
1

High-performance evaluation of finite element variational forms via
commuting diagrams and duality

Robert C. Kirby, Baylor University

We revisit the question of optimizing the construction and application of finite element matrices. By using
commuting properties of the reference mappings and duality, we reorganize stiffness matrix construction
and matrix-free application so that the bulk of the work can be done by optimized matrix multiplication
libraries. We provide examples, including numerical experiments, with the Laplace and curl-curl operators
as well as develop a general framework. Our techniques are applicable in general geometry and are not
restricted to constant coefficient operators.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equations

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Finite element methods, high-performance computing, commuting dia-
gram

ACM Reference Format:
Robert C. Kirby, 2012. High performance evaluation of finite element variational forms via commuting dia-
grams and duality ACM Trans. Math. Softw. 1, 1, Article 1 (January 2013), 24 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The literature and lore of finite elements contain many methods for evaluating and
applying variational forms. Beyond straightforward loops over quadrature points, we
can point to precomputation of certain reference element integrals in affine geometry
(utilized both by the FEniCS project [Logg et al. 2012] and Sundance [Long et al.
2010], although the technique is surely much older), sum-factorization methods of
Orszag [Orszag 1979], the nodal spectral elements of Hesthaven and Warburton [Hes-
thaven and Warburton 2008], and the low-complexity Bernstein basis methods found
in [Ainsworth et al. 2011; Kirby 2011]. This wide variety of methodology is largely
driven by diverse properties of the bases, geometry, and coefficients. Affine geometry
allows certain optimizations that are not possible in more general geometry, H(div)
and H(curl) spaces require more complex transformations than H1, and particular
bases have tensor product or other structure that allows low-complexity algorithms
for matrix-vector products.

At risk of introducing Yet Another Method, we propose in this paper an approach
based on duality, in which the test function transformations are transferred onto the
trial functions, which depends on certain commuting diagram properties for pullback
operations. Elementwise stiffness matrix formation and matrix-free application (by
which we mean the action of the element stiffness matrix being calculated without its

This work is supported by the National Science Foundation, under grant CCF-1117794.
Author’s address: R. C. Kirby, Department of Mathematics, Baylor University; One Bear Place #97328; Waco,
TX 76798-7328.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0098-3500/2013/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:2 R. C. Kirby

entries being explicitly formed) are then cast predominantly in terms of dense matrix-
multiplication, which can be outsourced to optimized BLAS routines. This approach
works for generic element shapes and in the presence of variable coefficients. It is im-
portant to note that this approach does not appreciably alter the operation count over
existing quadrature-based methods, although processing many cells together requires
some amount of intermediate storage. Finally, our approach provides a natural ab-
straction barrier beneath which matrix multiplication can be replaced with equivalent
algorithms utilizing setting-specific structure. We point this out, but do not dwell on
this here.

We require some degree of “homogeneity” to apply our method. While we support
variable coefficients, we require batches of cells where the same operator, quadrature
rule, and bases are used throughout. So, it would be straightforward to adapt our
method to Darcy-Stokes flow or fluid-structure interaction (apply the method on each
subdomain), but p-adaptive methods where the finite element basis varies from cell to
cell would present a much more significant challenge.

In the rest of the paper, we begin with a lengthy example based on the Poisson oper-
ator in Section 2. The essential features of our approach are present in this problem,
and we easily adapt the technique to the curl-curl operator on Nédélec spaces in Sec-
tion 3 and present an abstract setting in Section 4. In Section 5 we present some timing
results indicating that our methods yield very high performance. Finally, we offer some
concluding remarks and indicate future research directions in Section 6.

2. AN EXAMPLE: THE LAPLACE OPERATOR
Our approach is best presented with an example; we begin with the weak form of the
Poisson operator:

a(u, v) =
∫

Ω

∇u · ∇v dx. (1)

Suppose we have a reference cell K̂, which could be a simplex, box, or some other
shape, with some reference basis {Ψi}

Nf

i=1, and some collection of cells {Kc}Nc

i=1 in Rd.
These cells may be the entire collection of subdomains in a tesselation of Ω, or they may
be a subset chosen for whatever reason (e.g. a subdomain in domain decomposition or
a batch of cells with size chose to optimize some performance). Nc = 1 is permissible.

Following the standard methodology, we assume each Kc is diffeomorphic to K̂ via a
mapping FKc

: K̂ → Kc. Although we require differentiability and invertibility, we do
not require affinity or other properties of the mappings.

The reference basis is transferred to each cell by changing variables

ψKc
i = Ψi ◦ F−1

Kc
.

Following the notation in [Bochev and Gunzburger 2009], we define this pullback as
Φ∗G so that ψKc

i = Φ∗G (Ψi) ≡ Ψi ◦ F−1
Kc

.
We denote by DFKc : K̂ → Rd×d the Jacobian matrix and JKc = detDFKc . The

cellwise basis functions then are differentiated by

∇ψKc
i =

(
DF−TKc

∇̂Ψi

)
◦ F−1

Kc
, (2)

where ∇̂ indicates differentiation in the reference coordinates. We also give this a
transformation a name, Φ∗C , so that

Φ∗C (û) =
(
DF−TKc

û
)
◦ F−1

Kc
. (3)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:3

The mapping Φ∗G is the pullback operator associated with the local H1 space, and Φ∗C
is the pullback for H(curl). The relationship between differentiation and these pull-
backs is naturally expressed by the commuting relationship

∇Φ∗G (û) = Φ∗C
(
∇̂û
)
. (4)

Our first task is to construct the element stiffness matrices for each cell in the batch.
Define

Acij =
∫
Kc

∇ψKc
i · ∇ψ

Kc
j dx. (5)

Using the pullbacks to transform the integrals, we have that∫
Kc

∇ψKc
i · ∇ψ

Kc
j dx =

∫
Kc

∇ (Φ∗G (Ψi)) · ∇ (Φ∗G (Ψj)) dx

=
∫
K̂

(
DF−TKc

∇̂Ψi

)
·
(
DF−TKc

∇̂Ψj

)
|JKc
| dx̂

(6)

Now, for any vectors x, y ∈ Rn and matrix A ∈ Rn×n, it is true that xT (Ay) =(
ATx

)T
y. This is just a particular case of the adjoint of a linear operator within an

inner product. After using this fact, we collect the geometric terms together to obtain∫
Kc

∇ψKc
i · ∇ψ

Kc
j dx =

∫
K̂

(
DF−1

Kc
DF−TKc

∇̂Ψi

)
· ∇̂Ψj |JKc

| dx̂

=
∫
K̂

(
|JKc
|DF−1

Kc
DF−TKc

∇̂Ψi

)
· ∇̂Ψj dx̂

=
∫
K̂

(
GKc∇̂Ψi

)
· ∇̂Ψj dx̂,

(7)

where the GKc
: K̂ → Rd×d is defined by GKc

≡ |JKc
|DF−1

Kc
DF−TKc

.
If we further define ΓKc

i = GKc∇̂Ψi, then

Acij =
∫
Kc

∇ψKc
i · ∇ψ

Kc
j dx =

∫
K̂

ΓKc
i · ∇̂Ψj dx̂. (8)

In this last expression all cell-specific information is contained in the ΓKc array.
Now, we consider the (possibly approximate) evaluation of these integrals via numer-

ical quadrature. Let {ξq}Nq

q=1 ⊂ K̂ be a collection of quadrature points with associated
quadrature weights {wq}Nq

q=1. Application of this quadrature in (7) gives∫
Kc

∇ψKc
i · ∇ψ

Kc
j dx ≈

Nq∑
q=1

wqΓKc
i (ξq) · ∇̂Ψj (ξq) . (9)

To expedite our algorithmic discussion, we will introduce several multidimensional
arrays. This is already suggested by labeling the i, j entry of the stiffness matrix on Kc

as Acij – it is a rank three Nc ×Nf ×Nf array. Let the Nc ×Nq × d× d array

DFcqk` = (DFKc (ξq))k` (10)

be the Jacobian matrices tabulated at quadrature points, and DF−1
cqk` the pointwise

inverses. We also let the Nc × Nq array Jcq be the tabulated Jacobian determinants

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:4 R. C. Kirby

Jcq = |JKc (ξq)|, we store the reference gradients as

DΨiqk =
∂Ψi

∂x̂k
(ξq) . (11)

It will also be useful to pre-scale the tabulated gradients by the quadrature weights,
so we introduce

DΨw
iqk = wqDΨiqk. (12)

We let the Nc × Nq × d × d array Gcqk` contain the values GKc
at the quadrature

points on each cell. This is computed by

Gcqk` = |Jcq|
d∑

m=1

DF−1
cqkmDF

−1
cq`m. (13)

The reader familiar with the the FEniCS Form Compiler [Kirby and Logg 2006] and
FErari project [Kirby et al. 2005; Kirby et al. 2006] may recognize this as the geometric
tensor generalized to vary over quadrature points and with an additional dimension
added to store tensors for several cells at once.

Now, our algorithm proceeds in three separate steps. First, calculating the G array
from the pre-tabulated Jacobian information, assuming a fused multiply-add, requires

NcNqd
2 (d+ 1) (14)

operations. Next, we calculate ΓKc
i , storing it in a Nc×Nf ×Nq×d array, which we call

Γciqd. This array stores the action of pointwise G matrices on the reference element
gradients. It is computed by

Γciqk =
d∑
`=1

Gcqk`DΨiq`, (15)

which requires NcNfNqd2 flops.
In the third step, we calculate array A using Γ and the weighted basis function

gradients. We rewrite (9) as

Acij =
Nq∑
q=1

wq

d∑
k=1

ΓciqkDΨjqk

=
Nq∑
q=1

d∑
k=1

ΓciqkDΨw
jqk.

(16)

The second version of this sum requires

NcN
2
fNqd (17)

flops.
Summing the operation counts from each of these three phases gives a total flop

count of

NcNqd
[
d (d+ 1) +Nfd+N2

f

]
. (18)

To summarize this discussion, we present pseudocode in Algorithm 1.
We require temporary storage of NcNq

(
d2 +Nfd

)
floating point numbers for G and

Γ, although this can be reduced to NcNqNfd if the computation of G and Γ are fused
(for matrix construction, G is no longer required after Γ is known, but this will not be

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:5

ALGORITHM 1: Algorithm for computing Laplace element stiffness matrices using duality
assuming basis functions and Jacobians are tabulated.

Require: Tabulated inverse Jacobians DF−1
cqk` and determinants Jcq.

Require: Tabulated basis functions DΨiqk and weighted basis functions DΨw
iqk.

Require: Allocated space for Gcqk`, Γciqk, and Acij

{Compute G}
for c = 1 to Nc do

for q = 1 to Nq do
for k, ` = 1 to d do
Gcqk` ← |Jcq|

Pd
m=1DF

−1
cqkmDF

−1
cq`m

end for
end for

end for
{Compute Γ}
for c = 1 to Nc do

for i = 1 to Nf do
for q = 1 to Nq do

for k = 1 to d do
Γciqk ←

Pd
`=1Gcqk`DΨiq`

end for
end for

end for
end for
{Compute A}
for c = 1 to Nc do

for i, j = 1 to Nf do
Acij ←

PNq

q=1

Pd
k=1 ΓciqkDΨw

jqk

end for
end for

the case when we consider the matrix action). At any rate, assuming that Nq ≈ Nf ,
the storage requirement is a little larger than d times the NcN2

f required for A itself.
To fix ideas about the sizes of these objects, suppose (as we will in our numerical

tests later) that we use the relatively large value of Nc = 1000. For tricubic hexahedra,
we have 43 = 64 basis functions per cell. In double precision, then, storing Acij takes
1000 × 642 × 8 bytes, or about 33 MB. The intermediate storage, a factor of d = 3
larger, gives about 100MB. This comfortably fits on typical GPU cards, so this does not
preclude the use of accelarators even if the entire problem cannot fit on board.

The introduction of variable coefficients does not materially affect this technique. To
briefly demonstrate this, consider the weak form∫

Ω

κ(x)∇u · ∇v dx, (19)

where κ : Ω → R is some nonnegative function. As before, we can change variables
from a cell Kc to the reference cell and apply duality in the inner product to obtain∫

Kc

κ(x)∇ψKc
i · ∇ψ

Kc
j dx =

∫
K̂

(
κ(FKc

(x̂)) |JKc
|DF−1

Kc
DF−TKc

∇̂Ψi

)
· ∇̂Ψj dx̂. (20)

So, if we redefine GKc
(x̂) ≡ κ (FKc

(x)) |JKc
|DF−1

Kc
DF−TKc

, the rest of the discussion
proceeds unchanged. Once κ is tabulated at the quadrature points for each cell, we
simply include an extra pointwise multiplication by this data in the definition of the

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:6 R. C. Kirby

array Gcqk` given in (13). If κ were matrix-valued, the same computational pattern
would hold, but at an additional cost of d2 operations per entry of G.

2.1. Some more standard loop variants
We shall show soon the main advantage of our technique, that it can be recast as
matrix multiplication, but first we discuss the operation count relative to some other
standard variants.

The most straightforward approach may be to loop over the cells and pairs of ba-
sis functions on each cell. Thus, we calculate each Acij all at once by looping over
quadrature points, transforming basis gradients at that quadrature point, and sum-
ming. This is used, for example, in the Deal.II tutorial (step-3) [Bangerth et al. 2007;
Bangerth and Kanschat 2013]. This is displayed in Algorithm 2. No temporary storage
is required, and although the algorithm requires many redundant basis transforma-
tions, it is also highly parallelizable as each entry of Acij can in principle be assigned
to a separate thread without any write contention. Since the transformation of a sin-
gle basis function at a single point requires d2 operations and the loop nest updating
Acij requires d operations for the dot product followed by a multiplication by Jcq and a
multiply-add pair to scale by wq and accumulate, the operation count for this algorithm
is

NcN
2
fNq

(
2d2 + d+ 2

)
.

A comparison of the leading terms (i.e. those with N2
f) with (18) shows that this re-

quires about 2d times the work as the duality-approach.

ALGORITHM 2: A simple strategy for calculatingAcij entry-by-entry. This approach has a high
flop count because of redundant basis function transformations, but yields maximal concurrency.

Require: Tabulated inverse Jacobians DF−1
cqk` and determinants Jcq.

Require: Tabulated basis functions DΨiqk.
Require: Allocated space for Acij , initialized to zero.
Require: Allocates space for µk and νk in Rd

for c = 1 to Nc do
for i, j = 1 to Nf do

for q = 1 to Nq do
{Transform basis functions at current quadrature point}
for ` = 1 to d do
µ` ←

Pd
k=1DF

−1
cqk`DΨiqk

end for
for ` = 1 to d do
ν` ←

Pd
k=1DF

−1
cqk`DΨjqk

end for
{Sum contribution at current quadrature point}
Acij ← Acij + wqJcq

Pd
k=1 µkνk

end for
end for

end for

Alternately, we can lower the operation count with a small amount of additional
storage by putting the quadrature loop outermost on each cell. Before accumulating
any contributions to Acij , we transform all of the basis gradients at ξq. We present this
approach in Algorithm 3.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:7

Removing redundant transformations reduces the operation count relative to Algo-
rithm 2. The cost of the basis transformations is

NcNqNfd
2,

while accumulating the contributions to the element matrix costs

NcNqN
2
f (d+ 2)

flops, for a total of

NcNqNf
(
d2 +Nf (d+ 2)

)
. (21)

Such an approach, however, makes it difficult for multiple threads to cooperate on
a single element matrix. While this would limit applicability on a GPU, this variant
should perform well on a multicore CPU.

Even so, the leading term of (21) is slightly larger than in (18), accounting for the fact
that we included the multiplication by Jacobian determinant in G and the quadrature
weights are rolled intoDΨw. So, we actually have a slightly lower operation count than
some standard loop nests, whether or not handle many elements at once.

ALGORITHM 3: Lower-cost algorithm for computing Laplace element matrices based on a
quadrature-first approach. This algorithm avoids redundant basis function transformations at
the cost of a small amount of local storage and reduced available concurrency.

Require: Tabulated inverse Jacobians DF−1
cqk` and determinants Jcq.

Require: Tabulated basis functions DΨiqk.
Require: Allocated space for Acij , initialized to zero.
Require: Allocated space for µik.

for c = 1 to Nc do
for q = 1 to Nq do
{Transform every basis function at current quadrature point}
for i = 1 to Nf do

for ` = 1 to d do
µi` ←

Pd
k=1DF

−1
cqk`DΨiqk

end for
end for
{Compute contributation to each local matrix entry at current quadrature point}
for i = 1 to Nf do

for j = 1 to Nf do
Acij ← Acij + wqJcq

Pd
k=1 µikµjk

end for
end for

end for
end for

2.2. Multicell matrix-matrix multiplication
So, our duality-based approach does not degrade the operation count. Now, we show
how our algorithm can be recast as matrix multiplication. The use of optimized level 3
BLAS has been seen to accelerate the computation or application of element stiffness
matrices in other settings, as well. Hesthaven and Warburton [Hesthaven and War-
burton 2008] cast the application of nodal spectral element operators in terms of dense
derivative matrices acting on sets of elemental degrees of freedom. For affine geome-
try and constant coefficients, the Sundance project [Long et al. 2010] uses BLAS-based

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:8 R. C. Kirby

multiplication to construct batches of element stiffness matrices assuming certain ref-
erence element quantities are pre-integrated and the geometry is affine. For individual
cells, the Intrepid project [Bochev et al. 2012] is able construct stiffness matrices with
matrix multiplication without assuming affinity or constant coefficients. However, pre-
viously, no known technique generates stiffness matrices for general batches of possi-
bly non-affine cells with variable coefficients with the work predominantly done by a
single matrix multiplication.

In our three-stage formulation presented above, the third stage (16) may be recast
as a single matrix multiplication for the entire batch of cells. Moreover, as the number
of basis functions increases, the level 3 fraction (the proportion of the calculation done
in matrix multiplication) approaches one.

First, we reshape A ∈ RNc×Nf×Nf as a two-dimensional array Ā ∈ R(NcNf)×Nf . For
1 ≤ c ≤ Nc and 1 ≤ i ≤ Nf , let I = (c − 1)Nf + i. Given I, the associated c and i are
obtained by integer division with remainder. For any 1 ≤ I ≤ NcNf and 1 ≤ j ≤ Nf ,
we define

ĀIj = Acij .

Assuming that arrays are stored with generalized row-major indexing into flat storage,
the mapping A 7→ Ā requires no data motion on a computer.

We similarly reshape the array Γ given in (15). With I still equal to (c− 1)Nf + i and
now Q = (q − 1)d+ k for 1 ≤ q ≤ Nq and 1 ≤ k ≤ d, we define Γ̄IQ = Γciqk by

Γ̄IQ = Γciqk

and Ē ∈ RNf×(Nqd) by
ĒiQ = DΨw

iqk,

and as with Ā, no data motion is required. With these definitions, (16) becomes

Acij = ĀIj =
Nqd∑
Q=1

Γ̄IQĒjQ, (22)

or, more compactly, Ā = Γ̄ĒT .
The level 3 fraction of our approach is given by

NcN
2
fNqd

NcNqd
[
d (d+ 1) +Nfd+N2

f

] ,
which after some basic manipulations, is

1
d(d+1)
N2

f
+ d

Nf
+ 1

. (23)

Notice that the level 3 fraction is independent of the number of quadrature points Nq.
For large numbers of basis functions, the level 3 fraction approaches 1, which is to

be expected. While explicit matrix construction is typically more practical for lower-
order methods where Nf may not be large enough for an optimized BLAS library to
deliver peak performance, some reasonable gain should be expected due to internal
optimizations such as loop unrolling, tiling, and so on. We explore this later. The level
3 fraction is tabulated for orders one through three for the simplex in Table I and
cubical domains in Table II. These are for the constant coefficient case; for variable
coefficients, there is an additional cost in forming G leading to a slight reduction in the
level 3 fraction.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:9

d = 2 d = 3
Degree Nf Level 3 Fraction

1 3 0.43
2 6 0.67
3 10 0.79

Degree Nf Level 3 Fraction
1 4 0.4
2 10 0.70
3 20 0.85

Table I: Level 3 fraction for Laplace stiffness matrix construction for linear, quadratic,
and cubic bases on triangular and tetrahedral elements.

d = 2 d = 3
Degree Nf Level 3 Fraction

1 4 0.53
2 9 0.77
3 16 0.87

Degree Nf Level 3 Fraction
1 8 0.64
2 27 0.89
3 64 0.95

Table II: Level 3 fraction for Laplace stiffness matrix construction for linear, quadratic,
and cubic bases on quadrilateral and hexahedral elements.

2.3. Relation to tensor contraction in ffc/FErari
We return to our previous comment about the tensor contraction formulation of form
evaluation used in [Kirby et al. 2005; Kirby and Logg 2006], showing that we may
recover it by assuming affine geometry and rearranging the order of summation.

If we assume affine geometry, the Jacobian matrix will take the same value at each
quadrature point on a given cell. We denote the rank-4 array Gcqk` that is constant in
q for each cell as Gcqk` = Gck` and revisit our stiffness matrix computation. We modify
the computation of Γcqik in (15) by

Γciqk =
d∑
`=1

Gck`DΨiq`. (24)

Now, we substitute this into (16), interchange summation so that the quadrature loop
is innermost, and hoist G appropriately to obtain

Acij =
Nq∑
q=1

d∑
k=1

ΓciqkDΨw
jqk

=
Nq∑
q=1

d∑
k=1

(
d∑
`=1

Gck`DΨiq`

)
DΨw

jqk

=
d∑
k=1

d∑
`=1

Gck`
Nq∑
q=1

wqDΨiq`DΨjq`.

(25)

Defining

A0
ijk` =

Nq∑
q=1

wqDΨiq`DΨjq`, (26)

we have

Acij =
d∑
k=1

d∑
`=1

Gck`A0
ijk`, (27)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:10 R. C. Kirby

which is, up to the exactness of the quadrature rule, the formulation used in [Kirby
and Logg 2006] and optimized by discrete structure in [Kirby et al. 2005].

Assuming that A0
ijkl is precomputed, evaluating Acij by (27) this formulation has a

much lower operation count. Computing G requires

Ncd
2 (d+ 1)

flops, a factor of Nq lower than G. Then, forming A0 by (26) requires

2N2
f d

2Nq

flops. This is done once on the reference element – the operation count is independent
of Nc. Finally, computing A from A0 and G via (27) requires

NcN
2
f d

2

operations. The total operation count is

2N2
f d

2Nq +Ncd
2
(
d+ 1 +N2

f

)
. (28)

The final stage can be cast as matrix multiplication. We can reshape G to a Nc × d2

array and multiply by the transpose of reshaping A0 to N2
f × d2. While the relatively

small (d2) shared shared dimension of this matrix multiplication may limit perfor-
mance gains obtained from an optimized BLAS routine, the vastly reduced operation
count provides a major advantage for constant coefficient operators in affine geometry.

2.4. Matrix-free action
Krylov methods for the solution of linear systems only require the application of the
system matrix to a vector at each iteration. Although many effective precondition-
ers, such as incomplete factorizations and algebraic multigrid, require matrix en-
tries, higher-order discretizations frequently make use of preconditioners for low-order
methods on finer meshes [Heys et al. 2005; Orszag 1979]. This allows one to bypass
the high memory footprint and large cost associated with forming the element stiffness
matrices and assembling them into a gobal sparse matrix, provided that the operator
can be applied relatively efficiently. Our present techniques are readily adapted to com-
puting the matrix action, and the use of an optimized BLAS library leads to efficiency
that approaches that of Trilinos sparse matrix multiplication.

Again, we consider a batch of cells {Kc}Nc

c=1 with mappings to a reference element and
basis functions as before. However, we suppose we have some function u(x) defined
over the cells ∪Nc

c=1Kc that is a member of the global H1 finite element space. After
scattering the global degrees of freedom to the individual cells, we obtain the Nc ×Nf
array U such that

u(x)|Kc
=

Nf∑
i=1

Uciψ
Kc
i (x).

Our goal is to construct the array A ∈ RNc×Nf such that

Aci =
∫
Kc

∇u · ∇ψKc
i dx. (29)

This array is then gathered into a global storage vector, summing elementwise contri-
butions.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:11

We map the relevant integrals to the reference element by

Aci =
∫
K̂

DF−TKc
∇̂

Nf∑
j=1

UcjΨj

 ·DF−TKc
∇̂Ψi |JKc

| dx.

Next, we interchange summation with differentiation and move the transformation
from the test function gradient to the trial to obtain

Aci =
∫
K̂

DF−TKc

Nf∑
j=1

Ucj∇̂Ψj

 ·DF−TKc
∇̂Ψi |JKc

| dx

=
∫
K̂

(
|JKc
|DF−1

Kc
DF−TKc

)Nf∑
j=1

Ucj∇̂Ψj

 · ∇̂Ψi dx̂

=
∫
K̂

(GKc
)

Nf∑
j=1

Ucj∇̂Ψj

 · ∇̂Ψi dx̂

=
∫
K̂

ΓKc
· ∇̂Ψi dx̂.

(30)

where the same definition of GKc
holds as above and we have now defined

ΓKc = GKc

Nf∑
j=1

Uc,j∇̂Ψj

 .

Note that Γ now has one less index than for matrix construction – we have one field
per cell (tabulated at quadrature points) rather than one per each basis function.

Evaluating the integrals in (30) via numerical quadrature gives

Aci ≈
Nq∑
q=1

wq

d∑
k=1

ΓcqkDΨiqk =
Nq∑
q=1

d∑
k=1

ΓcqkDΨw
iqk, (31)

where Γcqk contains the components of ΓKc
tabulated at each quadrature point.

For the stiffness matrix construction, Γ was a rank 4 array with indices over the cell,
basis function, quadrature point, and spatial dimension. For the matrix action, we do
not have a basis function index, only a rank 3 array with indices over cell, quadrature
point, and spatial dimension.

The computation of Gcqk` by (13) using NcNqd2 (d+ 1) flops proceeds as before. How-
ever, since it is computed once and reused for each matrix-vector product, we omit this
small cost from our subsequent operation counts. To construct Γ, we require the quan-
tity

∑Nf

j=1 Ucj∇̂Ψi (ξq) at each quadrature point q. We let ∆cqk be the Nc ×Nq × d array
such that

∆cqk =
Nf∑
j=1

UcjDΨjqk. (32)

Constructing this array costs NcNqNfd operations, after which we form Γ by

Γcqk =
d∑
`=1

Gcqk`∆cq`, (33)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:12 R. C. Kirby

d = 2 d = 3
Degree Nf Level 3 Fraction

1 4 0.75
2 9 0.86
3 16 0.91

Degree Nf Level 3 Fraction
1 8 0.73
2 27 0.87
3 64 0.93

Table III: Level 3 fraction for matrix-free stiffness matrix action for linear, quadratic,
and cubic bases on triangular and tetrahedral elements.

requiring another NcNqd2 operations. Computing (31) requires a final NcNfNqd oper-
ations. Summing up the flop counts of these three stages gives a total of

NcNqd [d+ 2Nf] . (34)

For temporary storage beyond the elementwise storage of the function coefficients, we
require space for NcNqd2 numbers to store G and NcNqd numbers to store ∆. The
computation of Γ can overwrite ∆.

The formation of both ∆cqk and Aci can be cast as matrix multiplication. With Q =
(q − 1)d+ k as before, let ∆̄cQ = ∆cqk and ĒiQ = DΨiqk. Then,

∆cqk = ∆̄cQ =
Nf∑
i=1

UciĒiQ, (35)

so that ∆̄ = UĒ. Similarly, (31) can be rewritten as

Aci =
Nqd∑
Q=1

Γ̄cQĒiQ, (36)

with Γ̄cQ = Γcqk and ĒiQ = DΨw
iqk so that Ā = Γ̄ĒT .

So then, these two stages admit 2NcNqNfd flops being done in matrix multiplication,
giving a level 3 fraction of

2NcNqNfd
NcNqd [d+ 2Nf]

=
1

d
2Nf

+ 1
. (37)

This quantity approaches 1 with the number of basis functions, and as seen in Ta-
bles III and IV, is quite close to 1 for relatively low-order elements.

Finally, consider the temporary storage requirements associated with this approach.
Again taking Nc = 1000 and using tricubic elements with Nf = 64, we require storage
for G consisting of Nc×Nq×3×3 doubles. If Nq = Nf (e.g. Gauss-Lobatto quadrature),
this is about 4.6 MB of storage. For Γ, we require Nc ×Nq × d doubles, about 1.5MB of
storage. Storing the element degrees of freedom in U and the result of the action each
require Nc ×Nf storage, about half a megabyte. Such sizes are quite modest, even on
low-memory accelerators.

3. ANOTHER EXAMPLE: THE CURL-CURL OPERATOR
Our approach is specific neither to the Poisson operator nor toH1 finite element spaces.
For example, we consider the variational form∫

Ω

(∇× u) · (∇× v) dx, (38)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:13

d = 2 d = 3
Degree Nf Level 3 Fraction

1 3 0.8
2 6 0.9
3 10 0.94

Degree Nf Level 3 Fraction
1 4 0.84
2 10 0.95
3 20 0.98

Table IV: Level 3 fraction for matrix-free stiffness matrix action for linear, quadratic,
and cubic bases on quadrilateral and hexahedral elements.

where u, v ∈ H(curl) and again consider a patch of cells {Kc}Nc
c=1 with associated map-

pings FKc
: K̂ → Kc and a reference basis for {Ψi}

Nf

i=1 a finite-dimensional subspace
of H(curl) such as that of Nédélec [Nédélec 1980]. Following [Bochev and Gunzburger
2009], H(curl) bases transform by the covariant Piola transform Φ∗C defined earlier, so
that

ψKc
i = Φ∗C (Ψi) =

(
DF−TKc

Ψi

)
◦ F−1

Kc
. (39)

When the curl is taken of this transformed field on Kc, it becomes a different trans-
formation applied to the curl of the reference element field [Bochev and Gunzburger
2009]:

∇× ψKc
i =

(
J−1
Kc
DFKc

∇̂ ×Ψi

)
◦ F−1

Kc
≡ Φ∗D (Ψi) , (40)

which is the contravariant Piola transformation used for H(div). This commmuting
relationship allows us to proceed as with the Laplace operator.

Let A ∈ RNc×Nf×Nf be the element stiffness matrices

Acij =
∫
Kc

(
∇× ψKc

i

)
·
(
∇× ψKc

j

)
dx. (41)

Using (40), we map these integrals back to K̂ and use duality so that

Acij =
∫
K̂

(
J−1
Kc
DFKc

∇̂ ×Ψi

)
·
(
J−1
Kc
DFKc

∇̂ ×Ψj

)
|JKc
| dx̂

=
∫
K̂

(
|JKc
|−1DFTKc

DFKc
∇̂ ×Ψi

)
·
(
∇̂ ×Ψj

)
dx̂

=
∫
K̂

(
GKc∇̂ ×Ψi

)
·
(
∇̂ ×Ψj

)
dx̂,

=
∫
K̂

ΓKc
i ·

(
∇̂ ×Ψj

)
dx̂,

(42)

where

GKc
= J−1

Kc
DF−TKc

DF−1
Kc

(43)

ΓKc
i = GKc

(
∇̂ ×Ψi

)
. (44)

We are using same symbols as for the Laplacian with slightly different definitions to
stress the near-complete analogy between the two cases.

Rather than the gradients tabulated on the reference element, we require the curls,
so we define DΨiqk to be the kth vector component of ∇̂×Ψi tabulated at ξq, and we also
define DΨw

iqk = wqDΨiqk. We let G ∈ RNc×Nq×d×d to be the GKc matrices tabulated at
quadrature points. This is calculated from the precomputed Jacobians in NcNqd

2 flops

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:14 R. C. Kirby

by

Gcqk` =

(
d∑

m=1

DFTcqmkDFcqm`

)
/|Jcq|. (45)

Second, analagous to (15), G must act on the reference element curls to give

Γciqk =
d∑
`=1

Gcqk`DΨiq`, (46)

and finally

Acij =
Nq∑
q=1

3∑
k=1

ΓciqkDΨw
jqk. (47)

The operation counts associated with (46) and (47) are exactly the same as for (15)
and (16), respectively, considered as functions of Nc, Nf , Nq, and d. The curl-curl stiff-
ness matrix costs the same to compute, per entry, as the Poisson matrix, but the di-
mension of the Nédélec space is 3k (k + 1)2 rather than (k + 1)3.

We may also adapt this approach to apply the curl-curl operator elementwise
without forming either the global or element stiffness matrices. If we have u|Kc =∑Nf

i=1 Uciψ
Kc
i , then we wish to compute

Aci =
∫
Kc

(∇× u) ·
(
∇× ψKc

i

)
dx (48)

and then collect the elementwise results into a global vector. By expanding u in the
basis, using linearity and the pullbacks, we have

Aci =
∫
Kc

∇×
Nf∑
j=1

Ucjψ
Kc
j

 · (∇× ψKc
i

)

=
∫
Kc

Nf∑
j=1

Ucj

(
∇× ψKc

j

) · (∇× ψKc
i

)
dx

=
∫
Kc

Nf∑
j=1

Ucj∇× Φ∗C (Ψj)

 · (∇× Φ∗C (Ψi)) dx.

(49)

Now, we use the commuting relationship for the curl operator, linearity, and change
variables to write

Aci =
∫
Kc

Nf∑
j=1

UcjΦ∗D
(
∇̂ ×Ψj

) · (Φ∗D
(
∇̂ ×Ψi

))
dx

=
∫
Kc

Φ∗D

Nf∑
j=1

Ucj∇̂ ×Ψj

 · (Φ∗D
(
∇̂ ×Ψi

))
dx

=
∫
K̂

J−1
Kc
DFKc

Nf∑
j=1

Ucj∇̂ ×Ψj

 · (J−1
Kc
DFKc

(
∇̂ ×Ψi

))
|JKc |dx̂.

(50)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:15

Using the adjoint relation, we have

Aci =
∫
Kc

|JKc
|−1DFTKc

DFKc

Nf∑
j=1

Ucj∇̂ ×Ψj

 · (∇̂ ×Ψi

)
dx̂

=
∫
Kc

GKc

Nf∑
j=1

Ucj∇×Ψj

 · (∇×Ψi) dx̂

=
∫
Kc

ΓKc · (∇×Ψi) dx̂,

(51)

where ΓKc = GKc

(∑Nf

j=1 Ucj∇̂ ×Ψj

)
. To evaluate this numerically, we first compute

the quantity

∆cqk =
Nf∑
j=1

UcjDΨjqk,

After this, the transformation G is applied so that

Γcqk =
d∑
`=1

Gcqk`∆cq`,

and finally

Aci =
Nq∑
q=1

d∑
k=1

ΓcqkDΨw
iqk.

The computation proceeds exactly the same as for the Laplacian, and the operation
count and level three fraction are exactly parallel to those for the Laplacian, as well.

4. A GENERAL FRAMEWORK
Having seen some examples, we now present an abstract setting. While this requires
some amount of additional notation, it will illustrate the general utility of optimized
matrix multiplication for bilinear form evaluation. We still let {Kc}Nc

c=1 denote a collec-
tion of cells diffeomorphic to the reference cell K̂ via mappings FKc .

On each cell Kc, let Wi, for i = 1, 2 be finite-dimensional vector spaces and Ui for
i = 1, 2 be finite-dimensional spaces of functions mapping Kc into Wi, respectively.
We also require (W, 〈·, ·〉) to be a finite-dimensional inner product space. The members
of W are indexed by some set A, and we assume that W is equipped with an inner
product 〈·, ·〉 of the form

〈v, w〉 =
∑
α∈A

vαwα (52)

for all v, w ∈ W. Let Vi, i = 1, 2 be a second pair of finite-dimensional spaces of functions
mapping Kc into the inner-product space (W, 〈·, ·〉). Also, let Di : Ui → Vi for i = 1, 2 be
a pair of linear mappings.

We consider elementwise bilinear forms of the form ac : U1 × U2 → R of the form

ac (u1, u2) =
∫
Kc

〈D1u1, D2u2〉dx. (53)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:16 R. C. Kirby

While it may not be obvious, this abstract formulation does admit variable coefficients;
they will be absorbed into the definitions of D1 and V1.

We assume that Ui and Vi are the images of some spaces Ûi and V̂i under pullbacks
Φ∗Ui

and Φ∗Vi
, where the hatted spaces contain functions mapping K̂ into the finite-

dimensional spacesWi andW. We also assume reference-element analogs of the linear
maps Di, which we denote by D̂i : Ûi → V̂i. We require that the commuting properties

D1Φ∗U1
(û) = ωΦ∗V1

(
D̂û
)

D2Φ∗U2
(û) = Φ∗V2

(
D̂û
) (54)

hold for all û ∈ Ûi. ω is some linear operator necessary to encode a coefficient.
We require that at least the pullbacks for the Vi spaces to take the form of a linear

transformation plus a coordinate change. That is, we require the existence of RVi such
that

Φ∗Vi
(û) = Ri

(
û ◦ F−1

Kc

)
(55)

for each û. We have
D1Φ∗U1

(û) = ω (R1û) ◦ F−1
Kc

D2Φ∗U2
(û) = (R2û) ◦ F−1

Kc

(56)

Now, we let NUi
= dimUi = dim Ûi. We let

{
Ψi
j

}NUi

j=1
be a basis for Ûi and let ψij =

Φ∗Ui

(
Ψi
j

)
be the basis functions for Ui. Before formulating the matrix construction and

application in this abstract setting, we turn to some examples.

4.1. Examples
For the weak Laplacian

ac(u, v) =
∫
Kc

∇u · ∇vdx, (57)

U1 = U2 is some finite element subspace of H1 (Kc) and D1 = D2 = ∇ is the gradient.
W1 = W2 = W = Rd equipped with the Euclidean inner product. The spaces Vi are
simply the codomains of ∇ and Ûi are the reference element spaces. In the commuting
relations (54) and (55) we have κ = I and R1 = R2 = DF−TKc

.
For the variable coefficient operator

ac(u, v) =
∫
Kc

κ∇u · ∇vdx, (58)

we take D1 = κ∇. Then, while Ui and Ûi are unchanged, V1 = {κ∇u : u ∈ U1} and V̂1

is similarly modified. In (54), we have that ω = κ, and the commuting relations (54)
and (55) for D1 just become

κ∇Φ∗U1
(û) = κDF−TKc

∇̂û (59)

To cast the curl-curl example from Section 3 in this framework, we let Ûi be the the
reference element Nedelec spaces with V̂i the codomain of the reference element curl.
The physical spaces Ui are obtained from Ûi by the pullback Φ∗C . The operators D1 =
D2 = ∇× are the curl operator, with D̂i the curl in the reference element coordinates.
From (40), we know that R1 = R2 = J−1

Kc
DFKc and that ω is the identity.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:17

4.2. Matrix construction
Returning to the abstract setting, our element stiffness matrices take the form

Acij = ac(ψ1
i , ψ

2
j) =

∫
Kc

〈D1ψ
1
i , D2ψ

2
j 〉dx. (60)

Using the pullbacks of the basis functions and linearity, we can change these integrals
to the reference elements by

Acij =
∫
Kc

〈D1ψ
1
i , D2ψ

2
j 〉dx

=
∫
Kc

〈D1Φ∗U1

(
Ψ1
i

)
, D2Φ∗U2

(
Ψ2
j

)
〉dx

=
∫
Kc

〈ωΦ∗V1

(
D̂1Ψ1

i

)
,Φ∗V2

(
D̂2Ψ2

j

)
〉dx

=
∫
K̂

〈ωR1D̂1Ψ1
i , R2D̂2Ψ2

j 〉|JKc |dx̂

=
∫
K̂

〈|JKc
|R′2ωR1D̂1Ψ1

j , D̂2Ψ2
j 〉dx̂,

(61)

where R′2 denotes the adjoint operator to R2. We define GKc
= |JKc

|R′2ωR1 and then
ΓKc
i = GKc

D̂1Ψ1
i . We then have

Acij =
∫
K̂

〈ΓKc
i , D̂2Ψ2

j 〉dx̂. (62)

We evaluate (possibly approximately) the integrals in (62) by numerical quadrature.
Analagous to the DΨ arrays used before, we let DΨj

iqα be the α entry of D̂j applied
to Ψj

i evaluated at quadrature point ξq on the reference element. We also let DΨ2,w
iqα =

wqDΨ2
iqα

Next, we define the pointwise matrices that store the composite transformations.
In the worst case, this will require storing NcNq|A|2 numbers in an array Gcqαβ . This
corresponds to an array storing a |A| × |A| matrix at each quadrature point of each
cell that is For many elements, this may be typical, but there are particular cases
where there are alternatives. For example, the Arnold-Winther elements [Arnold and
Winther 2002] provide a polynomial-based symmetric tensor finite element for use
in two-dimensional elasticity. After defining a reference element, they use the matrix
Piola transform so that a reference tensor τ̂ is transformed to DFKc

(
τ̂ ◦ F−1

Kc

)
DFTKc

.
This linear transformation is more compactly stored and more efficiently applied than
reshaping the symmetric tensor input as a 3-vector and forming a 3 × 3 matrix that
encodes the action of this transformation.

At any rate, we require this array to act on the array DΨ1 so that we form an array
Γciqα by

Γciqα =
∑
β∈A

GcqαβDΨ1
iqβ , (63)

realizing that in certain cases like the Arnold-Winther element this may be done with-
out explicit values for G.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:18 R. C. Kirby

After this, we can write Acij as a sum over quadrature points and components as

Acij ≈
Nq∑
q=1

wq
∑
α∈A

ΓciqαDΨ2
jqα =

Nq∑
q=1

∑
α∈A

ΓciqαDΨ2,w
jqα. (64)

We can impose a linear ordering on the elements ofA and reshape Γ as aNcNU1×Nq|A|
array Γ̄ and DΨ2,w as a NU2 × Nq|A| array D̄. Ā, the NcNU1 × NV1 reshaping of A, is
computed by the matrix-matrix product Γ̄T D̄.

Assuming that all calculations are carried out explicitly (i.e. ω, R1 and R2 are stored
as |A|× |A|matrices), we can show this approach yields a high level 3 fraction. Assum-
ing thatR1 andR2 are given, the formation ofG requiresNcNq|A|2 (|A|+ 1) operations.
Forming Γciqα requires a further NcNqNU1 |A|2 operations. The last step, forming A re-
quires NcNqNU1NU2 |A| operations. The total operation count is

NcNq|A| (|A| (|A|+ 1) +NU1 |A|+NU1NU2) , (65)
of which

NcNq|A|NU1NU2 (66)
are performed in matrix multiplication, giving (after some algebra) a level 3 fraction
of

1
|A|(|A|+1)
NU1NU2

+ |A|
NU2

+ 1
. (67)

When |A| = d and NU1 = NU2 ≡ Nf , this exactly recovers the count found in (23).

4.3. Matrix action
We also consider the construction of the elementwise action of variational forms. Let-
ting u ∈ U1 on each Kc with u|Kc

=
∑NU
j=1 Ucjψ

1
j , we need to compute

Aci =
∫
Kc

〈D1u,D2ψ
2
i 〉dx. (68)

for all 1 ≤ c ≤ Nc and 1 ≤ i ≤ NU2 .
Applying the pullbacks, linearity, the commuting relations, and adjoints leads to

Aci =
∫
Kc

〈D1u,D2ψ
2
i 〉dx

=
∫
K̂

〈GKc

NU1∑
j=1

UcjD̂1Ψ1
j

 , D̂2Ψ2
i 〉dx̂

=
∫
K̂

〈ΓKc , D̂2Ψ2
i 〉dx̂

(69)

where the operator GKc
and its tabulation Gcqαβ are as for matrix construction and

ΓKc
= GKc

(
NU∑
i=1

UciD̂ΨUi

)
. (70)

To calculate the action by quadrature, we tabulate ΓKc
at the quadrature points by

first finding

∆cqα =
NU∑
i=1

UciDΨUiqα, (71)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:19

to which we apply the G array to obtain Γ by

Γcqα =
∑
β∈A

Gcqαβ∆cqβ . (72)

Finally, Aci is computed by

Aci =
Nq∑
q=1

wq
∑
α∈A

ΓcqαDΨ2
iqα =

Nq∑
q=1

∑
α∈A

ΓcqαDΨ2,w
iqα , (73)

which, as the first stage, can be reshaped into matrix multiplication.

5. SOME NUMERICAL RESULTS
We have implemented several of these these algorithms in C++ using the Trili-
nos project [Heroux et al. 2005]. In particular, we use Intrepid [Bochev et al.
2012] to provide basis functions, integration rules, and elementwise Jacobians as
well as its FieldContainer as a general multi-dimensional array. We also use
Epetra FECrsMatrix and Epetra FEVector to store sparse matrices and global vec-
tors. We also provide some comparisons against FEniCS version 1.2.0. We have run
all our experiments on a single 2.70GHz Intel Xeon core of a Dell Precision worksta-
tion with 128GB of RAM running Linux Mint. The peak performance of a single thread
on this machine is approximately 10.8 GFlops (four times the clock rate). All code was
compiled with the Ubuntu-packaged gcc 4.6.3 suite. We compiled and linked against
a single-threaded build of OpenBLAS [OpenBlas 2013], which proved notably faster
than the Ubuntu-packaged ATLAS [Whaley and Dongarra 1998] routines for the sizes
and shapes of matrix multiplication we require.

In our C++ code, we used as a baseline a straightforward implementation of Algo-
rithm 2 for assembling the Laplacian and an analgous one for the curl-curl operator.
We also used a similar approach to implement the actions of both of these operators.
We also wrote similar implementations of the duality-based method Algorithm 3 us-
ing basic C++ loops. Because of the slightly lower operation count, we observed slight
decreases in the run-time. Then, we also replaced the relevant loops with calls to the
general matrix-matrix multiplication routine DGEMM from OpenBLAS to measure the
impact of an optimized matrix multiplication routine on the run-time. Also relevant
to the discussion is the time spent interacting with global storage. For assembling the
stiffness matrices, we also report the time to sum the element matrices into a global
sparse matrix. For the matrix actions, we report the time element computation, the
total time for the matrix-vector product, and a comparison to the sparse matrix-vector
product provided by an assembled Epetra matrix. In the next two subsections, we
summarize our findings for these situations, and then provide a brief comparison to
FEniCS in the final subsection.

5.1. The Laplace operator
In Table V, we present timings for the Laplace operator on a set of 1000 hexahedra,
discretized with tensor-product polynomials of orders 1, 2, and 3. The second through
fourth columns give the time required to build Acij using the standard variant in Al-
gorithm 2, our straight C++ implementation of Algorithm 1, and the build time using
OpenBLAS. All of these columns include the time to compute Gcqk` and Γciqk as well
as Acij , but not to sum into global storage. The final column gives the time required to
perform that phase, which is independent of the technique used for building Acij .

We observe a modest speedup going from the standard variant to duality, simply
because of the lower operation count. However, replacing the computation of Acij from

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:20 R. C. Kirby

k basic loop dual BLAS (GFLOPs) Assembly time
1 6.64E-003 4.74E-003 1.91E-003 (1.26) 2.65E-003
2 2.51E-001 1.16E-001 2.60E-002 (2.56) 5.18E-002
3 3.29E+000 1.39E+000 1.77E-001 (4.66) 3.96E-001

Table V: Performance numbers for assembling the Laplace operator on a mesh of 1000
hexahedra. The first column (k) indicates the polynomial degree. The second through
fourth columns present timings (in seconds) for a basic looping strategy, a loop-based
implementation of the duality algorithm, and the duality algorithm utilizing DGEMM.
The parenthetical number in the “BLAS” column indicates the number of gigaflops
this timing represents. The final column indicates the time required to assemble the
elementwise matrices into a sparse Epetra matrix.

k basic dual BLAS (GFLOPs) Total matvec Epetra
1 1.79E-003 8.85E-004 2.61E-004 (1.75) 2.78E-004 3.22E-005
2 1.88E-002 8.58E-003 9.61E-004 (4.80) 1.02E-003 2.81E-004
3 1.04E-001 4.68E-002 3.21E-003 (7.84) 3.34E-003 1.11E-003

Table VI: Performance numbers for matrix-free application of the Laplace operator on
a mesh of 1000 hexahedra. The first column (k) indicates the polynomial degree. The
second through fourth columns give timings (in seconds) for a basic looping strategy,
a C++ implementation of the duality-based algorithm, and the same optimized utiliz-
ing DGEMM. The parenthetical number in the “BLAS” column indicates the number of
gigaflops this timing represents. The “Total matvec” column gives the time for elemen-
twise BLAS-based calculations plus the time to scatter and gather into a global vector.
The final column gives the time to apply the already-assembled global Epetra matrix
onto a vector.

Γciqk by optimized matrix multiplication gives a marked improvement in the overall
run-time. As the polynomial degree increases, so does the FLOP rate. For tricubic ele-
ments, our 4.66 GFLOPs corresponds to about 43% of peak performance.

We also tested the three approaches to the action of the Laplacian. We showed earlier
that the level 3 fraction for matrix actions is larger, and can expect higher flop rates as
a result. In Table VI, the 7.84 GFLOPs for tri-cubic elements corresponds to just over
75% of peak performance. It is also interesting to note from this table that the time
to scatter and gather the elementwise degrees of freedom is a small amount of the
total computation and that by third degree, our matrix-free method is only three times
slower than the Epetra matrix-vector product. When one observes that the cost of
assembling the global sparse matrix costs about one hundred matrix-vector products,
this is a notable result.

5.2. The curl-curl operator
We repeated the same experiments as above for the curl-curl operator. Since, for
the same degree, the Nédélec space is vector-valued and larger than the H1 space
(3k (k + 1)2 versus (k + 1)3 degrees of freedom per element), this will correspond to
larger matrix dimensions. Larger matrix dimensions typically lead to better perfor-
mance for DGEMM, and we find this to be the case. In Table VII, we see flop rates of
1.35 GFLOPs for the lowest order case up to 6.62 GFLOPs (61% of peak) for the third-
order case. In each case, we have achieved a substantial speedup over the loop-based
implementation and reduced the elementwise construction time below that of global
assembly.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:21

k basic loop dual BLAS (GFLOPs) Assembly time
1 1.98E-002 8.77E-003 2.76E-003 (1.35) 5.60E-003
2 1.29E+000 4.20E-001 6.20E-002 (3.83) 1.79E-001
3 2.18E+001 6.76E+000 6.02E-001 (6.62) 1.30E+000

Table VII: Performance numbers for assembling the curl-curl operator with Nédélec
elements on a mesh of 1000 hexahedra. The first column (k) indicates the order of the
space. The second through fourth columns present timings (in seconds) for an ana-
log of Algorithm 2, an pure C++ analog of Algorithm 1, and Algorithm 1 adapted to
utilize DGEMM. The parenthetical number in the “BLAS” column indicates the number
of gigaflops this timing represents. The final column indicates the time required to
assemble the elementwise matrices into a sparse Epetra matrix.

k basic dual BLAS (GFLOPs) Total matvec Epetra
1 2.99E-003 1.22E-003 2.54E-004 (2.55) 2.81E-004 9.70E-005
2 4.25E-002 1.66E-002 1.34E-003 (6.69) 1.47E-003 3.15E-003
3 2.71E-001 1.07E-001 5.60E-003 (9.97) 5.94E-003 2.22E-002

Table VIII: Performance numbers for matrix-free application of the curl-curl operator
using Nedelec elements on a mesh of 1000 hexahedra. The first column (k) indicates
the order of the space degree. The second through fourth columns give timings (in
seconds) for a basic looping strategy, a loop-based implementation of the duality al-
gorithm, and the duality algorithm utilizing DGEMM. The parenthetical number in the
“BLAS” column indicates the number of gigaflops this timing represents. The “Total
matvec” column gives the time for elementwise BLAS-based calculations plus the time
to scatter and gather into a global vector. The final column gives the time to apply the
already-assembled Epetra matrix onto a vector.

Our approach is also quite successful in optimizing the action of the curl-curl op-
erator, as presented in Table VIII. Our optimized matrix-free implementation is only
marginally slower than the Epetra matvec in the lowest-order case and is actually
faster for second and third order. Also note that our third-order optimized matrix-
vector product, running at 9.97 GFLOPs, amounts to 92% of single-thread peak per-
formance.

5.3. A comparision to FEniCS
As another point of reference, we also compare our approach to FEniCS [Logg
et al. 2012]. While the comparison is imperfect (e.g. FEniCS only supports simpli-
cial meshes), seeing timings verses a known performant code can be helpful. While
we use 103 = 1000 hexahedra, we use the UnitCubeMesh(10,10,10) consisting of 6000
tetrahedra. While this gives more mesh cells, we have fewer degrees of freedom per
cell on tetrahedra for both the Lagrange and Nédélec spaces. For example, trilinear
hex elements have 8 basis functions per cell versus 4 linears per tetrahedron. Table IX
summarizes the number of degrees freedom for each space of each degree on the two
meshes under consideration. Also note that FEniCS’ simplicial meshes only require
one Jacobian per cell, while we store a Jacobian at each quadrature point on each cell.

FEniCS also provides two distinct modes of form evaluation, the tensor contraction
mode described in [Kirby and Logg 2006] and extended to H(curl) elements in [Rognes
et al. 2009] and the quadrature mode developed in [Ølgaard and Wells 2010]. The ten-
sor contraction mode precomputes integrals on the reference cell, thereby reducing the
run-time cost per-element of form evaluation. The quadrature mode generates perfor-
mant loops over quadrature points per-cell. The results in [Ølgaard and Wells 2010]

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:22 R. C. Kirby

Lagrange Nédélec
k tet hex tet hex
1 24000 8000 36000 12000
2 36000 27000 120000 54000
3 60000 64000 270000 144000

Table IX: Number of elementwise degrees of freedom for Lagrange and Nédélec spaces
on meshes of 1000 hexes and 6000 tetrahedra.

Degree Tensor mode Quadrature mode BLAS
1 4.67e-03 6.43e-03 4.56e-03
2 3.10e-02 9.12e-02 7.78e-02
3 1.62e-01 9.95e-01 5.73e-01

Table X: Comparison of assembling the Laplacian on the unit cube using FEniCS with
6000 tetrahedra versus our BLAS-based approach on 1000 hexahedra. The second and
third columns indicate the time to assemble the matrix using code generated by the
tensor and quadrature representations in FEniCS. The BLAS column adds together
the times from the BLAS and Assembly columns of Table V.

Degree Tensor mode Quadrature mode BLAS
1 2.47e-03 2.64e-03 2.78e-04
2 4.71e-03 8.01e-03 1.02e-03
3 2.39e-02 4.13e-02 3.34e-03

Table XI: Comparison of the action of the Laplacian on the unit cube using FEniCS
with 6000 tetrahedra versus our BLAS-based approach on 1000 hexahedra. The second
and third columns indicate the time to assemble the matrix using code generated by
the tensor and quadrature representations in FEniCS. The BLAS column repeats the
“Total matvec” timing in VI.

indicate that it loses to tensor mode for simple, constant-coefficient forms but scales
much better with form complexity (including variable coefficients). We will compare
our techniques to both the tensor- and quadrature-based representations.

FEniCS also supports the action of a variational form as well as assembly. For ex-
ample, if u is a Function and v a TestFunction, then assembling inner(grad(u) ,
grad(v))*dx computes the action (without boundary conditions) of the Laplace ma-
trix on the vector of coefficients of u.

In Tables X and XII, we compare the assembly time for FEniCS to our approach. We
report the total time required by assemble in FEniCS compared to the time for us to
build Acij and sum entries into global storage. Given that the numbers are compara-
ble for a relatively comparable amount of work and given all the differences we have
highlighted, it is probably wise not to draw subtle conclusions from these results.

On the other hand, Tables XI and XIII show a different story for the matrix-free
actions of these two operators. Even at k = 1, our BLAS formulation wins by about an
order of magnitude for the Laplacian. The gap grows with polynomial degree and is
more significant for the curl-curl operator.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

High-performance evaluation of finite element forms 1:23

Degree Tensor mode Quadrature mode BLAS
1 5.13e-02 3.26e-02 8.36e-03
2 2.12e+00 1.42e+00 2.41e-01
3 3.91e+01 2.77e+01 1.90e+00

Table XII: Comparison of assembling the curl-curl operator on the unit cube using
FEniCS with 6000 tetrahedra versus our BLAS-based approach on 1000 hexahedra.
The second and third columns indicate the time to assemble the matrix using code
generated by the tensor and quadrature representations in FEniCS. The BLAS column
adds together the times from the BLAS and Assembly columns of Table VII.

Degree Tensor mode Quadrature mode BLAS
1 8.13e-02 5.87e-03 2.81e-04
2 2.56e+00 6.24e-02 1.47e-03
3 3.93e+01 5.12e-01 5.93e-03

Table XIII: Comparison of the action of the curl-curl operator on the unit cube using
FEniCS with 6000 tetrahedra versus our BLAS-based approach on 1000 hexahedra.
The second and third columns indicate the time to assemble the matrix using code
generated by the tensor and quadrature representations in FEniCS. The BLAS column
repeats the “Total matvec” timing in VIII.

6. CONCLUSIONS AND FUTURE WORK
Using commuting properties of pullbacks and duality, we have provided a generic
mechanism by which finite element operators may be computed with very high per-
formance and minimal assumptions on the particular basis functions, geometry, or
coefficients of the problem at hand. By its separation of discrete tasks, our duality-
based approach suggests certain useful, though not entirely standard, abstraction bar-
riers. As we have seen, these barriers permit the replacement of FEM-specific for loops
with appropriately optimized calls to DGEMM. Alternatively, these matrix multiplications
could be replaced with alternative, problem-specific algorithms such as tensor-product
decomposition of bases.

In this work, we have only considered elementwise variational forms, implicitly as-
suming natural boundary conditions. While boundary conditions represent a lower-
order term with regard to the work estimate for typical conforming methods, a more
significant fraction of the work in discontinuous Galerkin methods lies on handling
internal boundary terms. Additional research will be required to understand whether
the present techniques may be applied to such discretizations.

Finally, In the near future, we hope to extend this approach to utilize multiple CPU
cores and also GPU boards. Also, the genericity of our approach suggests that it could
be incorporated as an internal target for high-level general-purpose codes such as Sun-
dance.

ACKNOWLEDGMENTS

REFERENCES
Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov. 2011. Bernstein-Bézier finite elements of arbitrary

order and optimal assembly procedures. SIAM Journal on Scientific Computing 33, 6 (2011), 3087–3109.
Douglas N. Arnold and Ragnar Winther. 2002. Mixed finite elements for elasticity. Numer. Math. 92, 3

(2002), 401–419.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

1:24 R. C. Kirby

W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.II — a general-purpose object-oriented finite ele-
ment library. ACM Trans. Math. Softw. 33, 4 (2007), 1–27.

Wolfgang Bangerth and Guido Kanschat. 2013. Deal.II tutorial, “The step-3 tutorial program”. http://www.
dealii.org/8.0.0/doxygen/tutorial/index.html. (2013).

Pavel Bochev, H. Carter Edwards, Robert C. Kirby, Kara Peterson, and Denis Ridzal. 2012. Solving PDEs
with Intrepid. Scientific Programming 20, 2 (2012), 151–180.

Pavel B. Bochev and Max D. Gunzburger. 2009. Least-squares finite element methods. Applied Mathematical
Sciences, Vol. 166. Springer, New York. xxii+660 pages. DOI:http://dx.doi.org/10.1007/b13382

Michael A. Heroux, Roscoe A. Bartlett, Victoria E. Howle, Robert J. Hoekstra, Jonathon J. Hu, Tamara G.
Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger,
Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley.
2005. An overview of the Trilinos project. ACM Transactions on Mathematical Software (TOMS) 31, 3
(2005), 397–423.

Jan S. Hesthaven and Tim Warburton. 2008. Nodal discontinuous Galerkin methods. Texts in Applied Math-
ematics, Vol. 54. Springer, New York. xiv+500 pages. DOI:http://dx.doi.org/10.1007/978-0-387-72067-8
Algorithms, analysis, and applications.

J. J. Heys, T. A. Manteuffel, S. F. McCormick, and L. N. Olson. 2005. Algebraic multigrid for higher-order
finite elements. J. Comput. Phys. 204, 2 (2005), 520–532. DOI:http://dx.doi.org/10.1016/j.jcp.2004.10.021

Robert C. Kirby. 2011. Fast simplicial finite element algorithms using Bernstein polynomials. Numer. Math.
117, 4 (2011), 631–652.

Robert C. Kirby, Matthew G. Knepley, Anders Logg, and L. Ridgway Scott. 2005. Optimizing the evaluation
of finite element matrices. SIAM J. Sci. Comput. 27, 3 (2005), 741–758 (electronic).

Robert C. Kirby and Anders Logg. 2006. A Compiler for Variational Forms. ACM Trans. Math. Software 32,
3 (2006), 417–444.

Robert C. Kirby, Anders Logg, L. Ridgway Scott, and Andy R. Terrel. 2006. Topological optimization of the
evaluation of finite element matrices. SIAM J. Sci. Comput. 28, 1 (2006), 224–240 (electronic).

Anders Logg, Kent-Andre Mardal, and Garth N. Wells. 2012. Automated Solution of Differential Equations
by the Finite Element Method: The FEniCS Book. Vol. 84. Springer.

Kevin Long, Robert C. Kirby, and Bart van Bloemen Waanders. 2010. Unified embedded parallel finite
element computations via software-based Fréchet differentiation. SIAM J. Sci. Comput. 32, 6 (2010),
3323–3351. DOI:http://dx.doi.org/10.1137/09076920X

J.-C. Nédélec. 1980. Mixed finite elements in R3. Numer. Math. 35, 3 (1980), 315–341.
K. B. Ølgaard and G. N. Wells. 2010. Optimisations for quadrature representations of finite element tensors

through automated code generation. ACM Trans. Math. Software 37, 1 (2010). http://dx.doi.org/10.1145/
1644001.1644009

OpenBlas 2013. OpenBLAS homepage. (2013). http://xianyi.github.com/OpenBLAS.
Steven A. Orszag. 1979. Spectral methods for problems in complex geometries. In Numerical methods for

partial differential equations (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978).
Publ. Math. Res. Center Univ. Wisconsin, Vol. 42. Academic Press, New York, 273–305.

Marie E. Rognes, Robert C. Kirby, and Anders Logg. 2009. Efficient assembly of H(div) and H(curl) conform-
ing finite elements. SIAM Journal on Scientific Computing 31, 6 (2009), 4130–4151.

R. Clint Whaley and Jack J. Dongarra. 1998. Automatically tuned linear algebra software. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing (CDROM). IEEE Computer Society, 1–27.

Received ; revised ; accepted

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2013.

