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The orthogonal polynomials used in finite and spectral element methods for nonrectangular el-
ements may be defined in terms of collapsed coordinates, wherein the shapes are mapped to a
square or cube by means of a singular change of variables. The orthogonal basis is a product of
specific Jacobi polynomials in these new coordinates. However, implementations of these polyno-
mials require special handling of the singularities in the coordinates. We derive new recurrence
relations for these polynomials on triangles, tetrahedra, pyramids, and prisms that work directly in
the original coordinates, avoiding any special treatment of singular points and requiring constant
auxilliary storage with respect to the polynomial degree. These recurrences are seen to speed up
both symbolic and numerical computation of the orthogonal polynomials.
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ware]: —Algorithm Design, Efficiency; I.1 [Symbolic and Algebraic Manipulation]: —
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1. INTRODUCTION

Orthogonal polynomials on nonrectangular domains play an important role in cer-
tain kinds of spectral and finite element computation. Many discontinuous Galerkin
methods [Castillo 2002] are implemented in terms of orthogonal polynomials. They
also are an important building block for the nodal spectral elements developed by
Hesthaven and Warburton [Hesthaven and Warburton 2002] and for tools for con-
structing general finite elements such as the FIAT project by the author [Kirby
2004; 2006] and the FEMSTER project by Castillo, Rieben, and White [Castillo
et al. 2005].

While orthogonal polynomals are constructed rectangular domains allow orthog-
onal bases to be constructed by tensor products of Legendre or other polynomials in
each coordinate direction, nonrectangular domains require more care. An orthogo-
nal basis on triangles was developed by authors such as Koornwinder [Koornwinder
1975] and Dubiner [Dubiner 1991] (see [Braess 2005] for a survey). These poly-
nomials are the eigenfunctions of a particular Sturm-Liouville problem, and also
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may constructed by transforming the triangle to a square by a special coordinate
mapping. Tensor products of Jacobi polynomials with certain weights are formed
in these coordinates, and these are L2-orthogonal in the original triangle. The book
of Karniadakis and Sherwin [Karniadakis and Sherwin 2005] contains a thorough
presentation of these results, as well as orthogonal bases on tetrahedra, pyrmaids
and prisms.

Recent work by Beuchler and Schöbel [Beuchler and Schöberl 2006] has simi-
lar flavor, deriving shape functions for p-finite elements that lead to very sparse
element stiffness matrices. They also work in terms of transformed coordinates,
using products of integrated Jacobi polynomials, but also force their functions to
obey certain boundary properties. This work has been extended to tetrahedra by
Beuchler and Pillwein [Beuchler and Pillwein 2007].

The present work does not use these special polynomials directly in finite ele-
ment computation, but rather uses as a building block to construct a wide range of
different finite element bases in the FIAT project []. Here, the essential properties
of the orthogonal bases are their conditioning (useful in solving generalized Van-
dermonde systems) and their hierarchical nature. Jacobi recurrence relations allow
stable evaluation to very high order, so they are very flexible tools.

However, the coordinate singularities in the standard representation in collapsed
coordinates makes these polynomials difficult to evaluate and especially differenti-
ate at certain points in the domain that turn out to be essential for certain kinds
of finite elements. In this paper, we develop with new recurrences for computing
the orthogonal bases that avoid the difficulties of the collapsed coordinate systems
and hence are more suitable as a general building block for finite element bases as
done in the FIAT project []. The new recurrences work directly in the untrans-
formed coordinates; there is no appearance of the coordinate singularity. This has
advantages in numerical evaluation of the polynomials, avoiding the need to handle
coordinate singularities by special cases in the code and also reducing the amount
of auxilliary storage needed to tabulate the polynomials. Avoiding the coordinate
singularity greatly simplifies the construction of certain finite element bases, such
as those of Hermite and Argyris [], via generalized Vandermonde matrices. After
reviewing the general paradigm employed by FIAT in Section 0??, we survey some
necessary facts about Jacobi polynomials in Section 3, we describe the orthogonal
polynomials on triangles and derive new recurrence relations in Section 4. Then,
Section 5 extends these ideas to tetrahedra. We derive similar relations for prisms
and pyramids in Section 6. We discuss some of the implementation advantages and
timing results in Section 0??.

2. THE FIAT PARADIGM

In [], the Dubiner polynomials are used as building blocks for construcing general
Ciarlet-type finite elements.

Definition 2.1 Ciarlet[]. A finite element is a triple (K,P,N)

Definition 2.2. The nodal basis for a finite element (K,P,N) is the set {ψi}
dimP
i=1

such that

ni(ψj) = δi,j , 1 ≤ i, j ≤ dimP. (1)
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Fig. 1. Degrees of freedom for the cubic Hermite (left) and quintic Argyris (right) elements, which
require evaluation and differentiation at the top vertex.

It is not hard to show that if {φi}
dim P
i=1 is a basis for P , then the nodal basis may

be obtained by

ψi = V −1
ij φj , (2)

where V is the generalized Vandermonde matrix

Vij = ni(φj). (3)

The FIAT project, motivated by the fact that many elements appear far more fre-
quently in finite element texts and papers than in codes, makes use of this approach
to generate arbitrary order bases for a wide range of elements that are typically
perceived as “hard” to implement.

For several reasons, the Dubiner basis and its extensions to higher dimensions
are an attractive choice for {φi}

dim P
i=1 . Being based on Jacobi polynomials, they

may be stably and accurately evaluated to quite high degree via simple recurrence
relations. Moreover, their L2 orthogonality tends to lead to well-conditioned V
matrices. Also, their hierarchical nature simplifies the construction of certain finite
element spaces, such as the Raviart-Thomas space [] over other well-conditioned
bases like Bernstein polynomials.

While a very wide range of elements are constructed using this paradigm in the
FIAT project, certain classical elements present special difficulties for the standard
method of evaluating the Dubiner basis. Consider the cubic Hermite simplex [?],
in which P = P3(K) is the space of cubic polynomials. The nodes consist of point
values and gradients at the vertices and the point value at the barycenter of K, as
shown in Figure 2.

Constructing V in this situation requires differentiating each φi at the top vertex,
exactly the point at which the Dubiner formulae fail. A similar issue occurs for the
Hermite tetrahedron. While it is possible but tedious to include analytic deriva-
tives for that single point, and the situation becomes even more so for the Argyris
triangle. The polynomial space P = P5(K) consists of quintic polynomials, and the
nodes contain point values along with first and second derivatives at each vertex,
together with the normal derivatives normal at each edge midpoint, as shown in
Figure 2.

The general-purpose paradigm of the FIAT project suggests that it is desirable
to treat all the points in the reference domain uniformly. For a particular, fixed
basis such as in a spectral element code, the issue may be circumvented by choosing
quadrature rules that avoid the singular points altogether, but FIAT cannot make
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such a priori assumptions if it is to be general.

3. PRELIMINARY FACTS ABOUT JACOBI POLYNOMIALS

Before developing the new recurrence relations, we recall some basic facts about
Jacobi polynomials that may be found in a reference such as Abramowitz and Ste-
gun [Abramowitz and Stegun 1964]. We denote the Jacobi polynomials by Pα,β

n (x).
The first two Jacobi polynomials, in terms of α and β are

Pα,β
0 = 1

Pα,β
1 =

1

2
(α− β + (α+ β + 2)x) .

(4)

For n ≥ 2, the three-term recurrence relations

Pα,β
n+1(x) = (aα,β

n x+ bα,β
n )Pα,β

n (x)− cα,β
n Pα,β

n−1(x), (5)

hold, where the recurrence coefficients are given by

aα,β
n =

(2n+ 1 + α+ β)(2n+ 2 + α+ β)

2(n+ 1)(n+ 1 + α+ β)

bα,β
n =

(α2 − β2)(2n+ 1 + α+ β)

2(n+ 1)(2n+ α+ β)(n+ 1 + α+ β)

cα,β
n =

(n+ α)(n+ β)(2n+ 2 + α+ β)

(n+ 1)(n+ 1 + α+ β)(2n+ α+ β)
.

(6)

As special cases needed later, the recurrence coefficients when α = β = 0 are

a0,0
n =

2n+ 1

n+ 1

b0,0
n = 0

c0,0
n =

n

n+ 1
.

(7)

4. THE ORTHOGONAL BASIS ON TRIANGLES

In spectral element literature, the triangular basis is typically constructed by map-
ping the triangle with vertices (−1,−1), (1,−1), (−1, 1) to the square [−1, 1]2 via
the transformation

η1(x, y) = 2

(

1 + x

1− y

)

− 1,

η2(x, y) = y.

(8)

This maps the reference triangle to the reference square, as shown in Figure 2. The
singularity at y → 1 is handled by defining η1(x, 1) to be -1. To remain inside the
reference triangle, x must approach −1 as y approaches 1, making η1 continuous.

The polynomials are given in terms of the η1, η2 coordinates by

Dp,q(x, y) = P 0,0
p (η1)

(

1− η2
2

)p

P 2p+1,0
q (η2). (9)

Despite the 1
1−y

appearing η1, D
p,q is in fact a polynomial both in η1, η2 and in

x, y. To see this, note that P 0,0
p (η1) is a polynomial of degree p in η1, which means
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(−1,−1) (1,−1)

(1,1)

(−1,−1) (1,−1)

(−1,1) (−1,1)

η1 = 2
1+x
1−y
− 1

η2 = y

x

y η2

η1

Fig. 2. Reference triangular and square domains with collapsed coordinate transformation.

that it contains a term (1−y)−p in it. By multiplying through by (1−η2)
p = (1−y)p,

all of the negative powers will be cancelled.
Instead of the form (9), Dp,q(x, y) may instead be written as

Dp,q(x, y) = χp(x, y)ψp,q(y), (10)

where

χp(x, y) = P 0,0
p (η1)

(

1− η2
2

)p

,

ψp,q(y) = P 2p+1,0
q (η2) = P 2p+1,0

q (y).

(11)

The polynomial χp(x, y) has two arguments but only one index, while ψp,q(y) has
two indices and only one argument. This will be important in establishing the
sum-factorization property later.

The more standard formation (such as in [Karniadakis and Sherwin 2005]) of
Dp,q(x, y) is a separable representation in (η1, η2)

Dp,q(x, y) = ψ̃a
p (η1)ψ̃

b
p,q(η2), (12)

where

ψ̃a
p(η1) = P 0,0

p (η1),

ψ̃b
p,q(η2) =

(

1− η2
2

)p

P 2p+1,0
q (η2).

(13)

The separability of Dp,q in the transformed coordinates is the basis for efficient
spectral element algorithms in unstructured coordinates. In the context of the FIAT
project, however, the new decomposition (10), has some particular advantages.

If the Dubiner polynomials are computed symbolically, for example, using the
standard representation, then the computer must simplify a rational function to a
polynomial by cancelling the powers of 1 − y appearing in both numerators and
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denominators. This can be quite expensive in many symbolic packages. Moreover,
the coordinate singularity presents limitations in a numerical context. In spectral
element methods, the quadrature points at which the basis is evaluated and differ-
entiated may be selected to bypass the singular points (e.g. Radau quadrature).
On the other hand, using the Dubiner basis as a building block for other bases as
in the FIAT project in principle can require evaluation and differentiation at any
point. For example, constructing V for the Hermite and Argyris elements requires
derivatives at the top vertex of the triangle, which requires delicate treatment in
the collapsed coordinates.

Before presenting the recurrence relations, it is important to point out that
although the representation is non-separable, the structure still admits a sum-
factorization that admits inner product evaluation of the same complexity as the
separated representation. While the focus of this paper is on the flexibility of the
new representation and its application to FIAT, the sum-factored algorithm will be
presented for completeness later.

It is straightforward to derive recurrence relations for the χp and ψp,q factors
comprising Dp,q

Proposition 4.1. With

χ0(x, y) = 1,

χ1(x, y) =
1 + 2x+ y

2
,

(14)

for all p ≥ 1, the functions χp(x, y) satisfy the three-term recurrence relation

χp+1(x, y) =
2p+ 1

p+ 1

(

1 + 2x+ y

2

)

χp(x, y)−
p

p+ 1

(

1− y

2

)2

χp−1(x, y). (15)

Proof. The proof follows from using the standard Legendre recurrence with
simple algebraic manipulations on the factors involving coordinates.

Since Dp,0(x, y) = χp(x, y), this simple recurrence calculates a whole swatch of
of the Dubiner polynomials. Moreover, Dp,1(x, y) = χp(x, y)P 2p+1,0

1 (y), so that
Dp,1(x, y) may be obtained from Dp,0(x, y) by multiplying by the linear Jacobi
polynomial with indices 2p+ 1, 0:

Dp,1(x, y) = Dp,0(x, y)P 2p+1,0
1 (y)

=
1

2
Dp,0(x, y) (2p+ 1 + (2p+ 3) y) .

(16)

Finally, for each p, a three-term recurrence in q follows straightforwardly from
the Jacobi recurrence:

Proposition 4.2. For each p, the orthogonal polynomials satisfy a recurrence
relation in the second index. For q ≥ 1,

Dp,q+1(x, y) = (a2p+1,0
q y + b2p+1,0

q )Dp,q(x, y)− c2p+1,0
q Dp,q−1(x, y). (17)

These recurrences are assembled together in Algorithm 1, which for inputs x, y
and the degree d, calcuates all of the Dubiner polynomials. Since the collapsed
coordinate singularity never appears, this algorithm may be used for any x, y in the
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reference triangle and may be differentiated (by hand or automatic differentiation)
to obtain as many derivatives as desired.

Algorithm 1 Computes all triangular orthogonal polynomials by recurrence

1: D0,0(x, y) := 1
2: D1,0(x, y) := 1+2x+y

2
3: for p← 1, d− 1 do

4: Dp+1,0(x, y) :=
(

2p+1
p+1

)

(

1+2x+y
2

)

Dp,0(x, y)−
(

p
p+1

)

(

1−y
2

)2
Dp−1,0(x, y)

5: end for

6: for p← 0, d− 1 do

7: Dp,1(x, y) := Dp,0(x, y)
(

1+2p+(3+2p)y
2

)

8: end for

9: for p← 0, d− 1 do

10: for q ← 1, d− p− 1 do

11: Dp,q+1(x, y) :=
(

a2p+1,0
q y + b2p+1,0

q

)

Dp,q(x, y)− c2p+1,0
q Dp,q−1(x, y)

12: end for

13: end for

5. TETRAHEDRAL EXPANSION

The tetrahedral polynomials may be defined on the tetrahedron with vertices (−1,−1,−1),
(1,−1,−1), (−1, 1,−1),(−1,−1, 1) by mapping to the cube [−1, 1]3 using the coor-
dinate transformation

η1(x, y, z) =
−2(1 + x)

y + z
− 1

η2(x, y, z) =
2(1 + y)

1− z
− 1

η3(x, y, z) = z

(18)

As with the triangular case, we define η1 along the line y+ z = and η2 along z = 1
to make the functions continuous. The reference tetrahedron and cube are shown
in Figure 3.

The tetrahedral polynomials [Karniadakis and Sherwin 2005] are given by

Dp,q,r(x, y, z) = P 0,0
p (η1)

(

1− η2
2

)p

P 2p+1,0
q (η2)

(

1− η3
2

)p+q

P 2p+2q+2,0
r (η3),

(19)
where η1, η2, η3 are functions of x, y, z given by (18). These polynomials may be
written in separated form as

Dp,q,r(x, y, z) = ψ̃a
p(η1)ψ̃

b
p,q(η2)ψ̃

c
p,q,r(η3), (20)
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(−1,−1,1)

(1,−1,−1)

(−1,−1,1)

(−1,−1,−1) (−1,−1,−1) (1,−1,−1)

(1,1,−1)

(1,1,1)(−1,1,1)

(1,−1,1)(−1,−1,1)

Fig. 3. Reference tetrahedron and cube.

where

ψ̃a
p(z) = P 0,0

p (z),

ψ̃b
p,q(z) =

(

1− z

2

)p

P 2p+1,0
q (z),

ψ̃c
p,q,r(z) =

(

1− z

2

)p+q

P 2p+2q+2,0
r (z).

(21)

As in the triangular case, this separated representation is useful in turning integrals
over the tetrahedron into products of one-dimensional integrals on the cube. How-
ever, ψ̃a

p and ψ̃a,b
q are both rational functions of the Cartesian coordinates, leading

to similar complications in evaluating and differentiating.
We define each polynomial to be the product of three simpler polynomials in the

standard (non-collapsed) coordinates by

Dp,q,r(x, y) = χp(x, y, z)ψp,q(y, z)ωp,q,r(z), (22)

where

χp(x, y, z) = P 0,0
p (η1)

(

1− η2
2

)p (

1− η3
2

)p

,

ψp,q(y, z) = P 2p+1,0
q (η2)

(

1− η3
2

)q

,

ωp,q,r(z) = P 2p+2q+2,0
r (η3).

(23)

It is not hard to see that χp(x, y, z) is polynomial of degree p in the variables
x, y, z, ψp,q(y, z) is a polynomial of degree q in y, z, and ωp,q,r(z) is a polynomial
of degree r in z alone, giving Dp,q,r(x, y, z) as polynomial of degree p+ q + r. The
set of polynomials over the reference tetrahedron with degree no greater than d is
given by

Pd = {Dp,q,r(x, y, z) : 0 ≤ p, q, r, p+ q + r ≤ d} (24)

As for the triangular basis, recurrence relations may be derived directly in the
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(x, y, z) coordinates. First, with q = r = 0, the Legendre recurrence relations and
some simple algebraic manipulations give rise to a recurrence in p.

Proposition 5.1. Starting with

χ0(x, y, z) = 1

χ0(x, y, z) =
2 + 2x+ y + z

2
,

(25)

the tetrahedral expansion functions satisfy

Dp+1,0,0(x, y, z) = χp+1(x, y, z)

=

(

2p+ 1

p+ 1

)(

2x+ 2 + y + z

2

)

χp(x, y, z)

−

(

p

p+ 1

) (

y + z

2

)2

χp−1(x, y, z)

=

(

2p+ 1

p+ 1

)(

2x+ 2 + y + z

2

)

Dp,0,0(x, y, z)

−

(

p

p+ 1

) (

y + z

2

)2

Dp−1,0,0(x, y, z)

(26)

Now, with all Dp,0,0 evaluated, it is simple to compute Dp,1,0(x, y, z) by multi-
plying a linear polynomial:

Dp,1,0(x, y, z) = χp(x, y, z)ψp,1(y, z)

= χp(x, y, z)

(

1− η3
2

)

P 2p+1,0
1 (η2)

= χp(x, y, z)

(

1 + 2p+ (3 + 2p)η2
2

) (

1− z

2

)

= χp(x, y, z)

(

p(1 + y) +
2 + 3y + z

2

)

(27)

Now, the Jacobi recurrence relations may be used to derive a recurrence for
general q with r = 0.

Proposition 5.2. For q ≥ 1, the functions Dp,q,0(x, y, z) satisfy the three-term
recurrence

Dp,q+1,0(x, y, z) = α2p+1,0
q Dp,q,0(x, y)− γ2p+1,0

q Dp,q−1,0(x, y), (28)

where

α2p+1,0
q = a2p+1,0

q

(

1 + 2y + z

2

)

+ b2p+1,0
q

(

1− z

2

)

γ2p+1,0
q = c2p+1,0

q

(

1− z

2

)2 (29)

After computing Dp,q,0 for all necessary p, q, the polynomials Dp,q,1 may be
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computed by multiplying by a linear Jacobi polynomial:

Dp,q,1(x, y, z) = Dp,q,0(x, y, z)P 2p+2q+2,0
1 (z)

= Dp,q,0(x, y, z) (1 + p+ q + (2 + q + p)z) .
(30)

Using the Jacobi recurrence relations in r gives rise to the final recurrence

Proposition 5.3. For all p, q ≥ 0 and r ≥ 1, the polynomials Dp,q,r(x, y, z)
satisfy the three-term recurrence

Dp,q,r+1(x, y, z) =
(

a2p+2q+2,0
r z + b2p+2q+2,0

r

)

Dp,q,r(x, y, z)

− c2p+2q+2,0
r Dp,q,r−1(x, y, z).

(31)

These results are collected in Algorithm 2 for tabulating the orthogonal tetra-
hedral expansion. As in the triangular case, differentiating manually or by AD is
straightforward.

6. OTHER THREE-DIMENSIONAL SHAPES

Besides cubes (with tensor products of Legendre polynomials), orthogonal polyno-
mial bases are known on prisms and pyramids.

Consider the reference prism shown in Figure 4, taking the triangle with vertices
(−1,−1),(1,−1), and (−1, 1) in the x− y plane and extending it in the z axis from
z = −1 to z = 1. The standard polynomial space on this shape is obtained by
taking polynomials of total degree d in x, y times polynomials of degree d in z. An
orthogonal basis for this space is easily obtained by introducing

φp,q,r(x, y, z) = Dp,q(x, y)P 0,0
r (z), (32)

where Dp,q are the orthogonal polynomials constructed above. Tensor products of
Dp,q(x, y) may be used along with the Legendre polynomials in z to compute these
polynomials. The polynomial space of degree d is then spanned by

{φp,q,r(x, y, z) : 0 ≤ p, q, r, p+ q ≤ d, 0 ≤ r ≤ d} . (33)

Prisms hence require no new recurrence relations, simply using the results of Sec-
tion 4 and taking tensor products with the Legendre polynomials in z.

Pyramids do not have the same tensor-product structure, but the same techniques
developed for triangles and tetrahedra may still be applied to get singularity-free
recurrences.

Define the reference pyramid, shown in Figure 5 by

{x, y, z : −1 ≤ x, y, z ≤ 1, x+ z ≤ 1, y + z ≤ 1} , (34)

as shown in Figure 5.
This pyramid is mapped to [−1, 1]3 via the transformation

η̄1 = 2
1 + x

1− z
− 1

η2 = 2
1 + y

1− z
− 1

η3 = z

(35)
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Algorithm 2 Computes all tetrahedral polynomials by recurrence

1: F1 := 2+2x+y+z
2

2: F2 :=
(

y+z
2

)2

3: F3 := 2+3y+z
2

4: F4 := 1+2y+z
2

5: F5 := 1−z
2

6: D0,0,0 := 1
7: D1,0,0 := F1

8: for p← 1, d− 1 do

9: Dp+1,0,0 :=
(

2p+1
p+1

)

F1D
p,0,0 −

(

p
p+1

)

F2D
p−1,0,0

10: end for

11: for p← 0,d− 1 do

12: Dp,1,0 := (p(1 + y) + F3)D
p,0,0

13: end for

14: for p← 0,d− 2 do

15: for q ← 1,d− p− 1 do

16: Dp,q+1,0 :=
(

a2p+1,0
q F4 + b2p+1,0

q F5

)

Dp,q,0 − c2p+1,0
q (F5)

2
Dp,q−1,0

17: end for

18: end for

19: for p← 0,d− 1 do

20: for q ← 0,d− p− 1 do

21: Dp,q,1 := (1 + p+ q + (2 + q + p)z)Dp,q,0

22: end for

23: end for

24: for p← 0,d− 2 do

25: for q ← 0,d− p− 2 do

26: for r ← 1,d− p− q − 1 do

27: Dp,q,r+1 :=
(

a2p+2q+2,0
r z + b2p+2q+2,0

r

)

Dp,q,r − c2p+2q+2,0
r Dp,q,r−1

28: end for

29: end for

30: end for

as described in [Karniadakis and Sherwin 2005]. The pyramidic orthogonal poly-
nomials are represented separably on the cube by

φp,q,r(x, y, z) = ψ̃a
p(η̄1)ψ̃

a
q (η2)ψ̃

c(η3), (36)

where ψ̃a and ψ̃c are as defined in (21). The terms may be regrouped into polyno-
mials in the pyramidic coordinates by

φp,q,r(x, y, z) = P 0,0
p (η̄1)

(

1− z

2

)p

P 0,0
q (η2)

(

1− z

2

)q

P 2p+2q+2,0
r (z). (37)
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(1,−1,−1)(−1,−1,−1)

(−1,−1,1)

(−1,1,−1)

(1,−1,1)

(−1,1,1)

Fig. 4. Reference prism and its coordinates

(−1,−1,−1) (1,−1,−1)

(1,1,−1)

(−1,−1,1)

(−1,1,−1)

Fig. 5. Reference prism and its coordinates

By defining

χp
1(x, z) = P 0,0

p (η̄1)

(

1− z

2

)p

,

χq
2(y, z) = P 0,0

q (η2)

(

1− z

2

)q

,

ωp,q,r(z) = P 2p+2q+2,0
r (z),

(38)

we obtain a decomposition

φp,q,r(x, y, z) = χp
1(x, y)χ

q
2(y, z)ω

p,q,r(z) (39)

into polynomials amenable to recurrence relations. The natural space of polynomi-
als is spanned by the orthogonal set

{φp,q,r(x, y, z) : 0 ≤ p, q ≤ d, p+ q + r ≤ d} . (40)

The recurrence relations for χp
1 and χp

2 are derived in exactly the same way as for
the χp defined for triangular and tetrahedral expansions.
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Proposition 6.1. Starting from

χ0
1(x, y) = 1,

χ1
1(x, y) =

1 + 2x+ z

2
,

(41)

there holds the three-term recurrence relation

χp
1(x, z) =

(

2p+ 1

p+ 1

) (

1 + 2x+ z

2

)

χp
1(x, z)

−

(

p

p+ 1

) (

1− z

2

)2

χp−1
1 (x, z)

(42)

This allows computation of φp,0,0(x, y, z) for all p. Just as before, φp,1,0 follows
from multiplication:

φp,1,0(x, y, z) = φp,0,0(x, y, z)P 0,0
1 (η2)

(

1− z

2

)

= φp,0,0(x, y, z)

(

2
1 + y

1− z
− 1

) (

1− z

2

)

= φp,0,0(x, y, z)

(

1 + 2y + z

2

)

.

(43)

Hence, all φp,q,0 are constructing by a recurrence on q:

Proposition 6.2. Starting from

χ0
2(y, z) = 1,

χ1
2(y, z) =

1 + 2y + z

2
,

(44)

there holds the three-term recurrence relation

χp
2(y, z) =

(

2p+ 1

p+ 1

) (

1 + 2y + z

2

)

χp
1(y, z)

−

(

p

p+ 1

) (

1− z

2

)2

χp−1
1 (y, z).

(45)

Therefore, for all q ≥ 1,

φp,q+1,0(x, y, z) =

(

2p+ 1

p+ 1

) (

1 + 2y + z

2

)

φp,q,0(x, y, z)

−

(

p

p+ 1

) (

1− z

2

)2

φp,q−1,0(x, y, z)

(46)

Given all of the φp,q,0(x, y, z), all of the φp,q,1(x, y, z) are readily constructed by
the computation

φp,q,1(x, y, z) = φp,q,0(x, y, z)P 2p+2q+2,0
1 (z)

= φp,q,0(x, y, z) (1 + p+ q + (2 + q + p)z) .
(47)

The recurrence in r is identical to that for tetrahedra.
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Proposition 6.3. For all p, q ≥ 0 and r ≥ 1, the pyramidic polynomials φp,q,r(x, y, z)
satisfy the three-term recurrence

φp,q,r+1(x, y, z) =
(

a2p+2q+2,0
p z + b2p+2q+2,0

q

)

φp,q,r(x, y, z)

− c2p+2q+2,0
p φp,q,r−1(x, y, z).

(48)

An algorithm for tabulating the pyramidic functions and differentiation rules follow
in similar fashion.

7. SOME ALGORITHMIC CONSIDERATIONS

Flexibility of evaluation and differentiation has been the primary goal in develop-
ing this new representation of the orthogonal polynomials. However, polynomials
expressed in these orthogonal bases may also be evaluated efficiently using the re-
currence relations, even though the representation is not separable. The goal of this
section is to point out that efficiency need not be lost with the new approach to the
polynomials rather than to present a fully-functional spectral element simulator.
The presentation will be restricted to the triangular case, although the techniques
are also applicable to the three-dimensional shapes as well.

Let u ∈ Pk(K̂) be given by

u(x0, y0) =
∑

0≤p+q≤dim Pk

up,qD
p,q(x0, y0). (49)

Using the recurrence relations, u may be evaluated at any point in an amount
of work proportional to dimPk, using auxilliary storage proportional to k. Algo-
rithm 0?? is structured to highlight the use of recurrence relations, but it is possible
to work degree-by-degree while storing the Dp,q values from previous degrees to en-
able polynomial evaluation.

Algorithm 3 Evaluating a polynomial of degree k expressed in the Dubiner basis
1: v := u0,0

2: D1,0(x0, y0) := 1+2x0+y0

2
3: v+ = u1,0D

1,0(x0, y0)
4: D0,1(x0, y0) := 1+2x0+3y0

2
5: v+ = u0,1D

0.1

6: for d← 0, k do

7: for q ← 0, d do

8: p := d− q
9: Compute Dp,q(x0, y0) via recurrence

10: v+ = up,qD
p,q(x0, y0).

11: end for

12: end for

For each degree d in the outer loop of Algorithm 7, only values of the Dubiner
basis for the two previos degrees are required. Rather than storing all of the values
of the Dubiner basis during the computation, it is only required to store three
degrees (the current plus two previous). Therefore, auxilliary storage proportional
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to k is required, together with the O(k2) operations to perform the loop. This is
optimal work complexity for polynomial evaluation.

Computing ∇u at (x0, y0) is no harder in terms of complexity with respect to k.
The recurrence rules may be differentiated, and the same algorithm used. Alter-
natively, this may make use of the result of Griewank for automatic differentiaion
that the derivatives may be obtained in using a constant multiple of the amount of
work required for forward evaluation.

More importantly, the new representation does not affect the complexity of eval-
uating inner products compared to the separable representation. Suppose that a
triangular quadrature rule on triangles is of the form

∫

K̂

fdx =

Q1
∑

i=1

Qj
∑

j=1

w1
iw

2
j f(xj

i , yj). (50)

This restricts the quadrature points to lie on a fixed set of Q2 y coordinates. For
each y coordinate yj , there are Q1 points. However, each y may have a different set
of x points. This is exactly the situation that occurs when one maps tensor-product
Gauss-type quadrature rules in the (η1, η2) coordinates using (8).

Using such a quadrature rule, consider the inner product over one triangle of some
function u against a single basis function. This is approximated via the quadrature
rule as

(u,Dp,q) =

∫

K̂

uDp,qdx

≈ (u,Dp,q)δ

≡

Q1
∑

i=1

Qj
∑

j=1

w1
iw

2
ju(x

j
i , yj)D

p,q(xj
i , yj)

≡

(51)

Typically, a polynomial basis of degree k is used so that Q1 = Q2 = O(k). This
makes the inner product against a single Dp,q an O(k2) process. With O(k2)
total basis functions, this makes the whole inner product cost O(k4) to evaluate.
This process can be reduced to O(k3) in the separable representation via sum-
factorization [Karniadakis and Sherwin 2005].

However, the representation (10) also admits this improved complexity. To see
this, insert (0??) into (51) and factor out ψp,q(yj) to obtain

(u,Dp,q)δ =

Q2
∑

j=1

ψp,q(yj)

Q1
∑

i=1

wiwjχ
p(xj

i , yj)u(x
j
i , yj). (52)

As in the separated case, the innermost sum is over O(k) points and is independent
of q. Define the array

fp,j ≡

Q1
∑

i=1

wiwjχ
p(xj

i , yj)u(x
j
i , yj). (53)

This array is (k+1)×Q1, so it containsO(k2) entries. This array may be constructed
once and stored inO(k2) operations. Once this is done, evaluating the inner product
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for a given Dp,q is accomplished by

(u,Dp,q)δ =

Q2
∑

j=1

ψp,q(yj)fp,j, (54)

which is an O(k) operation for each p, q pair, reducing the total complexity to
O(k3). Similar complexity-reducing sum factorizations are available for the three-
dimensional bases.

8. SOME EXPERIMENTS

Representing differentiation as matrices provides a way of treating all points in the
reference domain uniformly. That is, for u =

∑dim P

i=1 uiφi, where there is some
linear ordering of the Dubiner basis functions, then there exists a matrix Dx such
that

∂u

∂x
=

dim P
∑

i=1

(Dxu)iφi. (55)

As a result, any polynomial expressed in the Dubiner basis may be differentiated
at any point simply by computing the matrix-vector product and using the stan-
dard technique for evalating the basis functions. Higher derivatives are evaluated
by repeated matrix-vector multiplication. Constructing this matrix requires dif-
ferentiating the basis functions at a set of dimP unisolvent points, but these may
be selected away from the boundary. This approach has been used in the FIAT
project [].

It turns out that the new recurrence relations are slightly more accurate than
the collapsed-coordinate representation, but using automatic differentiation in the
recurrence relations turns out to be significantly more accurate than the matrix
multiplication formulation in (55). As elements such as Argyris are applicable
to fourth order problems, it is important to evaluate at least second derivatives,
and even higher derivatives may be needed for stabilization or residual-based error
estimates.

Table 0?? shows the accuracy obtained in tabulating and differentiating the or-
thogonal expansions on triangles and tetrahedra for various polynomial orders on a
lattice consisting of dimP11 =

(

Πd
i=1(d+ i)

)

/d! equispaced points. The exact an-
swer was obtained by evaluating the new recurrence relations in rational arithmetic
and using automatic differentiation to evaluate the derivatives. Then, the new re-
currence relations were computed in double precision floating point arithmetic, with
derivatives computed also by AD in double precision as well. The standard sepa-
rated formulation was then used to tabulate the polynomials in double precision,
and (0??) was used to compute each of the partial derivatives by matrix multipli-
cation. Table 0?? reports the errors obtained for the triangular and tetrahedral
polynomials, with columns indexed by polynomial degree and rows indexed by or-
der of differentiation. Each entry represents the maximum error over all points in
the lattice for the entire set partial derivatives of a given order for the polynomials
of a given degree.
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Table I. Error in tabulating triangular polynomials using the separated representation and the
new recurrences. The polynomial degree k increases going down the rows, and the columns are
indexed by the order of differentation. Although the separated expansions are usually slightly more
accurate than the new recurrences, the error incurred by differentiating with matrix multiplication
grows much more quickly than AD in the new recurrences.

0 1 2 3

3 old 5.4E-16 1.2E-14 6.0E-14 2.3E-13
new 4.8E-16 3.8E-15 7.8E-15 7.1E-15

4 old 5.4E-16 4E-14 2.7E-13 1.7E-12
new 8.3E-16 8.0E-15 2.5E-14 3.9E-14

5 old 5.7E-16 9.9E-14 1.2E-12 5.3E-12
new 9.7E-16 1.2E-14 8.6E-14 3.4E-13

6 old 5.7E-16 4.1E-13 4.7E-12 4.3E-11
new 1.5E-15 1.6E-14 1.9E-13 1.4E-12

7 old 8.9E-16 9.3E-13 1.2E-11 1.4E-10
new 1.9E-15 2.8E-14 3.0E-13 2.6E-12

8 old 3.6E-15 5.2E-12 9.1E-11 7E-10
new 3.6E-15 5.7E-14 4.9E-13 6.7E-12

Table II. Error in tabulating tetrahedral polynomials using the separated representation and the
new recurrences. The polynomial degree k increases going down the rows, and the columns are
indexed by the order of differentation. Although the separated expansions are usually slightly more
accurate than the new recurrences, the error incurred by differentiating with matrix multiplication
grows much more quickly than AD in the new recurrences.

0 1 2 3

3 old 1.2E-15 4.6E-14 1.1E-13 3.1E-13
new 1.7E-15 6.5E-15 7.8E-15 7.1E-15

4 old 1.5E-15 8.0E-14 7.4E-13 3.8E-12
new 2.9E-15 1E-14 3.6E-14 7.2E-14

5 old 2.7E-15 6.8E-13 3.5E-12 3.5E-11

new 4E-15 2.0E-14 8.7E-14 3.4E-13

6 old 2.8E-15 1.9E-12 3.0E-11 2.6E-10
new 4E-15 3.8E-14 2.3E-13 1.4E-12

7 old 2.8E-15 6.1E-12 1.1E-10 1.5E-09
new 5.0E-15 1.1E-13 4.9E-13 3.6E-12

8 old 3.6E-15 2.0E-11 3.8E-10 3.2E-09
new 6.1E-15 1.1E-13 1.2E-12 8.1E-12

9. CONCLUSIONS
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