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1 Introduction

Spectral element techniques [3,4] accelerate the application of high-

order finite element operators while reducing memory usage. At the

heart of the methodology is a fast, matrix-free algorithm by which

the action of a local element matrix on a vector may be computed.

These techniques work by scattering global degrees of freedom to each

cell, computing the action of the element stiffness matrix efficiently,

then assembling the elementwise results. To develop a fast algorithm,

it is sufficient to consider finite element operators acting on one cell

in a mesh. For high-degree polynomials in multiple dimensions, the

reduction in storage and arithmetic requirements is dramatic, and the

benefit of reduced arithmetic is realized at each step of an iterative

method. The process of assembling these local contributions in nodal

and Bernstein bases is well-documented in the literature [16,9,10],

and is not dealt with here.

When the mesh consists of rectangles or hexahedra, polynomial

bases are naturally expressed in tensor-product form using Lagrange

or other standard polynomials in each coordinate direction. Then,

local stiffness matrices have a natural decomposition into a Kro-

necker product of one-dimensional operators. By applying only one-

dimensional operators in each direction, the complexity of applying
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the element stiffness matrix is greatly reduced. Moreover, selecting

the Lagrange nodes to be the tensor product of Gauss-Lobattto leads

to diagonalized mass matrices [16], further improving the efficiency.

Simplicial domains present a greater challenge to the development

of efficient algorithms. By using special bases composed of tensor

products of Jacobi polynomials combined with special quadrature

rules, spectral techniques may be developed. The book of Karniadakis

and Sherwin [9] and the literature cited therein contain a thorough

presentation of these bases and the efficient evaluation of finite ele-

ment operators expressed in them. Using nodal bases, low-complexity

algorithms are harder to come by. In special cases, mass matrices may

be diagonalized by special integration rules [5], but a general tech-

nique is not known.

Instead of dealing with special bases for which fast algorithms are

apparent, this paper instead deals with a standard polynomial basis,

the Bernstein polynomials, and develops special algorithms for it. A

polynomial expressed in the Bernstein basis is typically referred to as

B-form. The Bernstein basis, while not nodal like Lagrange polynomi-

als, has members whose boundary support is restricted to particular

facets of a cell, enabling them to be pieced together continuously. Like

Lagrange polynomials, they form a partition of unity, but they are
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also totally nonnegative. They are also appropriate building blocks

for smooth splines [10], and are widely used in computer graphics.

Hosever, they are only recently being considered in a finite element

context. In [12], Petersen et al find Bernstein polynomials for certain

acoustics problems to be stable and efficient when systems are solved

with preconditioned Krylov methods. The recent work of Arnold et

al [1] on finite element exterior calculus starts with Bernstein poly-

nomials for simplicial 0-forms and expresses bases for 1-forms and

2-forms in barycentric coordinates similar to B-form. Schumaker [15]

has posed finite element methods over triangular splines, which lo-

cally are expressed in B-form. The work of Hughes et al in isoge-

ometric analysis [8] uses rational splines to represent both the do-

main geometry and the finite element bases, though typically using

rectangular patches. While efficient recursive algorithms in B-form

are well-known for evaluation, refinement, and rendering, this work

seems to be the first derivation of fast algorithms for finite element

operators acting on B-form.

In this paper, fast algorithms for computing the action of finite

element mass and stiffness matrices in B-form over a simplex are

derived. The mass matrix algorithm requires O(dnd+1) operations,

where n is the polynomial degree and d is the spatial dimension.
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Stiffness matrices are about d times as expensive. While not as ef-

ficient as a diagonalized mass matrix, these algorithms have simi-

lar complexity as simplicial sum-factorization techniques in [9]. This

complexity and memory usage far improves on the O(n2d) require-

ments of explicitly constructing the matrices. Moreover, the flexibility

of B-form allow it to be used not only in place of Lagrange elements

in C0 finite elements, but in the future can lead to spectrally efficient,

high-smoothness splines and also H(div) and H(curl) bases.

While the techniques developed here rely on affine geometry, it is

typically possible to resolve more general domains into a large number

of affine simplices and used curved elements only near the boundary.

Such a method is used in the nodal spectral elements of Hesthaven

and Warburton [7], where level 3 BLAS is used to efficiently apply op-

erators on all internal (affine) cells, and a more standard quadrature

technique is used to handle curved boundary cells. In the context of

NURBS-based finite elements of Sevilla et al [13,14], exact geomet-

ric representations of boundaries are obtained while using standard

finite element bases and low-order geometry in the interior of the

domain. More importantly, the techniques here work with constant

coefficient problems. In the future, it is hoped that the ideas here
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may be extended quadrature-based evaluation algorithms that will

both accomodate variable coefficients and curved geometry.

After establishing some notation and reviewing important facts

about Bernstein polynomials on the simplex in Section 2, block struc-

ture arising in vectors and matrices representing B-form polynomials

is explored. This leads to fast algorithms for applying an element mass

matrix in Section 3. These techniques are recursive by simplex dimen-

sion, relying on a naive algorithm for the one-dimensional case. By

factoring element stiffness matrices into products of sparse derivative

matrices and mass matrices, fast stiffness algorithms are obtained in

Section 4. However, these operators on a line segment can be reduced

to O(N log N) complexity due to certain Hankel matrix structure

that arises. Finally, some timing results for the two-dimensional oper-

ators confirming the predicted complexity are presented in Section 6,

and some conclusions presented in Section 7.

2 Bernstein polynomials on the d-simplex

2.1 Multiindex notation

Multiindex notation will expedite the development of these ideas with

some generality with respect to spatial dimension. These shall be

denoted by lowercase Greek letters such as α and β. A multiindex of



Fast simplicial finite element algorithms using Bernstein polynomials 7

length d is a d-tuple of nonnegative integers, written

α = (α1, α2, · · · , αd).

Let Ad denote the set of all multiindices of length d + 1. The order

of a multiindex α, written |α| is given by the sum of its components.

That is,

|α| =
d+1∑
i=1

αi.

If α, β ∈ Ad. their sum is defined componentwise by

α + β = (α1 + β1, α2 + β2, · · · , αd+1 + βd+1).

A partial ordering ≤ is defined for α, β ∈ Ad by α ≤ β if αi ≤ β1 for

each 1 ≤ i ≤ d + 1. If α ≤ β, then the difference

β − α = (β1 − α1, β2 − α2, · · · , βd+1 − αd+1)

is well-defined.

The factorial of a multiindex is defined as the product of the com-

ponents’ factorials by

α! = Πd+1
i=1 αi!

Given a nonnegative integer a and α ∈ Ad, define a new multiindex

a ` α ∈ Ad+1 by

a ` α = (a, α1, α2, · · · , αd+1).
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It will also be helpful to define an operation ·′ from Ad into Ad−1 that

takes the last d components of a multiindex. That is,

α′ = (α2, α3, · · ·αd).

So then, the identity

α1 ` α′ = α

holds.

Let An
d denote the subset of Ad whose members have order n.

That is,

An
d = {α ∈ Ad : |α| = n}.

The cardinality of An
d is simply the dimension of the the space of

polynomials of degree n in d variables, that is,
(
n+d

n

)
. It is also useful

to define ei
d ∈ A1

d to be the multiindex with (ei
d)j = δij , only nonzero

in position i.

2.2 Barycentric coordinates

For an integer d ≥ 1, let Sd be a nondegenerate simplex in d space

dimensions. The vertices of Sd are denoted by {xi}d+1
i=1 ⊂ Rd. Let

{bi}d+1
i=1
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denote the barycentric coordinates of Sd. Each bi is an affine map

from Rd into R such that

bi(xj) = δij

for each 1 ≤ i, j ≤ d + 1, where δij is the standard Kronecker delta.

Each bi is nonnegative on Sd, and

d+1∑
i=1

bi = 1.

2.3 Bernstein polynomials

Let bd = (b1, b2, · · · , bd+1) denote the tuple of barycentric coordi-

nates on a d-simplex and let α ∈ Ad. Monomials in the barycentric

coordinates are compactly written as

bα
d = Πd+1

i=1 bαi
i

The Bernstein polynomials of degree n on the d-simplex are de-

fined by

Bn
α =

n!
α!

bα
d ,

where α ∈ An
d . The complete set of Bernstein polynoimals,

{Bn
α}α∈An

d
,

form a basis of polynomials of complete degree n on Sd. Because

the barycentric coordinates are nonnegative on Sd, it immediately
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follows that each Bn
α is also nonnegative on Sd. In any dimension and

for any degree, the Bernstein polynomials also form a partition of

unity, which follows from applying the multinomial theorem to

1 =

(
d+1∑
i=1

bi

)n

.

If n > 0 and u is a polynomial of degree n− 1, then

u =
∑

α∈An−1
d

cαBn−1
α

for some vector of coefficients cα. However, u is also a polynomial of

degree n and so may be expressed as

u =
∑

α∈An
d

c̃αBn
α

for some vector c̃α. The process of obtaining c̃ from c is called degree

elevation.

Degree elevation is naturally represented as a linear transforma-

tion c̃ = Ed,nc whose rows run over An
d and columns over An−1

d .

From basic linear algebra, the column of Ed,n corresponding to some

β ∈ An−1
d expresses Bn−1

β as a linear combination of {Bn
α}α∈An

d
. The

structure of this column may be computed by

Bn−1
β =

(
d+1∑
i=1

bi

)
Bn−1

β =
d+1∑
i=1

biB
n−1
β , (1)
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since the barycentric coordinates sum to one. Considering each term

of the sum,

biB
n−1
β = bi

(n− 1)!
β!

bβ
d

=
(n− 1)!

β!
b

β+ei
d

d

=
(n− 1)!

β!
(β + ei

d)!
n!

n!
(β + ei

d)!
b

β+ei
d

d

=
βi + 1

n
Bn

(β+ei
d).

This calculation shows that there are d+1 nonzero entries per column

of Ed,n, independent of n, and gives exact row indices and numeri-

cal values. This holds independent of the polynomial degree n. The

sparsity of Ed,n will be important in developing fast algorithms for

finite element operators.

Differentiation of polynomials expressed in B-form on a simplex

Sd also has a matrix representation. Let u =
∑

α∈An
d

cαBn
α. Then for

any coordinate direction xi, ∂u
∂xi

is a polynomial of degree n−1 and so

has a representation ∂u
∂xi

=
∑

α∈An−1
d

ĉαBn−1
α . Since differentiation is

a linear process, there is some matrix DSd,n,xi such that ĉ = DSd,n,xic.

Any directional can be expressed in terms of derivatives with re-

spect to barycentric coordinates by the chain rule, for

∂

∂x
=

d+1∑
i=1

∂bi

∂x

∂

∂bi
.

In affine geometry, each ∂bi
∂x is a constant, and

∑d+1
i=1

∂bi
∂x = 0.
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Differentiation with respect to any barycentric coordinate is par-

ticularly simple:

d

dbi
Bn

α =


0, αi = 0

nBn−1
α−ed

i

, αi 6= 0

Thus, barycentric derivatives are represented by matrices with one

entry per row, and so any directional derivative is represented by a

matrix with no more than d+1 entries per row. Like degree elevation,

this is independent of the polynomial degree.

Integration rules for barycentric monomials will play an important

role, giving exact formula for element mass matrices. If α ∈ Ad, then

∫
Sd

bα
d =

α!
(|α|+ d)!

|Sd|d!, (2)

where |Sd| is the hypervolume of Sd.

2.4 Recursive block structure via partial indexing

Let u =
∑

α∈An
d+1

cαBn
α be some polynomial. The set of coefficients

cα is naturally represented as a vector c. When An
d is ordered lex-

icographically, there is a natural block structure to the vector. For
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example, for cubics in two variables, c may be written as

c =



c300

c210

c201

c120

c111

c102

c030

c021

c012

c003



. (3)

The lines are drawn to separate the portions of the vector where the

first index is constant. This may also be written as a block vector

c =



c3

c2

c1

c0


. (4)

This suggests a kind of partial indexing where cα is interpreted as a

block vector. However, the natural structure in the index set makes

the blocks of differeing sizes. Here, c3 is a vector with indices running

over A0
1, so the only index is (0, 0) and (c3)(0,0) = c300. c2 has indices

running over A1
1 = {(1, 0), (0, 1)}. More generally, for any α ∈ An

d , cα1
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is a vector with indices in An−α1
d−1 . Using the ·′ operator introduced

earlier, for any α, the identity

cα = (cα1)α′

expresses indexing as a two-stage process. Since cα1 is itself a vector,

the process of partial indexing may be repeated.

This blocking of vectors induces a blocking of matrices. Let b(·, ·)

be a bilinear form over a simplex Sd and let b : Pn
d × Pm

d → R.

Associated with b is the |Am
d | × |An

d | matrix

Tαβ = b(Bn
β , Bm

α ). (5)

Given u =
∑

α∈An
d

cu
αBn

α v =
∑

α∈Am
d

cv
αBm

α , b(u, v) is computed by

∑
α∈Am

d

∑
β∈An

d

cv
αTαβcu

β.

This may be written in matrix-vector form as (cv)tTcu.

Partially indexing the vectors cu and cv leads to a block structure

of the matrix T . Fix 0 ≤ α1 ≤ m and 0 ≤ β1 ≤ n. Then define Tα1β1

as a matrix with rows indexed over Tm−α1
d−1 and columns over Tn−β1

d−1

by

(Tα1β1)α′β′ = T(α1`α′)(β1`β′). (6)

Examples will be given shortly, where blocked representations of de-

gree elevation and differentation are shown.
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It is typically the matrix-vector product u 7→ Bu that is of interest,

as this operation is the core of Krylov methods for solving the global

linear system. The global operator is a sum of contributions from

each cell, each of which has the form of (5). The techniques in the

next section rely on the blocking of such matrices developed here,

deriving special relationships between the blocks that allow Bu to be

computed faster than the standrad matrix-vector product.

2.5 Partitioned elevation and derivative matrices

Here, some specific examples of the degree elevation and derivative

matrices are given, with lines drawn in the arrays to present par-

titioning structure. Note that, because of the ordering on An
d , the

bottom right block corresponds to α1 = β1 = 0.

Differentiation with respect to the barycentric coordinate bi, de-

scribed above, can be expressed as a |An−1
d | × |An

d | matrix, denoted
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Dd,n,i. For example, the D2,3,i are readily calculated as

D2,3,0 =



3 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0



,

D2,3,1 =



0 3 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 3 0



,

and

D2,3,2 =



0 0 3 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 3



.
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As described above, any directional derivative may be expressed

as a linear combination of barycentric derivatives, leading to a very

sparse matrix.

The elevation operators also may be written in blocked matrix

form. For example, the cubic one-dimensional elevation operator E1,3

is

E1,3 =



1 0 0

1
3

2
3 0

0 2
3

1
3

0 0 1


The elevation operator from quadratics into cubics on the triangle is,

with partitioning drawn in,

E2,3 =



1 0 0 0 0 0

1
3

2
3 0 0 0 0

1
3 0 2

3 0 0 0

0 2
3 0 1

3 0 0

0 1
3

1
3 0 1

3 0

0 0 2
3 0 0 1

3

0 0 0 1 0 0

0 0 0 1
3

2
3 0

0 0 0 0 2
3

1
3

0 0 0 0 0 1


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3 Mass matrices

For any simplex Sd, the mass matrix 1 is defined from the L2 inner

product over Sd

m(u, v) =
∫

Sd

uv dx. (7)

Using the integration rule (2), the entries of the mass matrix are

MSd,m,n
α,β = m(Bn

β , Bm
α )

=
∫

Sd

Bm
α Bn

β dx

=
∫

Sd

m!
α!

n!
β!

bα+β
d dx

=
m!
α!

n!
β!

(α + β)!
(m + n + d)!

|Sd|d!,

(8)

where α ∈ Am
d and β ∈ An

d . Since this only depends on Sd through

its volume, define

Md,m,n
α,β =

m!
α!

n!
β!

(α + β)!
(m + n + d)!

(9)

so that

MSd,m,n
α,β = Md,m,n

α,β |Sd|d!.

The nonnegativity of the Bernstein polynomials implies that Md,m,n

will always be nonnegative. In fact, it is always positive, as can be

seen in (9). This property does not hold for typical finite element

bases such as the Lagrange polynomials.
1 This matrix is also frequently called the Gram matrix, although this name is

less common in the finite element literature
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It is interesting to consider some examples of Md,m,n. Each may

be written with integer entries after suitable scaling. For d = 1 and

m = n, some matrices are

6M1,1,1 =

2 1

1 2

 ,

30M1,2,2 =


6 3 1

3 4 3

1 3 6

 ,

and

140M1,3,3 =



20 10 4 1

10 12 9 4

4 9 12 10

1 4 10 20


.

When d > 1, it is helpful to consider partitioning the mass ma-

trices by partial indexing. For m = n = 2 and m = n = 3, these

are

180M2,2,2 =



6 3 3 1 1 1

3 4 2 3 2 1

3 2 4 1 2 3

1 3 1 6 3 1

1 2 2 3 4 3

1 1 3 1 3 6


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and

1120M2,3,3 =



20 10 10 4 4 4 1 1 1 1

10 12 6 9 6 3 4 3 2 1

10 6 12 3 6 9 1 2 3 4

4 9 3 12 6 2 10 6 3 1

4 6 6 6 8 6 4 6 6 4

4 3 9 2 6 12 1 3 6 10

1 4 1 10 4 1 20 10 4 1

1 3 2 6 6 3 10 12 9 4

1 2 3 3 6 6 4 9 12 10

1 1 4 1 4 10 1 4 10 20


Inspection of of these matrices shows that the one-dimensional square

mass matrices appear as the diagonal blocks of the two-dimensional

mass matrices, up to a scaling factor. In fact, this is also true of the

off-diagonal blocks, for

60M1,3,2 =



10 4 1

6 6 3

3 6 6

1 4 10


.

In fact, patterns of this form hold for all spatial dimension and

polynomial degree, as shall be proven shortly. More subtley, the blocks

along a given column are themselves related by degree elevation op-
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erators. These two pieces, taken together, form the critical pieces of

a fast algorithm for multiplying a mass matrix onto a vector.

Before proceeding with the core results, the following basic fact

will be required a few times.

Lemma 1 Let n, i ≥ 0. Then

(
n
i

)(
n

i+1

) =
i + 1
n− i

. (10)

Proof A straightforward calculation:(
n
i

)(
n

i+1

) =
n!

(n−i)!(i!)

n!
(n−i−1)!(i+1)!

=
(i + 1)!

i!
(n− i− 1)!

(n− i)!

=
i + 1
n− i

.

Proposition 1 Let d > 1 and m,n ≥ 0 be integers. Let α ∈ Am
d and

β ∈ An
d be multiindices. The α1, β1 block of Md,m,n is related to a

lower-dimensional mass matrix by

Md,m,n
α1,β1

=

(
m
α1

)(
n
β1

)(
m+n+d−1

α1+β1

)
(m + n + d)

Md−1,m−α1,n−β1 . (11)

Proof Let α ∈ Am
d and β ∈ An

d be given and decompose α = α1 ` α′

and β = β1 ` β′.

Equation (9) gives that

Md−1,m−α1,n−β1

α′,β′ =
(m− α1)!(n− β1)!(α′ + β′)!

(α′)!(β′)!(m + n− α1 − β1 + d− 1)!
.
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Partially indexing Md,m,n gives(
Md,m,n

α1,β1

)
α′,β′

= Md,m,n
α,β

=
m!n!(α + β)!

α!β!(m + n + d)!

=
m!n!(α1 + β1)!(α′ + β′)!

α1!(α′)!β1!(β′)!(m + n + d)!

=
(m + n− α1 − β1 + d− 1)!(α1 + β1)!m!n!

(m + n + d)!α1!β1!(m− α1)!(n− β1)!

× (m− α1)!(n− β1)!(α′ + β′)!
(α′)!(β′)!(m + n− α1 − β1 + d− 1)!

,

where the factorials of multiindices have been split and the quantity

has been multiplied and divided by (m−α1)!, (n−β1)!, and (m+n−

α1−β1+d−1)!. Now, writing (m+n+d)! = (m+n+d−1)!(m+n+d)

and recognizing binomial coefficients, the result follows.

This result establishes a recursion down dimension among the

blocks of a mass matrix. The next observation to make is that mass

matrices over the same dimension but different polynomial degrees

are related by degree elevation. In fact, this is generally true for bi-

linear forms over polynomials.

Lemma 2 Let b(·, ·) be a bilinear form on Pn
d × Pm

d . Let Tm,n
α,β =

b(Bn
β , Bm

α ) be the matrix defined in (5). If m ≥ 0 and n ≥ 1, let

Tm,n−1
α,β = b(Bn−1

β , Bm
α ) be the matrix obtained by restricting b to

Pn−1
d × Pm

d . Then

Tm,n−1 = Tm,nEd,n. (12)
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Similarly, if m ≥ 1 and n ≥ 0 and Tm−1,n
α,β = b(Bn

β , Bm−1
α ), then

Tm−1,n = (Ed,m)tTm,n. (13)

Proof Let Pn−1
d 3 u =

∑
β∈An−1

d
cu
βBn−1

β and Pm
d 3 v =

∑
β∈Am

d
cv
βBm

β

Define c̃u = Ed,ncu to be the degree-elevated coefficients of u so that

u =
∑

β∈An
d

c̃u
βBn

β ..

On one hand, b(u, v) is evaluated using Tm,n−1 by

b(u, v) = b

 ∑
β∈An−1

d

cu
βBn−1

β ,
∑

α∈Am
d

cv
αBm

α


=
∑

α∈Am
d

∑
β∈An−1

d

cu
βcv

αb
(
Bn−1

β , Bm
α

)

=
∑

α∈Am
d

∑
β∈An−1

d

cu
βcv

αTm,n−1
α,β

= (cv)tTm,n−1cu

On the other hand, using the elevated representation of u and Tm,n

gives

b(u, v) = b

∑
β∈An

d

c̃u
βBn

β ,
∑

α∈Am
d

cv
αBm

α


=
∑

α∈Am
d

∑
β∈An

d

c̃u
βcv

αb(Bn
β , Bm

α )

=
∑

α∈Am
d

∑
β∈An

d

c̃u
βcv

αTm,n
α,β

= (cv)tTm,nc̃u

= (cv)tTm,n
(
Ed,ncu

)
.
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Since u ∈ Pn−1
d , v ∈ Pm

d were arbitrary, this establishes that Tm,n−1 =

Tm,nEd,n. A similar argument shows (13).

This general result applies to mass matrices.

Proposition 2 Let d ≥ 1, m ≥ 0, and n ≥ 1. Then the mass matrices

satisfy the relation

Md,m,n−1 = Md,m,nEd,n. (14)

Also, if m ≥ 1 and n ≥ 0, then

Md,m−1,n = (Ed,m)tMd,m,n. (15)

These results lead to a recurrence relation between the blocks of

a column of Md,m,n.

Proposition 3 For 0 ≤ α1 < m and 0 ≤ β1 ≤ and d ≥ 2, the blocks

of the mass matrix Md,m,n
α1,β1

satisfy

Md,m,n
α1+1,β1

=
(1 + α1 + β1) (m− α1)

(m + n + d− 1− α1 − β1) (1 + α1)

(
Ed−1,m−α1

)t
Md,m,n

α1,β1
.

(16)

Proof The proof is by calculation using the previous results. It follows

that

Md,m,n
α1+1,β1

=

(
m

α1+1

)(
n
β1

)(
m+n+d−1
α1+1+β1

)
(m + n + d)

Md−1,m−α1−1,n−β1

=

(
m

α1+1

)(
n
β1

)(
m+n+d−1
α1+1+β1

)
(m + n + d)

((
Ed−1,m−α1

)t
Md−1,m−α1,n−β1

)
.
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Now, it remains to multiply and divide the expression by appropriate

binomial coefficients and use Proposition 1 again to obtain

Md,m,n
α1+1,β1

=

(
m+n+d−1

α1+β1

)(
m

α1+1

)(
m
α1

)(
m+n+d−1
α1+1+β1

)
×

(
m
α1

)(
n
β1

)(
m+n+d−1

α1+β1

)
(m + n + d)

(
Ed−1,m−α1

)t
Md−1,m−α1,n−β1

=

(
m+n+d−1

α1+β1

)(
m

α1+1

)(
m
α1

)(
m+n+d−1
α1+1+β1

) Md,m,n
α1,β1

.

The proof is completed by applying the lemma to the leading coeffi-

cient to obtain(
m+n+d−1

α1+β1

)(
m

α1+1

)(
m
α1

)(
m+n+d−1
α1+1+β1

) =
(α1 + 1 + β1)(m− α1)

(m + n + d− 1− α1 − β1)(1 + α1)
.

So, if a product Md,m,n
α1,β1

xβ1 is already computed, then Md,m,n−1
α1,β1

xβ1

is computed simply by applying the transpose of Ed,n to the re-

sult and scaling by a constant. Rather than O
(
|An−1|d−1 × |Am|d−1

)
operations for a standard matrix-vector product, this requires only

O
(
d|Ad−1

m |
)
. This process may be iterated along each colum, giving

a columnwise algorithm for a blocked-matrix product, but using the

recurrence of Proposition 3 along the columns.

This algorithm possesses a better complexity with respect to the

polynomial degree than standard matrix-vector multiplication. To get

the order of complexity, let m = n and consider first the case d = 2.

The standard algorithm will require O(n4) operations to multiply a

matrix with O(n2) rows and columns onto a vector.
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Algorithm 1 Improved algorithm for product for y = Md,m,nx,

where d ≥ 2.
1: y ← 0

2: for β1 ← 0,n do

3: z0 ← ( n
β1

)

(m+n+d−1
β1

)(m+n+d)
Md−1,m,n−β1

0,β1
xβ1

4: y0 ← y0 + z0.

5: for α1 ← 0,m− 1 do

6: zα1+1 ← (α1+1+β1)(m−α1)
(m+n+d−1−α1−β1)(α1+1)

`
Ed−1,m−α1+1

´t
zα1

7: yα1+1 ← yα1+1 + zα1+1

8: end for

9: end for

Now consider Algorithm 1. The bulk of the computation occurs

in two operations, the multiplication of xβ1 by M1,m,n−β1

0,β1
in line 3

and the degree elevation operation in line 6. Even if a naive matrix-

vector algorithm is used, the n iterations of line 3 will cost a total of

nO(n2) = O(n3) operations. Now, each iteration of line 7 will require

no more than 2×|A1
n| = O(n) operations. Since line 7 will be executed

O(n2) times, the total cost will be O(n3).

By using this algorithm recursively, the complexity for higher d

will lead to an even more dramatic reduction in complexity over

the standard matrix-vector algorithm, giving O(dnd+1) rather than

O(n2d). Arguing inductively, it has just been demonstrated when

d = 2. Suppose then that the complexity result holds for some d− 1.
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Then, the n iterations of line 3 will cost nO((d− 1)nd) = O(dnd+1).

The O(n2) iterations of line 7 will cost O(n2)O(d|Ad−1
n |) = O(dnd+1)

also. This establishes the following complexity result.

Theorem 1 Let m0 = max{m,n} and N = |Ad
m0
|. Then the mass

matrix Md,m,n may be applied to any vector in O((dm0)d+1) opera-

tions.

As Algorithm 1 stands, it also requires the computation of two

binomial coefficients in the construction of z0 at the beginning of

each iteration. These can be incrementally computed as part of the

recurrence. Initially, β1 = 0, and the coefficient in line 3 reduces to

1
m+n+d . Denote this coefficient by κ. Then, it is not hard to show that

for successive steps of the algorithm,

κβ1+1 =
n− βi

m + n + d− 1− β1
κβi .

With this slight refinement, the new algorithm is given in Algo-

rithm 2.

4 Stiffness matrices

Fast application of the Laplace stiffness matrix follows from the sparse

representation of differentiation given in Section 2 and the fast mass
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Algorithm 2 Algorithm for product for y = Md,m,nx, where d ≥ 2.

Binomial coefficients are removed
1: y ← 0

2: κ← 1
m+n+d

3: for β1 ← 0,n do

4: z0 ← κMd−1,m,n−β1
0,β1

xβ1

5: κ← n−β1
m+n+d−1−β1

κ

6: y0 ← y0 + z0.

7: for α1 ← 0,m− 1 do

8: zα1+1 ← (α1+1+β1)(m−α1)
(m+n+d−1−α1−β1)(α1+1)

`
Ed−1,m−α1+1

´t
zα1

9: yα1+1 ← yα1+1 + zα1+1

10: end for

11: end for

matrix algorithm just derived. Let Sd be a d-simplex, and define

k(u, v) =
∫

Sd

∇u · ∇v dx. (17)

Considering k : Pn
d × Pm

d → R, the stiffness matrix over Sd is then

defined to be

KSd,m,n
αβ = k(Bn

β , Bm
α ).
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Expressing the integrand of (17) in Cartesian components gives

k(u, v) =
∫

Sd

d∑
i=1

∂u

∂xi

∂v

∂xi
dx

=
d∑

i=1

∫
Sd

∂u

∂xi

∂v

∂xi
dx

=
d∑

i=1

ki(u, v),

where

ki(u, v) =
∫

Sd

∂u

∂xi

∂v

∂xi
dx = m

(
∂u

∂xi
,

∂v

∂xi

)
. (18)

The stiffness matrix, then, may be written as a sum

KSd,m,n =
d∑

i=1

KSd,m,n,i,

where

KSd,m,n,i
α,β = ki(Bn

β , Bm
α ).

Evaluating ki(u, v) is expressed matrix-vector notation by

ki(u, v) = (cv)t KT,m,n,icu, (19)

where u =
∑

α∈An
d

cu
αBn

α and v =
∑

β∈Am
d

cv
βBm

α .

Alternately, ki(u, v) = m
(

∂u
∂xi

, ∂v
∂xi

)
. Let ∂u

∂xi
=
∑

α∈An−1
d

ĉu
αBn−1

α

and ∂v
∂xi

=
∑

α∈Am−1
d

ĉv
αBm−1

α . This gives that

ki(u, v) = (ĉv)t MSd,m−1,n−1ĉu.

Finally, since ĉu = DSd,n,xicu and ĉv = DSd,n,xi , this gives that
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ki(u, v) =
(
Dd,n,xicv

)t
MSd,m−1,n−1

(
Dd,n,xicu

)
= (cv)t

(
Dd,n,xi

)t
MSd,m−1,n−1Dd,n,xicu.

(20)

So then,

Proposition 4 Each term of the stiffness matrix KSd,m,n,i on a sim-

plex Sd is factored into

KSd,m,n,i =
(
DSd,n,xi

)t
MSd,m−1,n−1DSd,n,xi . (21)

Applying the element stiffness matrix may be accomplished by Algo-

rithm 3.

Algorithm 3 Fast algorithm for computing the product y =

KSd,m,nx.
1: y ← 0

2: for i← 1,d do

3: z1 ← DSd,n,ix

4: z2 ← (|Sd|d!) Md,m−1,n−1z1 using Algorithm 2

5: y ← y +
`
DSd,m,i

´t
z2

6: end for

The loop in algorithm 3 requires the application of two derivative

operators, each of which costs (d + 1)|Am0
d |) = O(dm0) operations,

where m0 = max(m,n). This is less than the cost of applying the mass

matrix, even by Algorithm 2 for each of the d. Since the computation
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is dominated by d mass matrix applications, the following complexity

result holds.

Theorem 2 Let m0 = max{m,n} and N = |Ad
m0
|. Then a stiffness

matrix KSd,m,n may be applied to any vector in O((d2m0)d+1) =

O(d2N1+ 1
d ) operations, or about d times the cost of a mass matrix.

5 One-dimensional operators

While the one-dimensional operators do not admit dimensional recur-

sion as in the previous sections, a different kind of structure can lead

to reduced-complexity algorithms. While this low complexity, which

depends on the fast Fourier transform, may not actually speed up

calculation for practical polynomial degrees, it is still interesting to

note the structure. Since stiffness matrices follow naturally from mass

matrices as before, it is only necessary to handle the one-dimensional

mass matrix.

In one dimension, it is easier to dispense with multiindices and use

standard index notation, but with indices beginning with 0 rather

than 1. With barycentric coordinates b1 and b2, and the Bernstein

polynomials are

Bn
i =

(
n

i

)
bn−i
1 bi

2.
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On the interval [0, 1], b1 = x and b2 = 1− x. Specializing (9) to one

dimension gives

M1,m,n
i,j =

(
m

i

)(
n

j

)
(m + n− i− j)!(i + j)!

(m + n + 1)!
.

Define (n + 1)× (n + 1) diagonal matrices ∆n by

∆n
ij =

(
n

i

)
δij ,

having the binomial coefficients on the diagonal. Next, introduce the

matrix

M̃1,m,n
ij =

(m + n− i− j)!(i + j)!
(m + n + 1)!

.

With these definitions, M1,m,n may be decomposed as

M1,m,n = ∆mM̃1,m,n∆n. (22)

This decomposition is interesting because of a special property of

M̃1,m,n.

Proposition 5 The matrix M̃1,m,n has the Hankel property, i.e. is

constant along antidiagonals. More precisely, for each 1 ≤ i ≤ m and

0 ≤ j ≤ n− 1,

M̃1,m,n
i−1,j+1 = M̃1,m,n

i,j .
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Proof The proof is a simple calculation using the definition of M̃1,m,n:

M̃1,m,n
i−1,j+1 =

(m + n + 2− (i− 1)− (j + 1))! ((i + 1) + (j − 1)− 2)!
(m + n)!

=
(m + n + 2− i− j)! (i + j − 2)!

(m + n)!

= M̃1,m,n
i,j ,

Hankel matrices are just Toeplitz matrices with the rows in re-

versed order. Just as Toeplitz matrices admit a circulant embedding

and hence may be applied with the FFT [6], so may Hankel matrices.

Therefore, with N = max{m,n}, the matrix M̃1,m,n may be applied

to any vector in O(N log N) operations. Hence, M1,m,n may also be

applied with the same complexity using the decomposition (22). Since

differentiation also may be performed in linear time, this also provides

O(N log N) algorithms for stiffness matrix application.

While this observation is interesting, the practical value may be

limited. The need for fast algorithms in one dimension is not so great

as in two and three, and the FFT only will beat explicit matrix

multiplication for N larger than commonly used in finite element

calculation. Further, it is interesting to note that the fast algorithms

in higher dimensions do not rely on reduced complexity for the one-

dimensional algorithm.

While considering one-dimensional operators, it is also helpful to

derive recurrence relations for the mass matrix entries so that higher-
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dimensional codes do not need to explicitly construct and store these

operators. From (9), it is clear that

M1,m,n
0,0 =

1
m + n + 1

.

Recurring along the column j = 0 ,

M1,m,n
i+1,0

M1,m,n
i,0

=

(
m

i+1

) (m+n−i−1)!(i+1)!
(m+n+1)!(

m
i

) (m+n−i)!i!
(m+n+1)!

=

(
m

i+1

)(
m
i

) (m + n− i− 1)!
(m + n− i)!

(i + 1)!
i!

so that

M1,m,n
i+1,0 =

(
m− i

m + n− i

)
M1,m,n

i,0 .

Now, recurring along a row with fixed i,

M1,m,n
i,j+1

M1,m,n
i,j

=

(
m
i

)(
n
j

) (m+n−i−j−1)!(i+j+1)!
(m+n+1)!(

m
i

)(
n

j+1

) (m+n−i−j)!(i+j)!
(m+n+1)!

=
(

n− j

j + 1

)(
i + j + 1

m + n− i− j

)
,

giving

M1,m,n
i,j+1 =

(
n− j

j + 1

)(
i + j + 1

m + n− i− j

)
M1,m,n

i,j .

This allows the application of M1,m,n to be applied to a vector in

O (mn) operations using standard matrix-vector logic, but computing

the matrix-entries as the loops unfold.
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Algorithm 4 Matrix-free computation of y = M1,m,nx. µ contains

the first entry of the current row of M1,m,n , and ν is updated along

the row.
1: µ← 1

m+n+1

2: for i← 0,m do

3: ν ← µ

4: for j ← 0,n do

5: yi ← yi + νxj

6: ν ←
“

n−j
j+1

” “
i+j+1

m+n−i−j

”
ν

7: end for

8: µ←
“

m−i
m+n−i

”
µ

9: end for

6 Numerical results

The two-dimensional algorithms for mass and stiffness matrices were

implemented in C++ using the DOLFIN library [11] for finite element

meshes and linear algebra. A 128x128 rectangular mesh of the unit

square was divided into right triangles, and Bernstein polynomials of

varying degree were used as a local basis on each cell, pieced together

in a continuous fashion across elements.

Starting from an array storing global degrees of freedom, the val-

ues were scattered to each cell to give local B-form coefficients. On

each cell, the local algorithm derived here was applied, and the re-

sults assembled back together in a global vector. For each polynomial
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degree, the algorithm was run ten times, and the average time was

reported. All calculations were performed on a Macintosh laptop with

dual-core Intel processor and 2GB of RAM.

To confirm the predicted theoretical scaling, the local dimension

of the polynomial space was plotted against the timings for the mass

matrix on a log scale, and a linear best fit was performed. The slope of

this linear fit was about 1.56. Notice also in Table 1 that the stiffness

matrix costs somewhat less than twice the mass matrix. This is due

to the cost of scattering the global degrees of freedom and gathering

the results back together, which has the exact same cost for mass and

stiffness matrices.

7 Conclusions

This paper has begun the study of fast finite element algorithms for

polynomial spaces expressed in B-form. The critical step, multipli-

cation by a mass matrix, is handled by a dimensionally recursive

algorithm, and opens up fast algorithms for stiffness matrices as well.

Obtaining high performance, however, will require considerably more

care than for standard dense matrix operations. In particular, the

complicated loop structure for degree elevation and differentiation
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Table 1. Timings for computing global matrix-vector product for mass and stiff-

ness matrices using Algorithms 2 and 3, respectively. All calculations are per-

formed on a mesh of 32768 triangles. The first column specifies the polynomial

degree n, and the second the local dimension of the polynomial space, (n+1)(n+2)
2

.

The third and fourth columns report the average time for the mass and stiffness

matrices to be computed.

degree n dim P n
2 Mass time Stiffness time

1 3 1.16E-002 1.39E-002

2 6 3.08E-002 3.64E-002

3 10 6.69E-002 8.74E-002

4 15 1.09E-001 1.68E-001

5 21 2.07E-001 3.06E-001

6 28 3.18E-001 5.41E-001

7 36 5.26E-001 8.51E-001

8 45 7.38E-001 1.22E+000

9 55 1.06E+000 1.62E+000

10 66 1.35E+000 2.34E+000

suggests that straightline code generation for particular polynomial

degrees might be effective

Besides providing fast algorithms for a well-known simplicial basis

that can be used in standard C0 finite elements, this work also opens

several interesting possibilities. These include application in the con-

text of simplicial splines and the exterior calculus bases in [2]. Also,
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to move beyond constant-coefficient forms, adaptation to quadrature-

based methods will be required. This will involve considering either

some kind of modified sum-factorization with tensor-product quadra-

tures or else finding mutual symmetry between the Bernstein basis

and other quadrature rules. In the future, these topics will be stud-

ied, as well as matrix structure and precoditioning of operators in

B-form.
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