(y, z) = min(ρ1(y, z), ρ2(y, z)). (3.2)

Then ρ is a complexity-reducing relation.

Proof. Pick y, z ∈ Y , let 1 ≤ i ≤ 2 be such that ρ(y, z) = ρi(y, z) and let
ρi(y, z) ≡ k. But ρi is a complexity-reducing relation, so for any g ∈ R

m, ytg may
be computed in no more than k = ρ(y, z) multiply-add pairs. Hence ρ is complexity-
reducing.

This simple result means that we may consider any finite collection of complexity-
reducing relations (e.g. colinearity together with Hamming distance) as if they were
a single relation for the purpose of finding an optimized computation in the later
discussion.

Definition 3.3. If ρ is a complexity-reducing relation defined as the minimum

over a finite set of complexity-reducing relations, we say that it is composite. If it is
not, we say that it is simple.

Remark 1. To see that not all complexity-reducing relations are metrics, it is

easy to find a complexity-reducing relation that is the minimum over two metrics that

violates the triangle inequality. To see this, let ρ(y, z) = min(H+(y, z), c(y, z)). It

is not hard to show that H+ and c are both metrics. If we take y = (1, 2, 2)t and
z = (0, 4, 4)t, then ρ(y, z) = 3 since the vectors are neither colinear nor share any

common entries. However, if we let x = (0, 2, 2)t, then ρ(y, x) = 1 since the vectors

share two entries and ρ(x, z) = 1 by colinearity. Hence, ρ(y, z) > ρ(y, x) + ρ(x, z),
and the triangle inequality fails.

Remark 2. Later, we will put all of the vectors into a graph with weights given

by the values of a complexity-reducing relation. Computing all-to-all shortest paths in

this graph would provide a metric provided that ρ(y, z) 6= 0 whenever y 6= z. However,

this is by no means necessary.

3.3. Finding an optimized computation. Having defined complexity-reducing
relations and given several examples, we now show how they may be used to deter-
mine an optimized evaluation of the stiffness matrix. We shall work in the context of
a single complexity-reducing relation ρ, which may be composite.

In order to compute {(yi)tg}ni=1, we would like to pick some yi ∈ Y and compute
(yi)tg. Then, we want to pick some yj that is very close to yi under ρ and then
compute (yj)tg. Then, we pick some yk that is very close to either yi or yj and
compute that dot product. So, this process continues until all the dot products have
been computed. Moreover, since the vectors Y depend only on the variational form
and finite element space and not the mesh or parameters, it is possible to do this
search once offline and generate low-level code that will exploit these relations. We
first formalize the notion of finding the optimal computation and then how the code
may be generated.

We introduce a weighted, undirected graph G = (Y,E) where Y is our collection
of vectors defined above. Our graph is completely connected; that is, every pair of
vectors yi, yj are connected by an edge. The weight of this edge is defined to be
ρ(yi, yj). We may think of walking along the edge from yi to yj as using the dot
product (yi)tg to compute (yj)tg. If ρ is composite, it will be helpful to know later
which underlying relation gave the minimum value used for ρ. So, suppose that
ρ(y, z) = min{ρi(y, z)}

R
i=1. For any fixed y, z, let %(y, z) be a in integer in [1, R] such

that ρ%(y,z)(y, z) = ρ(y, z). In addition to weights, we thus associate with each edge
{yi, yj} the entity %(yi, yj).
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A standard graph-theoretic object called a minimum spanning tree is exactly
what we need [14]. A spanning tree, which we shall denote (Y,E ′) is a subgraph that
satisfies certain properties. First, it contains all of the n nodes of the original graph.
Second, (Y,E′) is connected. Finally, E′ has n− 1 edges, so that there are no cycles
(thus it is a tree). Now, there are possibly many spanning trees for a given graph.
Every spanning tree has a weight associated with it that is the sum of the weights
of its edges. A minimum spanning tree is a spanning tree such that the sum of the
edge weights is as small as possible. Minimum spanning tree algorithms start with
a particular node of the graph, called the root. Regardless of which root is chosen,
minimum spanning tree algorithms will generate trees with exactly the same sum of
edge weights.

While technically a minimum spanning tree is undirected, we can think of it as
being a directed graph with all edges going away from the root. Such a notion tells
us how to compute all of the dot products with minimal operations with respect to
ρ. We start with the root node, which we assume is y0, and compute (y0)tg. Then,
for each of the children of y0 in the tree, we compute the dot products with g using
the result of (y0)tg. Then, we use the dot products of the children to compute the
dot products of each of the children’s children, and so on. This is just a breadth-first
traversal of the tree. A depth-first traversal of the tree would also generate a correct
algorithm, but it would likely require more motion of the computed results in and out
of registers at run-time.

The total number of multiply-add pairs in this process is m for computing (y0)tg
plus the sum of the edge weights of (Y,E ′). As the sum of edge weights is as small as
it can be, we have a minimum-cost algorithm for computing {(yi)tg}ni=1 with respect
to ρ for any g ∈ R

m. On the other hand, it is not a true optimal cost as one could
find a better ρ or else use relations between more than two vectors (say three coplanar
vectors). One other variation is in the choice of root vector. If, for example some
yi has several elements that are zero, then it can be dotted with g with fewer than
m multiply add pairs. Hence, we pick some ȳ ∈ Y such that the number of nonzero
entries is minimal to be the root. We summarize these results in a theorem:

Theorem 3.4. Let G = (Y,E) be defined as above and let g ∈ R
m be arbitrary.

The total number of multiply-add pairs needed to compute {(yi)tg}ni=1 is no greater

than m′ +w, where m′ is the minimum number of nonzero entries of a member of Y

and w is the weight of a minimum spanning tree of G

The overhead of walking through the tree at runtime would likely outweigh the
benefits of reducing the floating point cost. We can instead traverse the tree and
generate low-level code for computing all of the dot products - this function takes
as an argument the vector g and computes all of the dot products of Y with g. An
example of such code was presented in [11].

3.4. Comparison to spectral elements. Our approach is remarkably differ-
ent than the spectral element method. In spectral element methods, one typically
works with tensor products of Lagrange polynomials over logically rectangular do-
mains. Efficient algorithms for evaluating the stiffness matrix or its action follow
naturally by working dimension-by-dimension. While such decompositions are possi-
ble for unstructured shapes [8], these are restricted to specialized polynomial bases.
On the other hand, our approach is blind both to the element shape and kind of
approximating spaces used. While spectral element techniques may ultimately prove
more effective when available, our approach will enable some level of optimization
in more general cases, such as Raviart-Thomas-Nedelec [21, 22, 18, 19] elements on
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Table 4.1

Element matrix indices and associated tensors (the slice A0
i· for each fixed index i) displayed

as vectors for the Laplacian on triangles with quadratic basis functions. All vectors are scaled by six
so they appear as integers.

index vector

(0, 0) 3 3 3 3

(0, 1) 1 0 1 0

(0, 2) 0 1 0 1

(0, 3) 0 0 0 0

(0, 4) 0 -4 0 -4

(0, 5) -4 0 -4 0

(1, 0) 1 1 0 0

(1, 1) 3 0 0 0

(1, 2) 0 -1 0 0

(1, 3) 0 4 0 0

(1, 4) 0 0 0 0

(1, 5) -4 -4 0 0

index vector

(2, 0) 0 0 1 1

(2, 1) 0 0 -1 0

(2, 2) 0 0 0 3

(2, 3) 0 0 4 0

(2, 4) 0 0 -4 -4

(2, 5) 0 0 0 0

(3, 0) 0 0 0 0

(3, 1) 0 0 4 0

(3, 2) 0 4 0 0

(3, 3) 8 4 4 8

(3, 4) -8 -4 -4 0

(3, 5) 0 -4 -4 -8

index vector

(4, 0) 0 0 -4 -4

(4, 1) 0 0 0 0

(4, 2) 0 -4 0 -4

(4, 3) -8 -4 -4 0

(4, 4) 8 4 4 8

(4, 5) 0 4 4 0

(5, 0) -4 -4 0 0

(5, 1) -4 0 -4 0

(5, 2) 0 0 0 0

(5, 3) 0 -4 -4 -8

(5, 4) 0 4 4 0

(5, 5) 8 4 4 8

tetrahedra.

4. Experimental results. Here, we show that this optimization technique is
successful at generating low-flop algorithms for computing the element stiffness ma-
trices associated with some standard variational forms. First, we consider the bilinear
forms for the Laplacian and advection in one coordinate direction for tetrahedra. Sec-
ond, we study the trilinear form for the weighted Laplacian. In all cases, we generated
the element tensors using FFC, the FEniCS Form Compiler [13, 15], which in turn
relies on FIAT [9, 10] to generate the finite element basis functions and integration
rules. Throughout this section, we let d = 2, 3 refer to the spatial dimension of Ω.

4.1. Laplacian. We consider first the standard Laplacian operator

a(v, u) =

∫

Ω

∇v(x) · ∇u(x) dx. (4.1)

We gave a tensor product representation of the local stiffness matrix in equation (2.6).
The indices of the local stiffness matrix and the associated tensors are shown in
Table 4.1.

Because the element stiffness matrix is symmetric, we only need to build the tri-
angular part. Even without any optimization techniques, this naturally leads from
computing |P |2 contractions at a cost of d2 multiply-add pairs each to

(

|P |+1
2

)

contrac-
tions, where |P | is the dimension of the polynomial space P . Beyond this, symmetry
opens up a further opportunity for optimization. For every element e, Ge is symmetric.
The equality of its off-diagonal entries means that the contraction can be performed
in
(

d+1
2

)

rather than d2 entries. This is readily illustrated in the two-dimensional case.
We contract a symmetric 2× 2 tensor G with an arbitrary 2× 2 tensor K:

G : K =

(

G11 G12
G12 G22

)

:

(

K11 K12

K21 K22

)

= G11K11 +G12(K12 +K21) +G22K22

= G̃tK̂,

(4.2)
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Table 4.2

Element matrix indices and associated tensors (the slice A0
i· for each fixed index i) for the

Laplacian on triangles with quadratic basis functions after transformation to make use of symmetry.

index vector

(0, 0) 3 6 3

(0, 1) 1 1 0

(0, 2) 0 1 1

(0, 3) 0 0 0

(0, 4) 0 -4 -4

(0, 5) -4 -4 0

(1, 1) 3 0 0

(1, 2) 0 -1 0

(1, 3) 0 4 0

(1, 4) 0 0 0

(1, 5) -4 -4 0

index vector

(2, 2) 0 0 3

(2, 3) 0 4 0

(2, 4) 0 -4 -4

(2, 5) 0 0 0

(3, 3) 8 8 8

(3, 4) -8 -8 0

(3, 5) 0 -8 -8

(4, 4) 8 8 8

(4, 5) 0 8 0

(5, 5) 8 8 8

where G̃t = (G11, G12, G22) and K̂t = (K11,K12 +K21,K22).

This simple calculation implies a linear transformation ·̂ from R
d×d into R

(d+1

2 )

obtained by taking the diagonal entries of the matrix together with the sum of the
off-diagonal entries, that may be applied to each reference tensor, together with an
associated mapping ·̃ on symmetric tensors that just takes the symmetric part and
casts it as a vector. Hence, the overall cost of computing an element stiffness matrix
before optimizations goes from |P |2d2 to

(

|P |+1
2

)(

d+1
2

)

.

An interesting property of this transformation of the reference tensor is that
it is contractive for the complexity-reducing relations we consider. The Hamming
distance between two items under ·̂ is bounded by the Hamming distance between
the items. More precisely, ρ(ŷ, ẑ) ≤ ρ(y, z). Furthermore, if items are colinear before
transformation, their images will be as well. Hence, for the optimizations we consider,
we will not destroy any dependencies. Moreover, the transformation may introduce
additional dependencies. For example, before applying the transformation, entries
(0,1) and (1,5) are not closely related by Hamming distance or colinearity, as seen in
Table 4.1. However, after the transformation, we see that the same items in Table 4.2
are colinear. Other examples can be found readily.

We optimized the evaluation of the Laplacian for Lagrange finite elements of
degrees one through three on triangles and tetrahedra using a composite complexity-
reducing relation with H+, H−, and c defined in Examples 2 and 3. We performed
the optimization both with and without symmetry. The results are shown in Ta-
bles 4.3 and 4.4. Figure 4.1 shows a diagram of the minimum spanning tree computed
by our code for the Laplacian on quadratic elements using symmetry. Each node
of the graph is labeled with a pair (i, j) indicating the matrix entry (the vectors
themselves are displayed in Table 4.2), and the edges are labeled with the associated
weights. Simple inspection reveals that the sum of the edge weights is 14, which when
added to 3 to compute the dot product for the root node, agrees with the entry for
quadratics in Table 4.4.

These techniques are successful in reducing the flop count, down to less than one
operation per entry on triangles and less than two on tetrahedra for quadratic and
cubic elements. We showed in [11] for low degree elements on triangles that going from
standard numerical quadrature to tensor contractions led to a significant reduction in
actual run-time for matrix assembly. From the tensor contractions, we got another
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Table 4.3

Number of multiply-add pairs in the optimized algorithm for computing the Laplacian element
stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree one through three
without using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 9 4 36 13
2 36 4 144 25
3 100 4 400 74

degree n m nm MAPs
1 16 9 144 43
2 100 9 900 205
3 400 9 3600 864

Table 4.4

Number of multiply-add pairs in the optimized algorithm for computing the Laplacian element
stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree one through three
using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 6 3 18 9
2 21 3 63 17
3 55 3 165 46

degree n m nm MAPs
1 10 6 60 27
2 55 6 330 101
3 210 6 1260 370

good speedup by simply omitting multiplication by zeros. From this, we only gained
a modest additional speedup by using our additional optimizations. However, this is
most likely due to the relative costs of memory access and floating point operations.
We have to load the geometric tensor from memory and we have to write every entry
of the matrix to memory. Hence n+m in the tables gives a lower bound on memory
access for computing the stiffness matrix. Our optimizations lead to algorithms for
which there are a comparable number of arithmetic and memory operations. Hence,
our optimization has succeeded in reducing the cost of computing the local stiffness
matrix to a small increment to the cost of writing it to memory.

4.2. Advection in one coordinate direction. Now, we consider constant
coefficient advection aligned with a coordinate direction

a(v, u) =

∫

Ω

v(x)
∂u(x)

∂x1
dx. (4.3)

This is part of the operator associated with constant coefficient advection in some
arbitrary direction — optimizing the other coordinate directions would give similar
results. These results are shown in Table 4.5. Again, our optimization generates
algorithms for which the predominant cost of computing the element matrix is writing
it down, as there is significantly fewer than one floating point cycle per matrix entry
in every case.

4.3. Weighted Laplacian. Our final operator is the variable coefficient Lapla-
cian:

aw(v, u) =

∫

Ω

w(x)∇v(x) · ∇u(x) dx. (4.4)

This form may be viewed as a trilinear form a(w, v, u) in which w is the projec-
tion of the coefficient into the finite element space. For many problems, this can be
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Table 4.5

Number of multiply-add pairs in the optimized algorithm for computing the coordinate-advection
element stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree one through
three.

triangles tetrahedra

degree n m nm MAPs
1 9 2 18 4
2 36 2 72 22
3 100 2 200 59

degree n m nm MAPs
1 16 3 48 9
2 100 3 300 35
3 400 3 1200 189

performed without a loss in order of convergence. For nonlinear problems, we will
have to reassemble this form at each nonlinear iteration, so it is an important step to
optimize. The reference tensor is

A0iα =

∫

E

Φα1
(X)

∂Φi1(X)

∂Xα2

∂Φi2(X)

∂Xα3

dX (4.5)

and the geometric tensor is

Gα
e = wα1

detF ′e
∂Xα2

∂xβ

∂Xα3

∂xβ
. (4.6)

Note that the geometric tensor is the outer product of the geometric tensor for the
constant coefficient Laplacian, which we shall denote (GL)e with the coefficients of
the weight function. Unlike the constant coefficient case, the amount of arithmetic
per entry in the element stiffness matrix grows with the polynomial degree.

We could simply proceed with the optimization as we did for other forms — the
element tensor is just a collection of vectors that will have to be dotted into Ge for
each element in the mesh, but now the dot products are more expensive since the
vectors are longer. In this case, Ge must be explicitly formed for each element (this
costs |P |d2 once (GL)e is formed). On the other hand, we could use the decomposition
of Ge into (GL)e and the coefficient vector wk and do the contractions in stages. For
example, we could organize the contraction as

Ae
i =

(

A0i,(α1,α2,α3)

(

GL
)(α2,α3)

e

)

wα1
, (4.7)

that is, for each of the |P |2 entries of the stiffness matrix, we compute |P | contractions
of d× d tensors with (GL)e. This is a similar optimization problem as the Laplacian,
but with |P | times more elements to optimize over. After we do this set of computa-
tions, we must compute |P |2 dot products with the coefficient vector wk. Note that
the contractions with (GL)e may be optimized, but the resulting vectors to dot with
wk will not be known until run-time and must be computed at full cost. Hence, a
lower bound for this approach is |P | multiply-add pairs per entry (assuming that the
contractions with GL were absolutely free). On the other hand, one could contract
with the coefficient first to give an array of |P |2 tensors of size d×d, and then contract
each of these with (GL)e. As before, the first step can be optimized, but the second
step cannot.

In any of these cases, we may use the same transformations to exploit symmetry
as we did in the constant coefficient case. Since Gα1,α2,α3

e = Gα1,α3,α2
e , we may view
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Table 4.6

Number of multiply-add pairs in the optimized algorithm for computing the weighted Laplacian
element stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree one through
three using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 6 9 54 27
2 21 18 378 218
3 55 30 1650 1110

degree n m nm MAPs
1 10 24 240 108
2 55 60 3300 1650
3 210 120 25200 14334

Table 4.7

Number of multiply-add pairs in the optimized algorithm for performing all of the contractions

with (GL)e in the weighted Laplacian on triangles and tetrahedra first, resulting in
(|P |+1

2

)

arrays
of length |P | to contract with wk.

triangles tetrahedra

degree n m nm MAPs
1 18 3 54 9
2 126 3 378 115
3 550 3 1650 683

degree n m nm MAPs
1 40 6 240 27
2 550 6 3300 693
3 4200 6 25200 7021

each slice A0i· of the reference tensor as an array of |P | tensors of size d× d and apply
the transformation to each of these. If we fully form Ge, this reduces the cost from
|P |d2 to |P |

(

d+1
2

)

. In all of our experiments, we made use of this.
In Table 4.6, we see the cost of computing the weighted Laplacian by the first

approach (optimizing directly the tensor product Ae
i = A0iαG

α
e ). While the opti-

mizations are not as successful as for the constant coefficient operators, we still get
reductions of 30%-50% in the operation counts.

When we perform the contraction in stages, we find more dependencies (for ex-
ample, the slices of two of the tensors could be colinear although the entire tensors
are not). We show the cost of performing the optimized stage for contracting with
(GL)e first in Table 4.7 and for contracting with wk first in Table 4.8.

In order to get a fair comparison between these approaches, we must factor in the
additional costs of building Ge or performing the second stage of contraction. Once
(GL)e is built and symmetrized, it costs an additional |P |

(

d+1
2

)

multiply-add pairs
to construct Ge. If we optimize the computation of contracting with (GL)e first, we
do not have to build Ge, but we must perform a dot product with wk for each entry
of the matrix. This costs |P | per contraction with

(

|P |+1
2

)

entries in the matrix. If

we optimize the contraction with each wk first, then we have an additional
(

|P |+1
2

)

contractions with (GL)e at a cost of
(

d+1
2

)

each. We expect that which of these
will be most effective must be determined (automatically) on a case-by-case basis.
Tables 4.10 and 4.9 show the comparisons for the first approach (labeled Ge), the
second approach (labeled (GL)e) and the third approach (labeled wk) by indicating
the cost of the optimized computation plus the additional stages of computation. In
most of these cases, contracting with the coefficient first leads to the lowest total cost.

5. Optimizing the optimization process. Since our graph (Y,E) is com-
pletely connected, we have |E| = O(|Y |2) and our optimization process requires com-
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Table 4.8

Number of multiply-add pairs in the optimized algorithm for performing all of the contractions

with the coefficient in the weighted Laplacian on triangles and tetrahedra first, resulting in
(|P |+1

2

)

arrays of length
(

d+1

2

)

= 6 to contract with (GL)e.

triangles tetrahedra

degree n m nm MAPs
1 18 3 54 7
2 63 6 378 138
3 165 10 1650 899

degree n m nm MAPs
1 60 4 240 9
2 330 10 3300 465
3 1260 20 25200 7728

Table 4.9

Comparing the total number of multiply-add pairs for fully forming Ge, contracting with (GL)e
first, and contracting with wk first on triangles.

Ge (GL)e first wk first
degree MST additional total MST additional total MST additional total
1 27 3*3 38 9 6*3 27 7 6*3 25
2 218 3*6 236 115 21*6 241 138 21*3 201
3 1110 3*10 1140 683 55*10 1233 899 55*3 1064

plexity that is at least quadratic in the number of entries in the element stiffness
matrix. In this section, we show how certain useful complexity-reducing relations
may be evaluated over all of Y in better than quadratic time, then discuss how we
may build a sparse graph (Y,E ′) with |E| = O(|Y |) that will admit a much more
efficient optimization process. Even though this process must be run only once per
form and element (say the Laplacian with quadratics on triangles), the quadratic al-
gorithm can become very time consuming and challenge a single computer’s resources
for forms of high arity using high degree polynomials on tetrahedra.

5.1. Search algorithms. Before discussing how we may evaluate some of these
complexity-reducing relations over the collection Y in better than quadratic time, we
first describe some basic notation we will use for hash tables throughout this section
and the next.

Hash tables are standard data structures [14] that associate each member of a
set of keys to some value, possibly drawn from another set of objects. The important
point about hash tables is that the basic operations of setting and getting values are
expected to be independent of the number of entries in the table (expected constant
time access). Many higher-level programming languages have library support or built-
in features supporting hash tables (many implementations of the standard template
library in C++ include hash tables, and scripting languages such as Python and Perl
have them built in as primitive types).

We begin by establishing some notation for the basic operations we use. If a is a
key of table T , then we find the value associated with a by T [a]. If there is no value
associated with a (that is, if a is not a key of T , we may update T by adding a key
a associated with value b by the notation T [a] ← b. We use the same notation to
indicate setting a new value to an existing key.

As before, we label the vectors yi for 1 ≤ i ≤ n. We want to partition the labels
into a set of subsets E such that for each E ∈ E , the vectors associated with each
label in E are equal. Moreover, if two vectors are equal, then their labels must belong
to the same E. This is easily accomplished by setting up a hash table whose keys
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Table 4.10

Comparing the total number of multiply-add pairs for fully forming Ge, contracting with (GL)e
first, and contracting with wk first on tetrahedra.

Ge (GL)e first wk first
degree MST additional total MST additional total MST additional total
1 108 6*4 132 27 10*4 67 9 10*6 69
2 1650 6*10 1710 693 55*10 1234 465 55*6 795
3 14334 6*20 14454 7021 210*20 11221 7728 210*6 8988

are vectors and whose values are subsets of the integers 1 ≤ i ≤ n. This process is
described in Algorithm 1

Algorithm 1 Determining equality among vectors

E an empty table mapping vectors to subsets of {i}ni=1.
for all 1 ≤ i ≤ n do

if yi is a key of E then

E[yi]← E[vi] ∪ {i}
else if −yi is a key of E then

E[−yi]← E[−yi] ∪ {i}
else

E[yi]← {i}
end if

end for

Floating point arithmetic presents a slight challenge to hashing. Numbers which
are close together (within some tolerance) that should be treated as equal must be
rounded to so that they are indeed equal. Hashing relies on a function that maps
items into a set of integers (the ”hash code”). These functions are discontinuous
and sensitive to small perturbations. For most numerical algorithms in floating point
arithmetic, we may define equality to be ”near equality”, but hash tables require
us to round or use rational arithmetic before any comparisons are made. We have
successfully implemented our algorithms in both cases.

As an alternative to hashing, one could form a binary search tree or sort the
vectors by a lexicographic ordering. These would rely on a more standard ”close to
equal” comparison operation, but only run in O(mn log (mn)) time. So, for large
enough data sets, hashing will be more efficient.

We may similarly partition the labels into a set of subsets C such that for each
C ∈ C, the vectors associated with the labels in C are colinear. Similarly, if two
vectors are colinear, then their labels must belong to the same C. This process may
be performed by constructing the collection of unit vectors Â, with ŷi =

yi
‖yi‖

for each

1 ≤ i ≤ n for some norm ‖ · ‖ and using Algorithm 1 on Â.

Finding vectors that are close together in Hamming distance is more subtle. At
worst, the cost is O(mn2), as we have to compare every entry of every pair of vectors.
However, we may do this in expected linear time with some assumptions about Y .
We first describe the algorithm, then state the conditions under which the algorithm
performs in worse than linear time.

Our vectors each have m components. We start by forming m empty hash tables.
Each Hi will map numbers that appear in the ith position of any vector to the labels
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of vectors that have that entry in that position. This is presented in Algorithm 2, in
which yij denotes the jth entry of yi.

Algorithm 2 Mapping unique entries at each position to vectors containing them

for all 1 ≤ i ≤ d do

Hi an empty table mapping numbers to sets of vector labels from {i}ni=1
end for

for all 1 ≤ i ≤ n do

for all 1 ≤ j ≤ m do

if yij is a key of Hj then

Hj [y
i
j ]← Hj [y

i
j ] ∪ {i}

else

Hj [y
i
j ] := {i}

end if

end for

end for

This process runs in expected O(nm) time. From these tables, we can construct
a table that gives the Hamming distance between any two vectors, as seen in Algo-
rithm 3. This algorithm counts down from d each time it discovers an entry that two
vectors share. Our algorithm reflects the symmetry of the Hamming distance.

Algorithm 3 Computing Hamming distances efficiently

D an empty table
for all 1 ≤ i ≤ n do

D[i] an empty table
end for

for all 1 ≤ i ≤ m do

for all a in the keys of Hi do

for all unique combinations k, ` of labels in Hi[a] do
α := min(k, `), β := max(k, `)
if D[α] has a key β then

D[α][β]← D[α][β]− 1
else

D[α][β] := m− 1
end if

end for

end for

end for

On output, for 1 ≤ i < j ≤ n, if D[i][j] has no entry, the distance between vi

and vj is m. Otherwise, the table contains the Hamming distance between the two
vectors.

Regarding complexity, there is a double loop over the entries of each Hi. Hence,
the algorithm is quadratic in the maximum number of vectors that share the same
entry at the same location. Presumably, this is considerably less than n on most data
sets.

5.2. Using a sparse graph. If we create a graph (Y, Ẽ) with significantly fewer
edges than (Y,E), we may be able to get most of the reduction in operation count
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while having a more efficient optimization process. For example, we might choose to
put a cutoff on ρ, only using edges that have a large enough complexity-reduction.
So, we can define the set of edges being

Ek = {{yi, yj} : ρ(yi, yj) ≤ k} (5.1)

For example, if we use Algorithms 2 and 3 to evaluate H+ over all pairs from Y ,
then we are using ρ = H+ and k = m − 1. Also, note that our structure D encodes
a sparse graph. That is, the vectors of Y are the nodes of the graph, the neighbors
of each yi are simply the keys of D[yi], and the edge weight between some yi and
neighbor yj is D[yi][jj ]. It is not hard to move from this table into whatever data
structure is used for graphs.

Then, we could add colinearity or other complexity-reducing relations to this
graph. If we use Algorithm 1 on the unit vectors to determine sets of colinear vectors,
we can update the the graph by either adding edges or updating the edge weights for
each pair of colinear vectors.

If |Ek| = O(|Y |), then computing a minimum spanning tree will require only
O(n log n) time rather than O(n2 log n). However, there is no guarantee that (Y,Ek)
will be a connected graph. Some vectors might not have close neighbors, or else
some subgraphs do not connect with each other. An optimized algorithm can still be
obtained by finding the connected components of the (Y,Ek) and finding a minimum
spanning tree for each component. Then, the total cost of the computation is m

times the number of connected components plus the sum of the weights of each of the
minimum spanning trees.

6. Conclusion and ongoing work. We have developed a general optimiza-
tion strategy for the evaluation of local stiffness matrices for finite elements. This
is based on first formulating the computation as a sequence of tensor contractions,
then introducing a new concept of complexity-reducing relations that allows us to set
the optimization in a graph context. The optimization itself proceeds by computing
a minimum spanning tree. These techniques worked very well at reducing the cost
of evaluating finite element matrices for several forms using Lagrange elements of
degrees one through three on triangles and tetrahedra. Finally, we discussed some ef-
ficient algorithms for detecting equality and colinearity and for evaluating the pairwise
Hamming distance over the entire set of tensors.

In [11], we saw that frequently, some of the tensors will be linear combinations of
two or more other tensors. However, both locating and making use of such relations
in a more formal context has been difficult. We are working on geometric search
algorithms to locate linear dependencies efficiently. However, once they are located,
our optimization process must occur over a hypergraph rather than a graph. Finding
a true minimum is also much more difficult, and we are working on heuristics that
will allow us to combine these two approaches.

Finally, we plan to integrate our optimization strategy with FFC. While FFC
currently generates very efficient code for evaluating variational forms, we will improve
upon this generated code by piping the tensors through our optimization process
before generating code to perform the contractions. This will lead to a domain-
specific optimizing compiler for finite elements; by exploiting latent mathematical
structure, we will automatically generate more efficient algorithms for finite elements
than people write by hand.
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Fig. 4.1. Minimum spanning tree for optimized computation of the Laplacian using quadratic
elements on triangles. The node labeled (3,3) is the root, and the flow is from bottom to top.


