
Numerische Mathematik manuscript No.
(will be inserted by the editor)

Fast simplicial quadrature-based finite element

operators using Bernstein polynomials

Robert C. Kirby1 ?, Kieu Tri Thinh1

Texas Tech University

Received: date / Revised version: date

Summary We derive low-complexity matrix-free finite element al-

gorithms for simplicial Bernstein polynomials on simplices. Our tech-

niques, based on a sparse representation of differentiation and spe-

cial block structure in the matrices evaluating B-form polynomials at

warped Gauss points, apply to variable coefficient problems as well

as constant coefficient ones, thus extending our results in [14].

Key words finite element, fast algorithm, Bernstein polynomials

Send offprint requests to:
? Present address: Texas Tech University; Department of Mathematics and

Statistics; PO Box 1042; Lubbock, TX 79409-1042. Work supported by the Na-

tional Science Foundation under award number 0830655.



2 Robert C. Kirby, Kieu Tri Thinh

1 Introduction

In [14], we study constant coefficient finite element operators in sim-

plicial geometry with Bernstein polynomials as local bases. We de-

rived matrix-free algorithms for applying the local finite element op-

erators with complexity comparable to that of tensor-product tech-

niques used for spectral element methods in rectangular domains.

These techniques relied on recognizing special structure in the con-

stant coefficient mass matrix, so it was left as an open question how

to find fast quadrature-based algorithms for more general variational

forms. In this paper, we develop such algorithms by exposing struc-

ture in certain higher-dimensional Bernstein-Vandermonde matrices

that represent polynomial evaluation and finite element integation

using warped Gauss point integration rules. These techniques, more

subtle than those based on coordinating Gauss-Lobatto quadrature

and interpolation nodes for tensor-product bases [8,9], demonstrate

that variable coefficient operators may in fact be applied with low

complexity.

In particular, we are focused on bilinear forms of the type

b(u, v) =

∫
Ω
f(x)D1uD2v dx,

where D1 and D2 are some differential operators (including the iden-

tity). In finite element calculations, such bilinear forms are typically



Title Suppressed Due to Excessive Length 3

evaluated by meshing Ω into simple shapes, such as simplices, and

evaluating the restriction of the bilinear form over such shapes. We

let T denote a triangulation of Ω [7]. Then, we are concerned with

bT (u, v) =

∫
T
f(x)D1uD2v dx,

where T ∈ T is a single simplex in a finite element mesh. The function

f may either be a specified function of space, or may depend on some

function in a finite element space. Let {ψi}Ni=1 be a local basis for the

finite element space on T , such as the set of Bernstein polynomials,

this allows us to define a matrix

KT,ij =

∫
T
fD1ψjD2ψi dx. (1)

Then, if u =
∑N

i=1 uiψi is a vector expressed in the local basis, the

action of K on u is given by

(KTu)i =

∫
T
f(x)D1uD2ψi dx. (2)

It is possible to evaluate the entries of KTu given in (2) by nu-

merical quadrature without forming K explicitly. If {(xi, wi)}Mi=1 de-

notes a set of quadrature weights and points, a basic matrix-free

algorithm is given in Algorithm 1. This is a quadratic process, for

if N0 = max(M,N), then O(N2
0 ) operations per cell are required,

supposing that a matrix-vector product is used to tabulate D1u at

the quadrature points.



4 Robert C. Kirby, Kieu Tri Thinh

Algorithm 1 Matrix-free evaluation of y = Ku
y ← 0

Let µi = D1u evaluated at xi.

Let Vij be D2ψj evaluated at xi.

for j ← 1, N do

for i← 1,M do

yj ← yj + wiVijµi

end for

end for

As a major cost of matrix-based methods is the formation and

storage of the global system matrix, using matrix-free algorithm can

be attractive. The global finite element matrix can be expressed as

K = AtKTA, (3)

where A is a sparse matrix that expresses the restriction of global

basis functions in terms of the basis on each cell T , and KT is a

block diagonal matrix matrix whose blocks consist of the elementwise

matrices (1) for each T ∈ T . When A is used to explicitly construct

a global matrix, the process is typically called assembly and requires

explicit values for each KT . Otherwise, only the action of KT , by

algorithm 1 or otherwise, on a vector is required.

While using Algorithm 1 cell-by-cell has a comparable arithmetic

cost as using a global matrix, it requires considerably less mem-



Title Suppressed Due to Excessive Length 5

ory. However, both techniques become quite expensive for high-order

methods, as the cost grows quadratically in the size of the local poly-

nomial basis, which in terms depends on a power of the polynomial

degree.

Fast algorithms for polynomial evaluation and integration are com-

mon in rectangular domains, where a tensor product structure is read-

ily apparent. On simplices, Karniadakis and Sherwin [12] construct

special bases for which fast algorithms are available. Our present in-

terest is in a “generic” finite element basis, the Bernstein polynomials,

showing that they admit fast algorithms as well. Having an extremely

flexible basis such as the Bernstein polynomials will allow future work

extending these techniques to exterior calculus bases developed by

Arnold, Falk, and Winther [2,3] as well as spline-based methods [5,4,

16,18,11]. Also, while this paper was under review, similar techniques

were independtly discovered by Ainsworth, Andriamaro, and Davy-

dov [?]. Their approach obtains similar algorithms by means of the

Duffy transform acting on integrals rather than our linear algebraic

approach, and they also provide an efficient algorithm for construct-

ing entire elementwise matrices.

In the remainder of the paper, we shall develop necessary notation

for Bernstein polynomials and give a formulation of the warped Gauss



6 Robert C. Kirby, Kieu Tri Thinh

rules in barycentric coordinates in Section 2. Our techniques for eval-

uation and integration will be based on Bernstein-Vandermonde ma-

trices that evaluate Bernstein polynomials at these particular quadra-

ture rules. We will derive explicit formulas for these matrices in terms

of the one-dimensional Gauss quadrature points for one-, two-, and

three-dimensional simplices in Section 3. Evaluating a polynomial at

the warped Gauss-points is equivalent to multiplying its Bernstein ex-

pansion coefficients by these Bernstein-Vandermonde matrices, and

we derive reduced-complexity algorithms for two and three dimen-

sions in Section 4. Forming the necessary finite element vectors (2)

by numerical integration requires the transpose of these matrices, and

we will use slightly different techniques to obtain the action of the

transpose in Section 5.

2 Notation and preliminaries

2.1 Barycentric coordinates

For integer d ≥ 1, let Sd be a nondegenerate simplex in Rd. Let

{xi}d+1
i=1 ⊂ Rd be the vertices of Sd. Let

{bi}d+1
i=1



Title Suppressed Due to Excessive Length 7

denote the barycentric coordinates of Sd. Each bi is an affine map

from Rd to R such that

bi(xj) = δij

for each vertex xj , where δij is the standard Kronecker delta. Each

bi is nonnegative on Sd, and

d+1∑
i=1

bi = 1.

2.2 Bernstein polynomials

A multiindex of length d is a d-tuple of nonnegative integers, written

α = (α1, α2, · · · , αd).

The order of a multiindex α, written |α| is given by the sum of its

components. That is,

|α| =
d∑
i=1

αi.

If α, β have length d, their sum is defined componentwise by

α+ β = (α1 + β1, α2 + β2, · · · , αd + βd).

The factorial of a multiindex is defined as the product of the compo-

nents’ factorials by

α! = Πd
i=1αi!



8 Robert C. Kirby, Kieu Tri Thinh

Let bd = (b1, b2, · · · , bd+1) denote the tuple of barycentric coor-

dinates on a d-simplex and let α be a multiindex of length d + 1.

Monomials in the barycentric coordinates are compactly written as

bαd = Πd+1
i=1 b

αi
i

The Bernstein polynomials of degree n on the d-simplex are de-

fined by

Bn
α =

n!

α!
bαd , (4)

where |α| = n. The complete set of Bernstein polynoimals,

{Bn
α}|α|=n,

form a basis of polynomials of complete degree n on Sd. They form

a nonnegative partition of unity on Sd.

At one point later, we will also need the degree elevation opera-

tor [16,14]. If n > 0 and u is a polynomial of degree n− 1, then

u =
∑
|α|=n−1

cαB
n−1
α

for some vector of coefficients cα. However, u is also a polynomial of

degree n and so may be expressed as

u =
∑
|α|=n

c̃αB
n
α



Title Suppressed Due to Excessive Length 9

for some vector c̃α. The process of obtaining c̃ from c is called de-

gree elevation. Degree elevation is naturally represented as a lin-

ear transformation c̃ = Ed,nc whose rows correspond to multiinde-

ices with |α| = n and columns to multiindices with |β| = n − 1.

From basic linear algebra, the column of Ed,n corresponding to some

|β| = n − 1 expresses Bn−1
β as a linear combination of {Bn

α}|α|=n. It

is well-known [16,14] that Ed,n contains no more than d+ 1 nonzero

entries per column, independent of n.

Differentiation may also be represented as a sparse matrix for B-

form [14]. If u =
∑
|α|=n uαB

n
α is a polynomial of degree n and s is

some direction vector, then ∂u
∂s =

∑
|α|=n−1 ûαB

n−1
α is a polynomial

of degree n− 1 whose coefficients may be computed by a row matrix

operation

ũ = Du, (5)

where D has at most d+ 1 nonzeros per row.

2.3 Warped Gauss quadrature rules

On [−1, 1], we let {ζi}mi=0 denote the m + 1-point Gauss quadrature

points (the zeros of the Legendre polynomials) and associated weights

{wi}mi=0. Let {(ζj , ζi)}mi,j=0 be the tensor product of these points on

the biunit square [−1, 1]2. As discussed in [12], a quadrature rule that



10 Robert C. Kirby, Kieu Tri Thinh

is accurate on bivariate polynomials of total degree 2m is obtained

by warping these points from [−1, 1]2 to the triangle T̂ with vertices

(−1,−1), (1,−1), and (−1, 1) via the mapping

ξ1 =
(1 + η1)(1− η2)

2
− 1

ξ2 = η2,

(6)

where ξ1, ξ2 are the Cartesian coordinates on the triangle and η1, η2

on the square. This mapping and its inverse are known to preserve

polynomials.

Applying this mapping to the Gauss-point tensor product leads

to a quadrature rule with points Zij = (
(1+ζj)(1−ζi)

2 − 1, ζi), where

0 ≤ i, j ≤ m. The associated weights are wij =
wiwj(1−ηi)

4 , where a

factor of 1−ηi
2 incorporates the Jacobian of the mapping between the

square and triangle.

To evaluate polynomials expressed in the Bernstein basis, we will

need to convert Zij to barycentric coordinates. It is not hard to show

that the barycentric coordinates for the triangle T̂ are given by

(ξ1, ξ2) 7→
(

1

2
(1− ξ1)−

1

2
(1 + ξ2) ,

1

2
(1 + ξ1) ,

1

2
(1 + ξ2)

)
,

calling the three terms in the triple (b1, b2, b3).

Now, if we apply this mapping to each point Zij , we obtain

Zij = (b1ij , b2ij , b3ij) , (7)



Title Suppressed Due to Excessive Length 11

where

b1ij =
1

2

(
1−

(
1

2
(1 + ζj) (1− ζi)− 1

))
− 1

2
(1 + ζi) ,

b2ij =
1

2

(
1 +

1

2
(1 + ζj) (1− ζi)− 1

)
,

b3ij =
1

2
(1 + ζi) .

Some simplification is in order.

b1ij =
1

2

(
1−

(
1

2
(1 + ζj) (1− ζi)− 1

))
− 1

2
(1 + ζi)

=
1

2

(
2− 1

2
(1 + ζj) (1− ζi)

)
− 1

2
(1 + ζi)

= 1− 1

4
(1 + ζj) (1− ζi)−

1

2
(1 + ζi)

= 1− 1

4
(1− ζi + ζj − ζiζj)−

1

2
(1 + ζi)

=
1

4
(1− ζi − ζj + ζiζj)

=
1

4
(1− ζi) (1− ζj) ,

and

b2ij =
1

2

(
1 +

1

2
(1 + ζj) (1− ζi)− 1

)
=

1

4
(1− ζi) (1 + ζj) ,

so that

Zij =

(
1

4
(1− ζi) (1− ζj) ,

1

4
(1− ζi) (1 + ζj) ,

1

2
(1 + ζi)

)
. (8)

Note that the third coordinate b3ij only depends on i, leaving

blocks of quadrature points with the third barycentric coordinate



12 Robert C. Kirby, Kieu Tri Thinh

constant. It will be more convenient to have the first barycentric co-

ordinate constant over blocks. Fortunately, permutating the barycen-

tric coordinates of a quadrature rule leaves the order of accuracy un-

changed. We state this with proof for triangles, but it is also true for

higher-dimensional simplices.

Lemma 1 Let T be a triangle and (x (b1, b2, b3) , y (b1, b2, b3)) be the

mapping from barycentric to Cartesian coordinates. Let {wi, (b1i, b2i, b3i)}Ni=1

be the weights and barycentric coordinates of a quadrature rule such

that ∫
T
p(x)dx ≈ |T |

N∑
i=1

wip (x (b1i, b2i, b3i) , y (b1i, b2i, b3i))

is accurate for polynomials of degree k. Let σ be any permutation

of {1, 2, 3}. Then the quadrature rule
{
wi,
(
bσ(1)i, bσ(2)i, bσ(3)i

)}N
i=1

is

also accurate for all polynomials of degree k.

Proof The result is true if and only if it is true on a basis. In par-

ticular, we will show the results holds on the Bernstein basis. It is

known [16] that for |α| = k and d = 2, 3∫
T
bα1bα2bα3 dx =

2|T |α!

(k + 2)!
,

from which we obtain that the integral of any Bernstein polynomial

of degree k is ∫
T
Bk
α dx =

2|T |
(k + 1) (k + 2)

,



Title Suppressed Due to Excessive Length 13

which in depends only on |α| = k and not the particular entries of α.

So, fix any α with |α| = k. Then

2|T |
(k + 1) (k + 2)

=

∫
T
Bk
α dx = |T |

N∑
i=1

wi
k!

α!
bα1
1i b

α2
2i b

α3
3i

On the other hand, let σ(α) =
(
ασ(1), ασ(2), ασ(3)

)
be a permutation

of the multiindex α, and consider Bk
σ(α). Then∫

T
Bk
α dx =

2|T |
(k + 1) (k + 2)

=

∫
T
Bk
σ(α) dx

= |T |
N∑
i=1

wi
k!

σ(α)!
b
ασ(1)
1i b

ασ(2)
2i b

ασ(3)
3i

= |T |
N∑
i=1

wi
k!

α!
bα1

σ(1)ib
α2

σ(2)ib
α3

σ(3)i.

With this result in hand, we will take our triangular quadrature

rule to be a permutation of (8):

Zij =

(
1

2
(1 + ζi) ,

1

4
(1− ζi) (1 + ζj) ,

1

4
(1− ζi) (1− ζj)

)
. (9)

We will also consider the case of tetrahedra. The collapsed Gauss

quadrature rules are constructed by mapping from the triunit cube

[−1, 1]3 to the tetrahedron with vertices (−1,−1,−1), (1,−1,−1),

(−1, 1,−1), and (−1,−1, 1) using

ξ1 =
1

4
(1 + η1) (1− η2) (1− η3)− 1,

ξ2 =
1

2
(1 + η2) (1− η3)− 1,

ξ3 = η3.

(10)



14 Robert C. Kirby, Kieu Tri Thinh

For more discussion of this mapping, see [12].

Warping the tensor product Gauss points {(ζk, ζj , ζi)}0≤i,j,k≤m

with this mapping gives the points

Zijk =

(
1

4
(1 + ζk) (1− ζj) (1− ζi)− 1,

1

2
(1 + ζj) (1− ζi)− 1, ζi

)
(11)

The barycentric coordinates are given by

b1 = −1

2
(1 + ξ1 + ξ2 + ξ3) ,

b2 =
1

2
(1 + ξ1) ,

b3 =
1

2
(1 + ξ2) ,

b4 =
1

2
(1 + ξ3) .

(12)

Now, we compute the barycentric representation of the warped

Gauss points to obtain Zijk = (b1ijk, b2ijk, b3ijk, b4ijk) with

b1ijk = −1

2

(
1 +

1

4
(1 + ζk) (1− ζj) (1− ζi)− 1 +

1

2
(1 + ζj) (1− ζi)− 1 + ζi

)
= −1

2

(
1

4
(1 + ζk) (1− ζj) (1− ζi) +

1

2
(1 + ζj) (1− ζi)− (1− ζi)

)
= −1

2
(1− ζi)

(
1

4
(1 + ζk) (1− ζj) +

1

2
(1 + ζj)− 1

)
=

1

8
(1− ζi) (1− ζj) (1− ζk) ,

(13)



Title Suppressed Due to Excessive Length 15

where we have simplified the last set of parentheses on the next to

the last line by

1

4
(1 + ζk) (1− ζj) +

1

2
(1 + ζj)− 1

=
1

4
(1− ζj + ζk − ζjζk) +

1

2
+

1

2
ζj − 1

=− 1

4
+

1

4
ζj +

1

4
ζk −

1

4
ζjζk

=− 1

4
(1− ζj) (1− ζk) .

We also have

b2ijk =
1

2

(
1 +

1

4
(1 + ζk) (1− ζj) (1− ζi)− 1

)
=

1

8
(1 + ζk) (1− ζj) (1− ζi) ,

(14)

b3ijk =
1

2

(
1 +

1

2
(1 + ζj) (1− ζ1)− 1

)
=

1

4
(1 + ζj) (1− ζi) ,

(15)

and

b4ijk =
1

2
(1 + ζi) . (16)

An analog of Lemma 1 holds for tetrahedra, so we will permute the

barycentric coordinates to

Zijk = (b1ijk, b2ijk, b3ijk, b4ijk)

=

(
1

2
(1 + ζi) ,

1

4
(1 + ζj) (1− ζi) ,

1

8
(1 + ζk) (1− ζj) (1− ζi) ,

1

8
(1− ζk) (1− ζj) (1− ζi)

)
.

(17)



16 Robert C. Kirby, Kieu Tri Thinh

3 Bernstein-Vandermonde-Gauss matrices

Definition 1 Let 1 ≤ d ≤ 3, m,n ≥ 0 be integers, and Zm the set

of Gauss points (d = 1) or warped Gauss points (d = 2, 3). The

Bernstein-Vandermonde-Gauss matrix is defined as

V d,m,n
I,α = Bn

α(ZI), (18)

where |α| = n and all components of I are no greater than m.

For the univariate case, Bernstein-Vandermonde matrices have

been studied in the literature. Despite possibly large condition num-

bers, stable and efficient algorithms for basic linear algebra problems

are known [15,1]. Our goal is to investigate substructure in the higher-

dimensional matrices that enables them to be multiplied onto vectors

efficiently.

Before giving explicit formulas for these higher-dimensional matri-

ces, we describe the one-dimensional matrix tabulated at the Gauss

points. As before, let {ζi} be the Gauss points on [−1, 1]. If these are

converted to barycentric coordinates , we obtain

{(
1− ζi

2
,
1 + ζi

2

)}m
i=0

For the one-dimensional Bernstein-Vandermonde-Gauss matrix we

will use index rather than multiindex notation for the polynomials.



Title Suppressed Due to Excessive Length 17

The matrix is

V 1,m,n
i,j =

n!

j!(n− j)!

(
1− ζi

2

)n−j (1 + ζi
2

)j
, (19)

We will assume hereafter that V 1,m,n and its transpose may be

stably applied in O(mn) operations.

Now, we consider the two- and three-dimensional cases. By us-

ing (4) and (9), the two-dimensional Bernstein-Vandermonde-Gauss

is

V 2,m,n
I,α = Bn

α(ZI)

=
n!

α!

(
1

2
(1 + ζi)

)α1
(

1

4
(1− ζi) (1 + ζj)

)α2
(

1

4
(1− ζi) (1− ζj)

)α3

,

(20)

and (4) and (11) together give the three-dimensional matrix as

V 3,m,n
I,α = Bn

α(ZI)

=
n!

α!

(
1

2
(1 + ζi)

)α1
(

1

4
(1− ζi) (1 + ζj)

)α2

×
(

1

8
(1− ζi) (1− ζj) (1 + ζk)

)α3
(

1

8
(1− ζi) (1− ζj) (1− ζk)

)α4

(21)

These matrices posses some important structure that we explore

before presenting fast algorithms in the following two sections.

Consider the equation for V 2,m,n
I,α . Since n−α1 = α2 +α3, we may

factor all the terms with 1± ζi to write

V 2,m,n
I,α =

n!

α!

(
1

2
(1 + ζi)

)α1
(

1

2
(1− ζi)

)n−α1
(

1

2
(1 + ζj)

)α2
(

1

2
(1− ζj)

)α3

.



18 Robert C. Kirby, Kieu Tri Thinh

Now, if we multiply and divide by (n− α1)!, we may regroup the

factors

V 2,m,n
I,α =

n!

α1! (n− α1)!

(
1

2
(1 + ζi)

)α1
(

1

2
(1− ζi)

)n−α1

× (n− α1)!

α2!α3!

(
1

2
(1 + ζj)

)α2
(

1

2
(1− ζj)

)α3

.

Now, we use that α3 = n − α1 − α2 and rewrite factors as binomial

coefficients to obtain

V 2,m,n
I,α =

(
n

α1

)(
1

2
(1 + ζi)

)α1
(

1

2
(1− ζi)

)n−α1

×
(
n− α1

α2

)(
1

2
(1 + ζj)

)α2
(

1

2
(1− ζj)

)n−α1−α2

,

(22)

which becomes

V 2,m,n
I,α = V 1,m,n

i,α1
V 1,m,n−α1
j,α2

(23)

by using (19).

To interpret this calculation, we may think of partitioning V 2,m,n

into blocks corresponding to fixing i and α1. Each such block con-

sists of m + 1 rows and n − α1 columns, and is a scaled version of

a one-dimensional operator. If we denote these blocks as V 2,m,n
i,α1

∈

Rm+1,n−α1 , we may write

V 2,m,n
i,α1

= V 1,m,n
i,α1

V 1,m,n−α1 . (24)

Now, a similar calculation may be carried out for the tetrahedral

Bernstein-Vandermonde-Gauss matrix. First we factor terms with



Title Suppressed Due to Excessive Length 19

(1± ζi) and multiply by (n−α1)!
(n−α1)!

to obtain

V 3,m,n
I,α =

n!

α!

(
1

2
(1 + ζi)

)α1
(

1

4
(1− ζi) (1 + ζj)

)α2

×
(

1

8
(1− ζi) (1− ζj) (1 + ζk)

)α3
(

1

8
(1− ζi) (1− ζj) (1− ζk)

)α4

=
n!

α1! (n− α1)!

(
1

2
(1 + ζi)

)α1
(

1

2
(1− ζi)

)n−α1

× (n− α1)!

α2!α3!α4!

(
1

2
(1 + ζj)

)α2
(

1

4
(1− ζj) (1 + ζk)

)α3

×
(

1

4
(1− ζj) (1− ζk)

)α4

.

(25)

We could continue the process by grouping terms with (1± ζj), but

instead we recognize using (19) and (20) that

V 3,m,n
I,α = V 1,m,n

i,α1
V 2,m,n−α1

Ĩ,α̃
, (26)

where Ĩ = (j, k) and α̃ = (α2, α3, α4) with |α̃| = n− α.

As with V 2,m,n, we may view V 3,m,n as a blocked matrix, with

blocks obtained by fixing the first indices i and α1. For each i and

α1, we write V 3,m,n
i,α1

∈ R(m+1)2,(n−α1+1
2 ) as

V 3,m,n
i,α1

= V 1,m,n
i,α1

V 2,m,n−α1 (27)

The calculations leading to (24) and (27), then, have shown that

Theorem 1 Let 1 < d ≤ 3 and m,n ≥ 0. Let I = (i1, i2 . . . , id)

with 0 ≤ i1, i2 . . . , id ≤ m and let |α| = n. Let Ĩ = (i2, . . . , id) and



20 Robert C. Kirby, Kieu Tri Thinh

α̃ = (α2, . . . , αd). The Bernstein-Vandermonde-Gauss matrices are

naturally blocked according to

V d,m,n
I,α = V 1,m,n

i,α1
V d−1,m,n−α1

Ĩ,α̃
. (28)

Theorem 1 shows that the higher-dimensional Bernstein-Vandermonde-

Gauss matrices have a natural structure similar to a Kronecker prod-

uct. A standard Kronecker product A⊗B constructs a block matrix

with scaled copies of B tiled in each block, so all the blocks are the

same size. Our case has variable block size, and a slightly different

matrix in each block of columns. Before studying this in further de-

tail, we give another property of the BVG matrices.

Proposition 1 Let d ≥ 1 and m ≥ 0 and n > 0 and let Ed,n denote

the Bernstein degree elevation operator from polynomials of degree

n− 1 to degree n. Then the Vandermonde matrices satisfy

V d,m,n−1 = V d,m,nEd,n. (29)

Proof Since V d,m,n−1 evaluates any B-form polynomial of degree n−

1 and V d,m,n evaluates any B-form polynomial of degree n at the

same points, this result is obvious: if one elevates the degree (while

preserving the polynomial) and evaluates it at the same points, one

obtains the same values.



Title Suppressed Due to Excessive Length 21

4 Discrete function tabulation

Let u =
∑
|α|=n uαB

n
α be a function expressed in the Bernstein ba-

sis. Consider the problem of evaluating u at all of the warped Gauss

points. This is accomplished by forming the product V d,m,nu, where

V is given above in (19). The standard algorithm requires work pro-

portial to the product of the number of quadrature points and the

dimension of the polynomial space. Efficient algorithms, however, fol-

low immediately from Theorem 1. A blocked version of the standard

matrix-vector algorithm could be

yi =

n∑
α1=0

V d,m,n
i,α1

uα1 . (30)

Here, uα1 is the subvector of u consisting of all entries with first mul-

tiindex fixed as α1, and similar for yi. Theorem 1 allows us to replace

the matrix block V d,m,n
i,α1

with a scaled copy of V d−1,m,n−α1 . Since each

such V d,m,n
i,α1

block acts on uα1 , we may compute one matrix-vector

product

V d−1,m,n−α1uα1

and add a scaled version of it to each of the m+ 1 chunks of y. This

gives Algorithm 2.

If d = 2, then Algorithm 2 requires n + 1 applications of one-

dimensional Bernstein Vandermonde matrices. If m ≈ n, then this



22 Robert C. Kirby, Kieu Tri Thinh

Algorithm 2 Applies the Bernstein-Vandermonde-Gauss matrix

V d,m,n with d = 2, 3 to a vector u
y ← 0

for α1 ← 0,n do

x← V d−1,m,n−α1uα1

for i← 0,m do

yi ← yi + V 1,m,n
i,α1

x

end for

end for

gives O(n3) operations. Additionally, the inner loop (scaling and ad-

dition) is executed O(n2) times, each with a cost of O(n). This also

gives O(n3) operations. Now, consider three dimensions. In this case,

we have n+ 1 applications of the two-dimensional matrix, each cost-

ing O(n3) operations for O(n4) operations. The inner loop is again

executed O(n2) times, and each time now costs O(n2) operations. To

summarize,

Theorem 2 For m = O(n) and d = 1, 2, 3, Algorithm 2 requires

O(nd+1) floating-point operations to execute.

5 Finite element integration

So far, we have seen how to tabulate finite element functions at a

particular set of quadrature points efficiently. This is the first step



Title Suppressed Due to Excessive Length 23

in evaluating the action of bilinear forms on a single element. Now,

suppose we need to compute∫
T
f(x)Bn

α dx (31)

for all |α| = n and that f is already known at the warped Gauss points

on a simplex T , whether by direct evaluation of a given function or

use of the techniques in the previous section. Let fI be the vector

of values of f tabulated at the quadrature points, and let f̃I be the

values of f times the quadrature weights at each point. Alternatively,

if wI is the quadrature weight associated with a point, then f̃ = Wf

for a diagonal matrix with wI on the diagonal.

Evaluating (31) for all Bernstein polynomials is obtained by the

matrix-vector product. (
V d,m,n

)t
f̃ . (32)

A simple blocked algorithm for the product y =
(
V d,m,n

)t
u starts

by writing the product as

yαi =
m∑
i=0

(
V d,m,n
i,α1

)t
ui.

As before, Theorem 1 lets us write the term inside the sum as

V 1,m,n−α1
i,α1

(
V d−1,m,n−α1

)t
ui.

After using Theorem 1 in applying V d,m,n, each block of u was mul-

tiplied by the block V d−1,m,n−α1 several times. Now, the transposes



24 Robert C. Kirby, Kieu Tri Thinh

of these lower-dimensional matrices act on all the blocks of the in-

put vector u. A fast algorithm, then, is more subtle than the simple

loop-hoisting technique used in Algorithm 2. Instead, much as in [14],

we will use the sparsity of the degree elevation operator to obtain an

efficient algorithm.

For α1 = 0, we can use Proposition 1 to rewrite the product in

the sum as

V 1,m,n−1
i,0

(
Ed−1,n

)t (
V d−1,m,n

)t
ui.

Hence, after computing (
V d−1,m,n

)t
ui,

we may successively apply the transposed degree elevation operators

to its result, scaling the result. Consequently, we may compute(
V d−1,m,n−α1−1

)t
ui

recursively by (
Ed−1,n−α1

)t (
V d−1,m,n−α1

)t
ui

This gives rise to Algorithm 3.

Degree elevation has linear complexity, so a similar discussion as

for Algorithm 2 gives the complexity result

Theorem 3 For m = O(n) and d = 1, 2, 3, Algorithm 3 requires

O(nd+1) floating-point operations to execute.



Title Suppressed Due to Excessive Length 25

Algorithm 3 Computes y =
(
V d,m,n

)t
u, where d ≥ 2.

y ← 0

for i← 0,m do

x←
(
V d−1,m,n−α1

)t
ui

for α1 ← 0,n do

yα1 ← yα1 + V 1,m,n
i,α1

x

x←
(
Ed−1,n−α1

)t
x

end for

end for

6 Bilinear form evaluation

We now return to the question of evaluating the action of bilinear

forms (1) by our fast algorithms for applying V d,m,n and its transpose.

Let u be a polynomial of degree n1 and suppose we wish to cal-

culate

(Ku)α =

∫
T
κ(x) (D1u) (D2B

n2
α ) dx (33)

for all |α| = n2. We will use u to denote both the polynomial and its

vector of coefficients, as indicated in context.

We will evaluate this by the warped Gauss numerical quadrature of

order m, where m is sufficiently large to ensure the right convergence

rate in the finite element method [7].

First, we compute the B-form coefficients of y1 = D1u by the

sparse matrix-vector product (5). This gives a polynomial of degree



26 Robert C. Kirby, Kieu Tri Thinh

n1 − 1, which we must evaluate at the the Gauss-quadrature points.

This is accomplished by the operation

V d,m,n1−1y2.

Next, this result is multiplied pointwise by the product of the quadra-

ture weights and the coefficient function κ evaluated at each quadra-

ture point. This is represented by a matrix product

y3 = W̃y2.

As described above, the product

y4 =
(
V d,m,n2

)t
y3

now contains the integrals of D1u against all of the degree n2 Bern-

stein basis functions, and the calculation is completed by

y5 = (D2)
t y4,

which incorporates the differential operator D2. The whole calcula-

tion is written by

Ku = (D2)
t
(
V d,m,n2

)t
W̃V d,m,n1D1u.

Both D1 and D2 are sparse, with d + 1 nonzeros per row, and W̃ is

diagonal. The dominant cost in this product is applying V and V t,

and we have presented low-complexity algorithms for these.



Title Suppressed Due to Excessive Length 27

7 Numerical results

Here, we will test the performance of our algorithms on a few sample

problems. We want to evaluate the cost to apply the assembled ma-

trix versus the matrix-free approach. We use pieces of the Sundance

package [17,13] within Trilinos, such as the mesh, degree of freedom

mappings, and interface to Epetra vector operations [10], but not its

symbolic interface.

To demonstrate the scaling of our operations, we considered both

the constant and variable coefficient Poisson operators, arising from

the discretization of the variational forms∫
Ω
∇u · ∇v dx

and ∫
Ω
w∇u · ∇v dx,

respectively. In the latter case, the function w is chosen as the L2

projection of some existing function into the finite element space.

In our numerical experiments, we meshed the unit square into

a 64 × 64 grid of squares, each subdivided into two right triangles.

We used Sundance’s degree of freedom mappings to implement the

scatter/gather operation A. We have implemented C++ code that

performs the differentiation operations and the Vandermonde ma-

trix application and its transpose. On each element, the constant



28 Robert C. Kirby, Kieu Tri Thinh

coefficient Poisson operator requires two derivative operations, two

transposed derivative operations, two Bernstein-Vandermonde ma-

trix applications, and two transposed applications. The variable co-

efficient operator requires an additional application of a Bernstein-

Vandermonde matrix to evaluate the coefficient function w, at the

quadrature points. All our timings, reported in Table 1, were ob-

tained on a single core of MacPro with dual 2.8 GHz Xeon quad-core

processors and 32GB of RAM.

We compared the matrix-free methods to constructing local stiff-

ness matrices for all the cells and assembling into two matrix formats.

For one, we modeled a sparse matrix by a

vector<map<unsigned,double> > from C++ the standard template

library. In this case, each row is stored as an associated array map-

ping nonzero column entries to the double-precision values. To com-

pute the matrix-vector product, we used an iterator to traverse the

nonzero entries of each row. As a second more optimized case, we

used theEpetra_FECrsMatrix from the Epetra package within Trili-

nos [10]. This is a specialization of the standard sparse matrix im-

plementation to support direct summation of element matrices into

the sparse data stucture. The third column Table 1 shows the time

required to compute all of the element stiffness matrices using the In-



Title Suppressed Due to Excessive Length 29

STL Epetra

k Bernstein Cell mat Assembly Matvec Assembly Matvec

1 0.0024339 0.0073817 0.0003429 0.0078258 2.40E-005 0.002937

2 0.0068065 0.0220394 0.0055234 0.0561759 4.90E-005 0.012849

3 0.0132358 0.0693899 0.0184985 0.184349 9.20E-005 0.033307

4 0.0257605 0.230018 0.046973 0.462899 0.000152 0.073813

5 0.0399169 0.466646 0.0974356 0.949906 0.000225 0.139959

6 0.0600805 0.864955 0.185518 1.7523 0.000321 0.230152

7 0.0901709 1.56259 0.306342 2.99176 0.000459 0.39826

8 0.122464 2.62408 0.504124 4.87428 0.000631 0.646607

9 0.163513 4.27394 0.738311 7.23924 0.00092 0.899606

10 0.212413 4.99079 1.05475 11.7651 0.001438 1.24465

Table 1. For various polynomial degree (first column), time to perform matrix-

free application of the Poisson operator using Algorithms 2 and 3 plus a scatter

and gather operation (second column). These times are compared to the cost of

constructing all element stiffness matrices (third column), assembling them into

either STL and Epetra format (columns four and six), and computing the matrix-

vector product (columns three and five).

trepid package within Trilinos [6], and the final columns display the

time to assemble these element matrices into the sparse data struc-

ture and compute the matrix-vector product for our two sparse data

structures.



30 Robert C. Kirby, Kieu Tri Thinh

An examination of the relative times in Table 1 reveals several

interesting features. First, in all cases, the cost of a matrix-vector

product is smaller than the cost of building element stiffness ma-

trices and assembling them into a sparse data structure, and the

difference becomes quite dramatic as the order increases. While the

matrix-free method surpasses the STL-based sparse matrix at cubics,

the Epetra matrix-vector product is highly optimized, and we are yet

to be competitive with this. However, the savings in bypassing the

matrix construction and the massive reduction in memory footprint

are still significant advantages to our method over either sparse ma-

trix approach. We hope to better tune our Bernstein implementation

in future work.

We also tested our algorithm for a weighted Poisson problem in

which the coefficient lived in the finite element space. Not much

changes in this situation – our matrix-free algorithm is about 50%

more expensive in this case, but still surpasses the STL-based matrix-

vector product for STL-based by cubics. The element construction is

slightly more expensive, and the matrix-vector and assembly costs

are the same for the STL and Epetra matrices.



Title Suppressed Due to Excessive Length 31

8 Conclusions

We have extended our previous low-complexity techniques for con-

stant coefficient operators to quadrature-based forms with possibly

variable coefficient by means of finding block structure in simplicial

Bernstein-Vandermonde-Gauss matrices, providing a reference imple-

mentation that delivers sub-quadratic complexity. These techniques

will be applied and extended in several ways in ongoing work. For one,

the exterior calculus bases in [3] that generalize Raviart-Thomas and

Nedelec elements are expressed in terms of Bernstein-type polyno-

mials, so converting the vector components of these bases to B-form

should open up opportunities for spectral-type methods for H(div)

and H(curl). Moreover, techniques for variable coefficients can often

be extended to work for curvilinear geometry. Additionally, we need

to find ways to tune our implementation of the application of V and

V t.

References

1. Jose-Javier Martinex Ana Marco, Accurate numerical linear algebra with

Bernstein-Vandermonde matrices. arXiv:0812.3115v1, December 2008.

2. Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite

element exterior calculus, homological techniques, and applications, Acta Nu-

mer., 15 (2006), pp. 1–155.



32 Robert C. Kirby, Kieu Tri Thinh

3. , Geometric decompositions and local bases for spaces of finite ele-

ment differential forms, Comput. Methods Appl. Mech. Engrg., 198 (2009),

pp. 1660–1672.

4. G. Awanou and M.J. Lai, Trivariate spline approximations of 3d navier-

stokes equations, Mathematics of computation, 74 (2005), pp. 585–602.

5. G. Awanou, M. J. Lai, and P. Wenston, The multivariate spline method

for numerical solution of partial differential equations and scattered data in-

terpolation, in Wavelets and Splines: Athens 2005, G. Chen and M. J. Lai,

eds., Nashboro Press, 2006, pp. 24–74.

6. Pavel Bochev, Denis Ridzal, and Kara Peterson, Intrepid: Interop-

erable Tools for Compatible Discretizations. http://trilinos.sandia.gov/

packages/intrepid.

7. Susanne C. Brenner and L. Ridgway Scott, The mathematical theory

of finite element methods, vol. 15 of Texts in Applied Mathematics, Springer,

New York, third ed., 2008.

8. Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and

Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in

Computational Physics, Springer-Verlag, New York, 1988.

9. Daniele Funaro, Spectral elements for transport-dominated equations, vol. 1

of Lecture Notes in Computational Science and Engineering, Springer-Verlag,

Berlin, 1997.

10. Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J.

Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq,

Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G.

Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willen-



Title Suppressed Due to Excessive Length 33

bring, Alan Williams, and Kendall S. Stanley, An overview of the

trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

11. X.L. Hu, D.F. Han, and M.J. Lai, Bivariate splines of various degrees for

numerical solution of partial differential equations, SIAM Journal on Scientific

Computing, 29 (2008), p. 1338.

12. George Em Karniadakis and Spencer J. Sherwin, Spectral/hp element

methods for computational fluid dynamics, Numerical Mathematics and Sci-

entific Computation, Oxford University Press, New York, second ed., 2005.

13. Robert C. Kirby Kevin Long and Bart van Bloemen Waanders,

Unified Embedded Parallel Finite Element Computations Via Software-Based

Fréchet Differentiation. submitted to SIAM J. Scientific Computing.

14. Robert C. Kirby, Fast application of some finite element bilinear forms

using bernstein polynomials, Numerische Mathematik, (to appear).

15. Plamen Koev, Accurate computations with totally nonnegative matrices,

SIAM J. Matrix Anal. Appl., 29 (2007), pp. 731–751 (electronic).

16. Ming-Jun Lai and Larry L. Schumaker, Spline functions on triangula-

tions, vol. 110 of Encyclopedia of Mathematics and its Applications, Cam-

bridge University Press, Cambridge, 2007.

17. Kevin Long, Chapter contribution in ”Large-Scale PDE-Constrained Opti-

mization, L. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen

Waanders editors”, vol. 30 of Lecture Notes in Computational Science and

Engineering, Springer-Verlag, 2003.

18. Larry L. Schumaker, Computing bivariate splines in scattered data fitting

and the finite-element method, Numer. Algorithms, 48 (2008), pp. 237–260.


