Dynamically adaptive upwind finite volume methods for contaminant transport

Clint Dawson, Steve Bryant & Robert Kirby Center for Subsurface Modeling Texas Institute for Computational and Applied Mathematics The University of Texas, Austin, Texas, USA E-mail: clint@ticam.utexas.edu

Abstract

In order to accurately model chemically reactive transport, one needs to incorporate ome type of grid adaptivity into the numerical simulator. In this paper we give an example f a two-component contaminant transport model, which exhibits some interesting physical henomena and motivates our desire for grid adaptivity. A dynamically adaptive method s then developed in the context of a Godunov-mixed method for a scalar equation. 'heoretical and numerical results for this approach are presented.

Introduction

The accurate modeling of chemically reactive transport in a porous medium s crucial to monitoring and remediating contaminant sites. Over the past everal years, mathematical and numerical models which describe transport, eochemical and biogeochemical reactions between chemical species in the ubsurface have been developed, see, for example, Yeh and Salvage [1] and Vheeler ϵt al [2].

These problems are difficult to model computationally for several reaons. First, the combination of highly advective flow and chemical reactions an give rise to very sharp concentration fronts, which must be modeled with ninimal numerical diffusion and oscillation. Second, the chemical reactions hemselves can be in equilibrium or non-equilibrium, which gives rise to on-linear couplings and problems with highly varying time-scales. Finally,

these contaminant species are flowing through highly heterogeneous porous media, and the flow field must accurately account for these heterogeneities.

At the Center for Subsurface Modeling, we have developed a parallel contaminant transport simulator, PARSSIM, which models single phase flow and transport of multiple contaminant species. In this simulator, advection and diffusion are modeled using either a characteristic-mixed method, described in Arbogast and Wheeler [3], or a Godunov-mixed method, described in Dawson [4]. In the latter approach, a higher-order Godunov method is used to simulate advection, and diffusion is incorporated using a mixed finite element method. Chemical reactions are handled through a split step, and solved as a system of nonlinear algebraic and/or ordinary differential equations. Here, an interior point method is used to handle inequality contraints which can arise in geochemical modeling. For a complete description of the methodology, see Wheeler ϵt al [2].

PARSSIM does not, at the present time, have any adaptive capability. Not surprisingly, we have found in some of our recent simulations that such a capability is not only desirable but necessary. Therefore, we are presently in the process of studying adaptive methods in more detail and incorporating them into our simulators.

The outline of this paper is as follows. In the next section, we describe a simple two-component contaminant transport problem and give numerica results which motivate our need for dynamic adaptivity. In Section 3, we will describe our dynamically adaptive method in some detail, and state a theoretical result on the overall accuracy of this method.

2 An example of two-component transport

In this section, we consider a simple case of two-component sorptive trans port. The model concerns the flow of a metal cation and a pH front through one-dimensional porous medium. Competition for adsorption sites betwee the two species occurs, giving rise to some potentially interesting physica behavior.

Consider the one-dimensional flow of fluid containing a sorbing specie such as a metal cation (e.g. Sr^{++} , Ca^{++} , Na^+ , etc.) through a porou medium containing a sorbent onto which proton and metal cation adsorptio occurs. The adsorption reactions may be written as

$$M^{+n} + S \Leftrightarrow SM^{+n}$$
$$H^+ + S \Leftrightarrow SH^+$$

Transactions on Ecology and the Environment vol 17, © 1998 WIT Press, www.witpress.com, ISSN 1743-3541

Computer Methods in Water Resources XII 643

where M^{+n} represents a cation of charge +n, S represents an adsorption site, and H^+ represents the proton. The equilibrium expressions for these reactions are written

$$K_M = \frac{Z_M}{C_M Z_S},\tag{1}$$

$$K_H = \frac{Z_H}{C_H Z_S},\tag{2}$$

where Z_S is the concentration of unoccupied sites on the substrate, C_i is he fluid phase concentration of species i, Z_i is its sorbed concentration, and K_i is the corresponding equilibrium constant. Because the total number of sites on the substrate, Z_O is constant, we have the following conservation equation:

$$Z_M + Z_H + Z_S = Z_O. (3)$$

Substitution of the equilibrium expressions (1)-(2) into this equation allows elimination of the concentration of unoccupied sites:

$$Z_S = \frac{Z_O}{1 + K_M C_M + K_H C_H}$$

and substitution for Z_S in (1) and (2) leads to the familiar Langmuir adorption isotherms:

$$Z_M = \frac{K_M C_M Z_O}{1 + K_M C_M + K_H C_H},\tag{4}$$

$$Z_{H} = \frac{K_{H}C_{H}Z_{O}}{1 + K_{M}C_{M} + K_{H}C_{H}}.$$
(5)

Assuming chemical equilibrium between the flowing phase and the sorpent at every point within a one-dimensional porous medium, the mass palance for the metal cation may be written:

$$(C_M + Z_M)_t + (C_M)_x - \frac{1}{N_{Pe}}(C_M)_{xx} = 0,$$
(6)

where t is dimensionless time, x is dimensionless distance and N_{Pe} is the Peclet number. The concentration units are in moles per unit pore volume.

For an aqueous phase the dissociation of water always occurs and can be written

$$H_2O - H^+ \Leftrightarrow OH^-.$$

At chemical equilibrium this reaction imposes a relationship between the proton and hydroxyl concentrations:

$$C_{OH^-} = \frac{K_W}{C_H}.$$

Considering the simplest possible aqueous system, where there are no othe species involving protons or hydroxyls, we have that the total proton con centration, or "acidity" satisfies

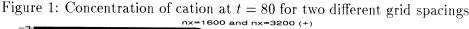
$$C_A = C_H - C_{OH^-} = C_H - \frac{K_W}{C_H}.$$
 (7)

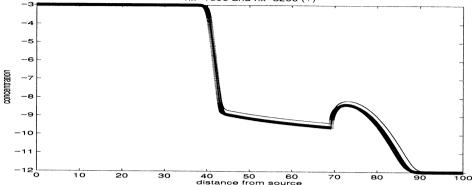
The mass balance for transport of protons becomes

$$(C_A + Z_H)_t + (C_A)_x - \frac{1}{N_{P\epsilon}}(C_A)_{xx} = 0.$$
 (8)

Combining (6)-(8) with appropriate boundary and initial conditions give our two-component model.

As an application of the above model, we consider the following param eters: $K_H = 10^4$, $K_M = 10^3$, $K_W = 10^{-14}$ and $Z_O = 2 * 10^{-3}$. We solv the problem over a domain 0 < x < 100, with initial conditions $C_H = 10^$ and $C_M = 10^{-12}$, and boundary conditions at x = 0, $C_H = 10^{-12}$ and $C_M = 10^{-3}$. We also choose $N_{Pe} = 10$. The model is discretized using a extension of the numerical approach described in the next section, with r adaptivity. In Figure 1 below, the numerical approximations to the concentration C_M for two different grid spacings ($\Delta x = 1/16$ and $\Delta x = 1/32$ are given at time t = 80. As the figure indicates, a "bump" or "fast wave forms ahead of the main front, carrying a small but significant concentr tion. Understanding the nature of this fast wave phenomena, in particula whether it is a physical occurrence or merely a numerical artifact, is the subject of ongoing research. The origin of the bump occurs at the precilocation of the C_H front, suggesting that it is caused by the phenomeno of competitive adsorption. We have observed that the resolution of the fa wave requires extremely fine grid in the region of the C_H front. As the Peclet number increases, even finer grid is required, to the point where t number of grid points needed to observe numerical convergence, even in one-dimensional setting, becomes prohibitive. Attempting these simulatio in multi-dimensions would be nearly impossible without some sort of gr adaptivity.





3 An adaptive Godunov-mixed method

n this section, we describe an adaptive upwind mixed finite element method. Ne consider the transport equation for a single component:

$$(c+z(c))_t + uc_x - Dc_{xx} = 0, \quad 0 < x < L.$$
(9)

We assume u > 0 and combine (9) with initial condition $c(x, 0) = c^0(x)$ and boundary conditions:

$$(uc - Dc_x)(0, t) = ug(t),$$
(10)

$$Dc_x(L,t) = 0, (11)$$

where g(t) is specified. The adsorption isotherm z is assumed to be monoone increasing in c. Let T(c) = c + z(c), and assume $\eta(T) = c$ is the inverse hap of T, which exists since z is monotone. Then (9) can be written as pollows:

$$T_t + u\eta(T)_x + q_x = 0, (12)$$

$$q = -Dc_x. (13)$$

Discretize the interval [0, L] into grid blocks $B_j = [x_{j-1/2}, x_{j+1/2}], j = \dots, J$, with midpoints x_j , and choose a sequence of time steps $\Delta t^n > 0$. Let Δx_j denote the length of B_j . Denote by $f_j^n = f(x_j, t^n)$, where $t^n = \sum_{j=1}^n \Delta t^j$.

We approximate T and q using the lowest order Raviart-Thomas space, which in one dimension consists of the set $W_h = \{w : w \text{ is a constant on } B_j\}$

and $V_h = \{v : v \text{ is continuous and piecewise linear}\}$. Define $V_{h,0} = V_h \cap \{v : v(L) = 0\}$. Thus, if $w \in W_h$, $w = \sum_{j=1}^J w_j \chi_j(x)$, where $\chi_j = 1$ on B_j and zero elsewhere. Moreover, if $v \in V_h$, $v = \sum_{j=0}^J v_{j+1/2} \xi_{j+1/2}(x)$ where $\xi_{j+1/2}$ is a continuous, piecewise linear with $\xi_{j+1/2}(x_{k+1/2}) = 1$ if k = j and zero otherwise.

When dynamically adapting the mesh, we choose a discretization into grid blocks $\{B_j^n\}$, where the superscript *n* indicates that the discretization may vary with time step. Associated with this discretization, we have finite element spaces W_h^n and V_h^n . Our method can be described as follows. Find $T_h^n \in W_h^n$, $F_h^n \in V_h^n$, $Q_h^n \in V_{h,0}^n$ and $C_h^n \in W_h^n$ satisfying

$$\begin{split} \left(\frac{T_h^n - \bar{T}_h^{n-1}}{\Delta t^n}, w^n\right) + ((F_h^n + Q_h^n)_x, w^n) &= 0, \quad w^n \in W_h^n, \\ (D^{-1}Q_h^n, v^n) &= (C^n, v_x^n) + \lambda^n v^n(0), \quad v^n \in V_{h,0}^n. \end{split}$$

Here (\cdot, \cdot) is the L^2 inner product on [0, L]. Note that $T_h^n \approx T^n$, $F_h^n \approx u\eta(T^n)$, $Q_h^n \approx q^n$, and $C_h^n \approx c^n$ with $C_h^n = \eta(T_h^n)$. The term λ^n approximates c^n at x = 0. From (10),

$$\lambda^n = g^n - \frac{Q_h^n(0)}{u}.$$
(14)

The term \bar{T}_h^{n-1} is computed as follows. On the grid $\{B_j^{n-1}\}$, we compute a discontinuous, piecewise linear function \bar{T}_h^{n-1} satisfying

$$\bar{T}_h^{n-1}(x) = (T_h)_j^{n-1} + \delta_x(T_h)_j^{n-1}, \quad x \in B_j^{n-1},$$
(15)

where the slope $\delta_x(T_h)_j^{n-1}$ is computed using a "slope-limiting" procedure see Dawson [4]. Note that once T_h^{n-1} is known, (14) is a simple, cheap post processing step. The reason this step is needed is to maintain the accurac; of the method, as noted below.

In order to compute F_h^n , we use a higher-order upwind approximation First, let \tilde{T}_h^n denote the L^2 projection of \bar{T}_h^{n-1} into W_h^n , that is

$$(\tilde{T}_{h}^{n}, w^{n}) = (\bar{T}_{h}^{n-1}, w^{n}), \quad w^{n} \in W_{h}^{n}.$$

We note that by Taylor's series,

$$T(x_{j+1/2}^n, t^{n-1/2}) \approx T(x_j^n, t^{n-1}) + \frac{\Delta x_j^n}{2} T_x + \frac{\Delta t^n}{2} T_t,$$

Transactions on Ecology and the Environment vol 17, © 1998 WIT Press, www.witpress.com, ISSN 1743-3541 Computer Methods in Water Resources XII 647

where the latter two terms are computed at (x_j^n, t^{n-1}) . The superscript n on x_j is meant to indicate that this is the midpoint of block B_j^n . Using the the differential equation, we find

$$T(x_{j+1/2}^n, t^{n-1/2}) \approx T(x_j^n, t^{n-1}) + \frac{\Delta x_j^n}{2} T_x - \frac{\Delta t}{2} (u\eta_x + q_x)$$

= $T(x_j^n, t^{n-1}) + \frac{\Delta x_j^n}{2} T_x - \frac{\Delta t}{2} (u\eta' (T(x_j^n, t^{n-1}) T_x + q_x)).$

Using the slope-limiting procedure to approximate T_x and dropping the q_x term we find

$$T(x_{j+1/2}^n, t^{n-1/2}) \approx (\tilde{T}_h)_j^n + (\frac{\Delta x_j^n}{2} - \frac{\Delta t}{2} u \eta'((\tilde{T}_h)_j^n)) \delta_x(\tilde{T}_h)_j^n \\ \equiv \tilde{T}_{j+1/2}^n.$$

Thus

$$(F_h^n)(x_{j+1/2}^n) = u\eta(\tilde{T}_{j+1/2}^n).$$

The boundary conditions at x = 0 and x = L are enforced by setting

$$F_h^n(0) = u\lambda^n, \quad Q_h^n(L) = 0.$$

Note that by (14), $F_h^n(0) + Q_h^n(0) = ug^n$.

In the simple case where z = 0 and u = 0, we have the following method. Find $C_h^n \in W_h^n$ and $Q_h^n \in V_{h,0}^n$ satisfying

$$\left(\frac{C_h^n - \bar{C}_h^{n-1}}{\Delta t^n}, w^n\right) + \left((Q_h^n)_x, w^n\right) = 0, \quad w^n \in W_h^n,$$
(16)

$$(D^{-1}Q_h^n, v^n) = (C^n, v_x^n), \quad v^n \in V_{h,0}^n.$$
(17)

In this case we have the following error estimate:

Theorem 1 Assume c is a smooth function. Let $\Delta x = \max_{j,n} \Delta x_j^n$ and assume $\Delta x / \Delta t^n \leq K_1$ for each n, where K_1 is a constant independent of Δx and Δt^n . Then the method (16)-(17) satisfies

$$\max_{n} ||C^{n} - c^{n}|| \le K\Delta x,$$

where K is a constant independent of Δx .

Maximum Δx	L^2 error at t=1.0
.018228	9.218508e-04
.009228	4.2799185e-04
.004628	2.421769e-04

Table 1: Convergence study for dynamic mesh

Thus, the method (16)-(17) has the same global accuracy as the static method where W_h and V_h do not vary with time. The additional linear term in \overline{C} makes this result possible. We expect that this estimate carries through when $u \neq 0$ and for smooth z(c). This research is ongoing.

In order to verify the accuracy of the method, we considered a test problem

$$c_t + c_x - c_{xx} = f,$$

where f and the initial and boundary data were chosen so that $c(x,t) = xe^{xt}$. For each run, an initial uniform mesh was chosen. Then at each time step, the nodes in the mesh were perturbed randomly with a maximum change in location of 10% per time step. A comparison of L^2 errors at t = 1.0 for decreasing maximum mesh spacing is given in Table 1. These errors indicate a convergence rate of close to one, as expected from the theorem above.

References

- [1] Yeh, G.T. and K. Salvage, HYDROGEOCHEM 2.0: A coupled model of HYDROlogic transport and mixed GEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media, 1996.
- [2] Wheeler, M.F., T. Arbogast, S. Bryant, C. Dawson, F. Saaf and C Wang, Computational methods for multiphase flow and reactive trans port problems arising in subsurface contaminant remediation, J. Comp Appl. Math., 74, pp. 19-32, 1996.
- [3] Arbogast, T. and M.F. Wheeler, A characteristic-mixed finite elemen method for advection-dominated transport problems, SIAM J. Numer Anal., 32, pp. 404-424, 1995.
- [4] Dawson, C., Godunov-mixed methods for advection-diffusion equation in multidimensions, SIAM J. Numer. Anal., 30, pp. 1315-1332, 1993