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Abstract.

Current FEM software projects have made significant advances in various automated

modeling techniques. We present some of the mathematical abstractions employed by

these projects that allow a user to switch between finite elements, linear solvers, mesh

refinement and geometry, and weak forms with very few modifications to the code. To

evaluate the modularity provided by one of these abstractions, namely switching finite

elements, we provide a numerical study based upon the many different discretizations

of the Stokes equations.
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1 Introduction

The power and complexity of both computer hardware and algorithms has
continued to increase for many decades, and yet the demand for ever larger and
more complex simulations to model natural phenomena is unabated. With each
of these advances, the resulting software complexity is compounded. This too
often leads to unacceptable compromises regarding the choice of algorithm or
computer hardware in an attempt to control software development costs.

Many people have adopted rapid code development environments, such as
Matlab, that enable simple ideas to be tested very quickly before creating special
purpose code for a specific application. These approaches to ‘rapid prototyping’
have often been plagued by poor runtime performance. However, in several
domains [2, 6, 8, 9, 25, 27, 42, 44] researchers are attempting to automate code
development without compromising performance. One such area is numerical
PDE solvers where several groups are automating code for the Finite Element
Method (FEM) [29, 31, 32, 37, 41].

Models are often chosen quite early in the development of large scale simula-
tions, and changing parts of that model may involve a nearly complete rewrite
of the code. FEM automation seeks a ‘plug and play’ paradigm for different
discretizations and model equations, just as vendors have adopted for computer
hardware. This automation allows a user to test many models and discretizations
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quickly by performing large simulations with all of them, as we will demonstrate
in this paper.

Although the idea of FEM automation is not new, no code has yet been able
to achieve it fully, due in part to a lack of fully developed, mathematically
grounded interfaces between the different parts of FEM codes. To elaborate on
this point, in Section 2, we discuss the canonical parts of an FEM code and pro-
pose interfaces motivated by the mathematical constructs from which they were
developed. In Section 3, we review codes which partially resolve the automation
problem. Finally, in Sections 4 and 5, we use the new automation techniques in
a numerical study of discretizations for the Stokes equations. It should be noted
that this comparison is useful on its own because such a comparison between
methods, without automated codes, is quite difficult and rarely found in the
literature.

2 Features of Fully Automated FEM Code

FEM can be thought of as a black box for simulation, taking a domain, func-
tion space, equation, and boundary conditions as input, and then returning a
solution field. Unfortunately, it seems that all attempts at completely automat-
ing FEM in this fashion have failed in one aspect or another. Dependencies
appear in surprising places and often the design of the software makes assump-
tions that limit applicable discretizations. This begs the question, what features
are necessary for full automation of FEM software?

2.1 Pluggable Parts

Many projects provide an input language for equations but often at the expense
of flexibility in the internal representation. For instance an arbitrary equation
cannot be combined with an arbitrary choice of discretization and mesh. How-
ever, having a symbolic representation of the weak form allows a user to quickly
change models without a lengthy coding and debugging cycle. More advanced
transformations are also possible, such as automatic differentiation or construc-
tion of error estimators and optimization loops. Both automatically generated
and handwritten codes generally represent the weak form directly as imperative
code using numerical interpolants, which greatly limits automatic manipulation.

Function spaces are severely limited in most software, often only allowing a
single element. With the development of FIAT [28] and other approaches [14, 41],
we now have a simple, declarative representation for most finite element function
spaces. This flexibility allows a user to access many modern elements. A nice
example is given by the divergence-free velocity space tailored to incompressible
material (e.g., Stokes’) equations. Unfortunately, specification of the function
spaces is not sufficient for modularity as we still must consider the interface to
the mesh.

Mesh representations have been well studied [7, 10, 53], however various data
structures and interfaces still abound. The mesh interface itself must be suffi-
ciently rich in order to support the chosen element. For example, if your mesh
has no notion of orientation, the face normals necessary for the Raviart-Thomas
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element are unavailable or not efficiently calculable. Most mesh libraries have
concentrated on features such as automated refinement or mesh movement, ig-
noring interface requirements for discretization and field construction, often lim-
iting the code to linear Lagrange elements [22, 24, 48, 53, 54], although there
is some work with the richer mesh data [33, 51]. Moreover, most libraries are
limited to a single element shape, such as boxes or simplicies.

The algebraic solver is a clear success story for this modular approach to FEM
code. For over a decade there have been efficient, parallel software packages
providing a wide range of linear and nonlinear solvers [3, 21, 26]. The successful
the development of these algorithms and related software is a wonderful example
to which the FEM community could aspire.

2.2 Mathematical Interfaces

Automation requires well designed interfaces that are both robust and suitably
abstract so as not to limit the algorithm choice. A fully automated FEM code
with all the modular features described above requires interfaces developed from
the underlying mathematical abstractions originally used to study the PDE.
FEM codes have roughly four aspects: an algebraic representation of the PDE,
a functional analytic approximation, a topological region specification, and an
algebraic system solution.

FIAT allows a user to easily construct general families of finite elements. It
also provides the ability to tabulate and obtain topological connectivity of these
elements. Again, linear algebra provides a language for describing the com-
ponents. FIAT can automatically produce not only quadrature rules for the
element, but also the action of each basis element in the dual space, commonly
called degrees of freedom. By reducing the element interface to these two pieces,
along with simple size calculations, a code can switch elements with the same
ease as linear solvers. We demonstrate the power of this approach for simulation
of the Stokes equation.

A key insight into the interface design is the division of FEM operations into
local and global sets [36]. Operations on a single element are purely local, and
demand only knowledge of the geometry and function space of the element.
Specification of fields over the mesh, or sections, uses only topological informa-
tion from the mesh and simple size information from FIAT. A more sophisticated
interaction is the definition of a unique global basis when local element basis vec-
tors disagree, such as face normal integrals in Raviart-Thomas elements. How-
ever, with local and global information strictly separated, we can write generic
routines to accomplish such tasks. This separation is essential for automation,
and also provides opportunities for optimization since we can ignore unimpor-
tant details. By using a topological representation of the domain, this separation
becomes quite natural, enabling the easy use of many different elements.

As alluded to earlier, the most successful modular interface applies to the
algebraic solver. The fundamental abstraction in this case is linear algebra. All
groups working were able to agree on roughly the same interfaces for Vector and
Matrix classes. Moreover, in most cases, preconditioning can be treated with
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the same interface. This abstraction is able to handle an incredible range of
algebraic solvers without modification to the other parts of the code.

3 Description of Current Automated FEM Packages

Automation seems to be very natural and valuable, but why then has a fully
automated code not yet been produced? A cynical answer that one often encoun-
ters is the limited vision of the researchers who use the methods. While there are
certainly quite different goals among FEM code writers, perhaps the fundamen-
tal reason for the lack of automation is the lack of mathematical understanding
of the necessary interfaces. Nonetheless, a number of different approaches have
emerged to further the development of such a code, each using different mathe-
matical abstractions previously discussed.

Four open source FEM software projects, in different stages of development,
that substantially automate many FEM algorithms discussed in this paper are
the FEniCS project [20, 38], Sundance [39, 40], DEAL.II [4, 5], and PETSc-
Sieve [34]. These four projects are presented in order to highlight different parts
of the automation process but are only a sampling of the numerous projects of
this type [19, 23, 43, 45, 47].

These projects, not surprisingly, share dependencies on a few middle-ware
projects. Each of these FEM software libraries are able to use a parallel algebraic
solver, such as those in PETSc [3] or Trilinos [26]. FIAT [28], the finite element
generator, is also used by multiple packages. FIAT allows for the generation of
quadrature rules for many different elements which are easily included.

The DEAL.II project is a set of libraries for FEM simulation on structured
adaptive grids. It does not attempt to automate the entire FEM process, but uses
templates to allow a wide range of elements to be used in two or three dimensions.
For example, it gives no abstractions for the variational form. While DEAL.II
does not provide a scripting style interface for the programming, it does bundle
important data types and operations in a clear API. The most notable feature
of DEAL.II is its ability to handle numerous elements and methods, but a user
must still manually code a specific weak form and boundary conditions. Finally,
it only handles one specific mesh type.

Sundance is a code designed to provide a rapid development environment and
the ability to solve PDE constrained optimization problems. The user space
is separated from the backend with simple interface calls, which give the feel
of programming in a scripting environment with clever use of C++ overload-
ing. Its symbolic representation of the input equations allow for optimizations
whose efficiency rivals special purpose codes. It cannot currently switch between
different elements, and has some limitations on the mesh types.

FEniCS is a collection of projects to develop simple modules that allow for
research into FEM automation, such as FIAT and SyFi [41]. A key component
is the FEniCS Form Compiler, FFC [30], which is used in the simulation engine,
DOLFIN. FFC autogenerates optimized code for precomputing the discretized
weak form for a given finite element space. Dolfin provides the glue for pulling the
rest of the simulation together, including solvers and visualization. This project
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Table 3.1: Snapshot of modularity in Automated FEM Packages. (*Dolfin is currently
being parallelized [57].)

Software Packages Function Spaces Meshes Matrix Solvers

Dolfin uses FIAT simplicies not parallel*

Sundance limited FIAT simplicies parallel

DEAL.II menu quads and simplicies almost parallel

PETSc-Sieve uses FIAT quads and simplicies parallel

lies between the previous two projects in that it provides a simpler interface
than Deal.II but requires more coding to be as robust as Sundance. This lack of
robustness is shown in the experiments when the C0PiC

−1Pi−1 element produces
an unconverged answer instead of giving a proper error. Whereas the previous
two projects were built to solve engineering problems, this project focuses much
more on automation research itself. For the purposes of this paper when we
refer to experiments with FEniCS, we are referring to the use of FIAT, FFC,
and DOLFIN codes.

The Sieve library handles both topology representation and definition of fields
over such as mesh. It is inspired by the simple abstract framework of Grothendieck
topologies [18], and treats meshes in a shape and dimension independent way [35].
This representation allows a simple interaction between the mesh topology (global)
and the element function space (local). FIAT is used to define the element,
augmented by a small code generator for the action of dual basis functionals.
Moreover, a new domain specific language generator, Mython [46], is being incor-
porated to allow a scripting interface for equation specification. We summarize
the observations about these various packages in Table 3.1.

4 Discretization of Stokes Equation

The Stokes equation is the standard equilibrium equation for low Reynolds
number, incompressible flow.

(4.1)
−∆u +∇p = f

∇ · u = 0

The problem has been well studied and is documented in several books [12, 13].
It is a challenging problem due to the coupling between the velocity and pressure
resulting in a saddle point in the variational formulation and the divergence free
criteria of the velocity field. The matrix equations will be indefinite which proves
to be quite taxing on linear solvers. These difficulties are also two of the main
challenges of the more general Navier-Stokes equations that are used in numerous
fluid simulations.

This case was chosen for our study because there are many stable discretization
methods but very few numerical studies including more than a single method.
Typically coding one method is so difficult that the cost outweighs the value of
coding another method, especially if a large legacy simulation is already using
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that method. For our software described above, we only need to make use of one
mathematical abstraction to automatically generate numerous methods, that is
the finite element. By calling FIAT from several different codes, different dis-
cretizations can be readily employed, allowing meaningful comparisons with few
code changes. By studying the numerical discretization schemes of the Stoke’s
equation, any observations will affect the results of higher level simulations using
Navier-Stokes.

Below is a brief explanation of the different discretization methods included in
this study. It is followed by a description of our testing framework and results
from the different methods. While there have been many studies on efficient
linear solvers for a particular discretization, this study uses only a direct linear
solver so that the contribution of each discretization is not obscured.

4.1 Mixed method Formulation

One of major challenges posed by the Stokes equation is handling the coupling
between the velocity and pressure. One natural way to solve the system is to
create a mixed system, with blocks corresponding to fields, and each field using
a different element. The variational form of this mixed system is as follows:

Let V = H1(Ω)n and Π = {q ∈ L2(Ω) :
∫
Ω

qdx = 0}. Given F ∈ V ′,
find functions u ∈ V and p ∈ Π such that

(4.2)
a(u,v) + b(v, p) = F (v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Π,

where

a(u,v) :=
∫

Ω

∇u · ∇vdx,

b(v, q) :=
∫

Ω

(∇ · v)qdx.

This mixed method formulation uses two discrete spaces V and Π. Developing
different finite element spaces for this system is quite challenging. Using the same
continuous element spaces for both the pressure and velocity leads to an over-
determined system of equations. Also, it is very attractive to use a discontinuous
pressure space which provides a better solution for the divergence of the velocity,
but can lead to singularities in the solution which depend on mesh. This study
presents elements that have both continuous and discontinuous pressure spaces,
and evaluates the numerical consequences of both.

The Taylor-Hood element [11, 55] is one of the most widely used elements
for solving Stokes flow. It consists of a Pk element for the velocity space and
Pk−1 for the pressure space (see Figure 4.1). Because of the simplicity of using
Lagrangian elements, it can easily be extended to higher orders. This element
produces a continuous pressure space, but the order of the pressure convergence
is lower than that for the velocity.
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(a) P3 for V (b) P2 for Π

Figure 4.1: Taylor-Hood Elements

(a) Crouzeix-Raviart for V (b) P0 for Π

Figure 4.2: Crouzeix-Raviart Elements

The Crouzeix-Raviart Element [15] is a non-conforming element that uses
integral moments over the element edges as a basis for the velocity and a discon-
tinuous pressure space, P0 (see Figure 4.2). For the low order case, the velocity
edge moments are equivalent to evaluating the basis functions at the center of
each edge.

Another possibility is just to use the high degree Lagrange element for velocity
but use a discontinuous element (of a lower order) in the pressure space, what
we loosely call C0PiC

−1Pi−1. It is important to note that stable convergence
of this element is dependent upon the mesh. The formulation may not satisfy
the inf sup condition due to singularities in the pressure space [49]. However, if
one is able to eliminate certain problem points in the mesh, as in Fig. 5.1, the
method becomes useful.

4.2 Iterated Penalty Method

In order to avoid the problems with the saddle point and the discontinuous
pressure space, the Uzawa iteration method and penalty methods were devel-
oped. A combination of these two ingredients results in the iterated penalty



8 TERREL, SCOTT, KNEPLEY AND KIRBY

Figure 5.1: The uniform mesh with n × n rectangles with refined corners to reduce
singularities in C0PiC

−1Pi−1 pressure space used in the tests.

method. Let r, ρ ∈ R and ρ > 0 and define un and wn by

a(un,v) + r(∇ · un,∇ · v) = F (v)− (∇ · v,∇ ·wn)
wn+1 = wn + ρun

The pressure may be recovered from the auxiliary w field, p = ∇ · w. This
method uses only one space, but requires a higher order continuous element
[50]. We use Lagrangian elements with degree greater than three. For stopping
criterion, we use the constraint violation, or incompressibility error, ||∇·un|| < ε.
The iteration count and accuracy is dependent upon the penalty coefficients ρ
and r. For our experiments we use ρ = −r = 1.0e− 3. The Iterated Penalty
method is essentially a formulation of the C0PiC

−1Pi−1 element using a single
space. Thus we have two models for the same mathematical process, but using
quite different algorithms.

5 Results

In order to evaluate these methods, we will compare mesh sizes and element
orders in a series of increasingly difficult problems. The number of degrees of
freedom is a good measure of the total work the method will require, and will
equate them throughout. The number of the degrees of freedom as a function of
mesh size and element is shown in Table 5.1.

For our tests, we use a n× n uniform mesh for the square domain [0,1]×[0,1],
and solve the following three problems:
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Figure 5.2: Comparison of 4th Order methods on Case 2 (* with Crouzeix-Raviart on a
finer mesh to have equivalent number of DOFs), where SUN is Sundance, FE is Fenics,
TH is Taylor-Hood, IP is Iterated Penalty, and CPCP is C0PiC

−1Pi−1
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Table 5.1: A comparison of the degrees of freedom for each element organized by
velocity order (p) and mesh element size (h). A ’-’ indicate that the order for that
particular element is not stable, and a ’x’ indicates the element is undefined.

p h Crouzeix-Raviart C0PiC
−1Pi−1 Taylor-Hood Iterated Penalty

1 .25 160 - - -
.125 560 - - -
.0625 2128 - - -
.03125 8336 - - -

2 .25 x 286 205 -
.125 x 990 677 -
.0625 x 3742 2485 -
.03125 x 14622 9557 -

3 .25 x 590 463 -
.125 x 2078 1583 -
.0625 x 7934 5935 -
.03125 x 31166 23087 -

4 .25 x 1002 829 642
.125 x 3562 2885 2242
.0625 x 13674 10933 8514
.03125 x 53866 42772 33346

5 .25 x 1522 1303 982
.125 x 5442 4583 3462
.0625 x 20962 17479 13222
.03125 x 82722 68615 51942

Table 5.2: The different simulation engines used for each method

Sundance FEniCS
Taylor-Hood X X

Crouzeix-Raviart - X
C0PiC

−1Pi−1 - X
Iterated Penalty X X

Figure 5.3: Anomalous C0PiC
−1Pi−1 Results
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Table 5.3: Convergence rates of the velocity L2 error for the different elements and
software, where SUN is Sundance, FE is Fenics,

p Crouzeix-Raviart C0PiC
−1Pi−1

FE SUN FE SUN

1 3.9h2.08±.1 X - -

2 - - 9.1h1.97±.07 X

3 - - 7.3h3.05±.08 X

4 - - 28.5h5.08±.22 X

5 - - 11.3h5.79±.09 X

p Taylor-Hood Iterated Penalty

FE SUN FE SUN

1 - - - -

2 15.0h3.52±.41 9.1h2.86±.05 - -

3 6.8h4.07±.06 12.6h4.01±.13 - -

4 4.6h4.81±.15 6.8h4.83±.1 28.5h5.08±.22 27.7h5.07±.2

5 9.2h6.15±.32 6.2h5.94±.06 10.9h5.77±.06 10.1h5.77±.08

• Case 0:

f =
[
−2y + 1
2x + 1

]
,

u =
[

x2y
−xy2

]
, and

p = x + y − 1.0

• Case 1:

f =
[

8π2 sin(2πx) cos(2πy)
−8π2 cos(2πx) sin(2πy)

]
,

u =
[

sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

]
, and

p = sin(2πx) sin(2πy)

• Case 2:

f =
[

18π2 sin(3πx) cos(3πy)
−18π2 cos(3πx) sin(3πy)

]
,

u =
[

sin(3πx) cos(3πy)
− cos(3πx) sin(3πy)

]
, and

p = sin(3πx) sin(3πy)
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The solution for case 0 is a low order polynomial that will be in most of
the approximating spaces, and thus they should produce the exact answer to
machine precision. For this reason we exclude case 0 from the presentation of
results and only discuss it here to show our quick validation problem for our
simulations. Complete analysis of all case can be found in Terrel [56]. The next
two cases have more complicated solution which are harder to approximate in
the given spaces, and therefore give a better idea of the convergence rates of the
methods.

For each simulation, we use a basis tabulated by FIAT, and a simple routine
generates the n × n uniform mesh with refined corners to avoid boundary ele-
ments that may cause singular points in the pressure space for the C0PiC

−1Pi−1

method, see Figure 5.1. For each linear solve, we used the UMFPACK [16] LU
direct solver. The different simulation codes used were FEniCS (FFC version 0.2,
DOLFIN version 0.6, and FIAT version 0.3.0) and Sundance version 2.2.0. At
the time of the study, Sundance did not support discontinuous elements and thus
reduced our methods tested in that system to only Taylor-Hood and Iterated
Penalty (see Table 5.2).

In evaluating the method performance, a few features were notable. As the
mesh was refined, where h is 1/n, the methods maintained a consistent rate of
error decrease from case 1 to case 2, see Table 5.3. This provides an indication
that the theoretical errors were being achieved by the separate simulations. The
difference in mass balance between the divergence free elements and the contin-
uous elements is clearly demonstrated. An interesting feature displayed in this
charts is the relation between Iterated Penalty and the C0PiC

−1Pi−1 element.
For the C0PiC

−1Pi−1 element with degree less than four, the method is not
converges at the L2 order (hp) consistent with the theoretical predictions of de
Boor and Höllig [1, 17]. Both of these methods achieve the same result, which
is expected since they are mathematically equivalent, but of course use quite
different algorithms. Runtimes more or less paralleled the number of degrees
of freedom, however there are deviations, perhaps due to effective cache use.
Further study using profiling tools, such as TAU [52], and taking into account
the condition number of the resulting linear systems is required in order to make
any substantial claims regarding computational complexity of the methods in
question.

To give a sense of the actual error, Figure 5.2 gives a slice of the data for all
fourth order methods with the FEniCS and Sundance. Crouziex-Raviart, with
an equivalent number of DOFs, is included in order to compare with a low order
method. Taylor Hood is the most accurate method in terms of L2 errors for
pressure and velocity, but, as the theory suggests, has a much larger divergence
residual. This is partially due to the fact that our case study includes only
very smooth functions, and thus the results could be different in a non-smooth
context. An interesting difference in these results is Sundance’s ability to achieve
errors of 10−12 while with FEniCS does not progress beyond 10−8.

Finally Figure 5.3 is included to show a blemish in testing of this nature. From
Table 5.3 it appears that Sundance and FEniCS always produce very similar
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results, but Figure 5.3 for the largest mesh produced an uncoverged result and
reported this solution as solved. While this may be a rare error, it is one that
questions the robustness of the FEniCS package. In our interactions with both
Sundance and FEniCS, we found that a significant effort was required to catch
such errors in FEniCS whereas Sundance handled such errors “out of the box”.

6 Conclusions

In our numerical study, FIAT’s finite element interface allowed the simulations
to easily change between different discretization schemes. This particular study
is quite useful for other applications involving fluid dynamics since the Stokes
equation is repeatedly solved when solving the Navier-Stokes equations. Small
effects in the code, such as a divergence of the velocity, can have large impacts on
other parts of simulations that depend on this feature, and thus FIAT’s ability
to change finite elements can allow a scientist to choose a model which gives the
fidelity required by the specific application.

While these four FEM packages are moving forward, allowing for faster de-
velopment on large scale scientific codes, further development of mathematical
interfaces is necessary. In addition to allowing plug and play features to FEM
codes, they also provide important ways to optimize the process automatically.
Perhaps the nicest feature provided by these software packages is the scripting
interface for the scientist to input various models. Often the hurdle of coding in
lower level languages becomes the primary barrier for scientists in implementing
new theoretical models.
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48. Joachim Schöberl, Netgen an advancing front 2d/3d-mesh generator based
on abstract rules, Computing and Visualization in Science, 1 (1997), pp. 41–
52.

49. L. Ridgway Scott and Micheal Vogelius, Conforming finite element
methods for incompressible and nearly incompressible continua, in Large
Scale Computations in Fluid Mechanics, B. E. Engquist, et al., eds., vol. 22
(Part 2), Providence: AMS, 1985, pp. 221–244.

50. , Norm estimates for a maximal right inverse of the divergence operator
in spaces of piecewise polynomials, M2AN (formerly R.A.I.R.O. Analyse
Numérique), 19 (1985), pp. 111–143.

51. E. Seegyoung Seol and Mark S. Shephard, Efficient distributed mesh
data structure for parallel automated adaptive analysis, Eng. with Comput.,
22 (2006), pp. 197–213.

52. S. Shende and A. D. Malony, Tau: The tau parallel performance sys-
tem, International Journal of High Performance Computing Applications, 20
(2006), pp. 287–331.

53. Jonathan Richard Shewchuk, Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator, in Applied Computational Geometry:
Towards Geometric Engineeri= ng, Ming C. Lin and Dinesh Manocha, eds.,
vol. 1148 of Lecture Notes in Computer Science, Springer-Verlag, May 1996,
pp. 203–222. From the First ACM Workshop on Applied Computational
Geometry.

54. Hang Si, Tetgen, a quality tetrahedral mesh generator and three-dimensional
delaunay triangulator. http://tetgen.berlios.de/.

55. C. Taylor and P. Hood, A numerical solution of the navier-stokes equa-
tions using the finite element technique, Computers and Fluids, 1 (1973).

56. Andy R. Terrel, FEM optimization with a case study of the stokes equa-
tions, Tech. Report TR-2008-02, Department of Computer Science, Univer-
sity of Chicago, 2008.

57. Gustav Magnus Vikstørm, Parallelization strategies for dolfin, master’s
thesis, University of Oslo, Department of Informatics, 2008.


