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Abstract. We develop and analyze methods based on combining the lowest-order mixed finite
element method with backward Euler time discretization for the solution of diffusion problems on
dynamically changing meshes. The methods developed are shown to preserve the optimal rate error
estimates that are well known for static meshes. The novel aspect of the scheme is the construction
of a linear approximation to the solution, which is used in projecting the solution from one mesh to
another. Extensions to advection-diffusion equations are discussed, where the advection is handled
by upwinding. Numerical results validating the theory are also presented.
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1. Introduction. Adaptive finite element methods, whereby the mesh changes
dynamically during a simulation, have become important tools for approximating
the solutions to partial differential equations (PDEs) efficiently and accurately. In
this paper, we consider the solution of time-dependent, parabolic partial differential
equations by a standard time-stepping procedure such as a backward Euler method,
combined with the “lowest-order” Raviart–Thomas mixed finite element method in
space [17]. In particular, we are concerned with deriving a priori error estimates for
such procedures when the mesh changes with the time step. An equally important
task is the development of a posteriori error estimates which give some indication of
how to change the mesh.

Dynamically adaptive finite element methods have been considered by a number
of authors. In particular, we refer the reader to the discontinuous Galerkin methods
proposed and analyzed in series of papers by Eriksson and Johnson [9, 10, 11, 12], the
moving space-time finite elements studied by Bank and Santos [2], the earlier work on
mesh modification by Dupont [7], and the moving mesh methods of Miller and Miller
[16, 15]. For applications to the mixed finite element method, see, for example, the
work of Yang [21, 20].

When analyzing dynamically adaptive methods, one difficulty is in proving the
same asymptotic order of accuracy observed when the mesh is static. For example, in
the work of Eriksson and Johnson, the a priori error bound obtained is almost optimal,
up to multiplication by a logarithmic factor of the time step. This estimate appears
to be the closest to optimal that one can prove, under fairly general assumptions on
the mesh. These estimates are obtained for a discontinuous Galerkin method in time
combined with a continuous, piecewise linear Galerkin method in space.
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In this paper, we will first consider a standard mixed finite element-backward Eu-
ler method with dynamically changing mesh and will demonstrate that this method
has optimal rate of convergence, assuming that the meshes between two consecu-
tive time levels are obtained by very simple coarsening or refining procedures. This
estimate, while not general, is very practical, as this approach is quite easy to im-
plement. We will then consider a modification to the mixed method which preserves
the optimal convergence rate under very general changes in the mesh. This approach
involves first postprocessing the solution at the current time-step to obtain a discon-
tinuous, piecewise linear approximation. This piecewise linear approximation is then
projected onto the new mesh. The postprocessed solution is easily obtained, as the
mixed finite element method gives an approximation to the gradient. Finally, we ex-
tend these estimates to convection-diffusion equations, where the convection operator
is approximated using an upwind method [4, 5].

Our focus here on the mixed finite element method is dictated by the applications
of interest, in particular, the solution of transport problems arising in porous media
and surface water. For these applications, generally described by advection-diffusion-
reaction equations, the mixed finite element method for diffusion combined with some
type of upwinding or characteristic approach for advection has nice features, including
local conservation of mass, minimal oscillation, and the ability to approximate sharp
fronts. See, for example, [6, 18, 19] for applications to practical problems. A particular
difficulty in these problems is the presence of chemical reactions, which are highly
localized and can require extremely fine grid to resolve accurately. Therefore, we are
investigating adaptive gridding as a way of handling these problems.

This paper is organized as follows. In the next section, we describe a standard
mixed finite element method for the heat equation and analyze it in the case of
a special type of dynamically changing mesh. In section 4, we introduce a novel
modification to this method, which preserves the accuracy under very general as-
sumptions on the mesh modifications. In section 5, we extend these estimates to an
upwind-mixed method applied to advection-diffusion equations, such as those arising
in typical transport problems. We also consider as a special case a constant coefficient
advection-diffusion equation with diffusion coefficient possibly being zero. Finally, in
section 6, we give some numerical results for a one-dimensional test problem.

2. Notation and assumptions. In this section, we describe a backward-Euler
mixed finite element method for the solution of the heat equation on a dynamically
changing mesh and derive an error estimate in the case of a special type of mesh
modification.

We first give some notation and basic assumptions. Let ∆tn, n = 1, 2, . . . , N∗

denote a sequence of time-steps, tn =
∑n
k=1 ∆tk, T =

∑N∗

n=1 ∆tn, and for g = g(t),
let gn = g(tn). We will assume the time-steps ∆tn don’t change too rapidly, that is,
we assume there exist positive constants k∗ and k∗ such that

k∗ ≤ ∆tn

∆tn−1
≤ k∗,(2.1)

independent of n and ∆t, where ∆t = maxn ∆tn.
We assume Ω is a bounded domain in Rd, d = 1, 2, or 3, with boundary ∂Ω. We

denote by (·, ·)S and || · ||S the L2 inner product and norm, respectively, defined over
a set S. When S = Ω, we omit the subscript. At each time level tn, we construct a
partition T n of Ω, suitable for the mixed finite element method (for example, quadri-
laterals and triangles in two dimensions, tetrahdra, hexahedra, and prisms in three
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dimensions), with maximum element diameter hn. Boundary elements are allowed to
have one curvilinear edge or nonflat face.

Let h = maxn h
n. We will assume throughout that

∆tn = O(hn);(2.2)

thus the mesh diameter hn must also satisfy an inequality of the form (2.1).
In our analysis, we will use the standard equality

a(a− b) =
a2 − b2 + (a− b)2

2
, a, b ∈ R,(2.3)

and inequality

|ab| ≤ 1

2δ
a2 +

δ

2
b2, a, b, δ ∈ R, δ > 0.(2.4)

Also, throughout the paper K denotes a generic positive constant and ε a generic
small positive constant.

3. The standard method. We begin by considering the heat equation, written
in mixed form,

ct +∇ · z = f
z = −∇c

}
on Ω× (0, T ](3.1)

with smooth initial condition,

c(x, 0) = c0(x), x ∈ Ω,(3.2)

and boundary condition,

c(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ].(3.3)

The weak form of (3.1) of interest is

(ct, w) + (∇ · z, w) = (f, w), w ∈ L2(Ω),(3.4)

and

(z, v) = (c,∇ · v), v ∈ H(Ω; div),(3.5)

where to obtain (3.5) we have integrated by parts and used (3.3).
Let Wn

h ⊂ L2(Ω) and V nh ⊂ H(Ω; div) denote the lowest-order Raviart–Thomas
spaces defined on the partition T n of Ω. The space Wn

h is the space of functions
which are constant on each element in T n, and V nh is the space of vector-valued
functions whose components are linear on each element and whose normal component
is continuous across interior element boundaries; see [17]. As discussed in Douglas
and Roberts [14], for boundary elements with possibly one curved edge, the space is
unchanged.

At each time level n, cn and zn are approximated by Cn ∈Wn
h and Zn ∈ V nh . At

initial time, we set

(C0, w0) = (c0, w0), w0 ∈W 0
h .(3.6)
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Then for n = 1, 2, . . . ,(
Cn − Cn−1

∆tn
, wn

)
+ (∇ · Zn, wn) = (fn, wn), wn ∈Wn

h ,(3.7)

(Zn, vn) = (Cn,∇ · vn), vn ∈ V nh .(3.8)

We note that, in (3.7), we must compute (Cn−1, wn). That is, we compute the L2

projection of Cn−1, which is a piecewise constant on T n−1, into piecewise constants
on T n. Unlike in a Galerkin finite element method, this does not involve solving a
system of equations.

Note that (3.7)–(3.8) gives a square system of equations. By setting wn = Cn and
vn = Zn, the L2 stability of this method is easily shown. Moreover, setting f = 0,
one can show the uniqueness of the solution, and existence follows. To derive an a
priori error estimate, we compare Cn to an L2 projection Πcn ∈Wn

h , defined by

(cn, wn) = (Πcn, wn), wn ∈Wn
h .(3.9)

We compare Zn to the well-known π-projection [17, 14], πzn ∈ V nh , which satisfies

(∇ · (zn − πzn), wn) = 0, wn ∈Wn
h .(3.10)

For cn ∈ H1(Ω), we have the error estimate

||cn −Πcn|| ≤ Khn,(3.11)

and for zn ∈ H1(Ω),

||zn − πzn|| ≤ Khn.(3.12)

Let ψc = C −Πc, ψz = Z − πz, θc = c−Πc, and θz = z − πz.
The true solution satisfies(

cn − cn−1

∆tn
, wn

)
+ (∇ · zn, wn) = (fn, wn)− (ρn, wn), wn ∈Wn

h ,(3.13)

(zn, vn) = (cn,∇ · vn), vn ∈ V nh ,(3.14)

where

ρn = cnt −
cn − cn−1

∆tn
.(3.15)

Thus, subtracting (3.13) from (3.7) and (3.14) from (3.8) we find(
ψnc − ψn−1

c

∆tn
, wn

)
+ (∇ · ψnz , wn)(3.16)

=

(
θnc − θn−1

c

∆tn
, wn

)
+ (ρn, wn), wn ∈Wn

h ;

(ψnz , v
n) = (ψnc ,∇ · vn) + (θnz , v

n), vn ∈ V nh .(3.17)
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At this point, if we were to follow the technique in [10], we would multiply (3.16)
by ∆tn and sum in time from n = 1 to the final time level N∗ and sum the time dif-
ference terms by parts. We would then define wn so as to satisfy an adjoint equation,
namely, (

wn − wn+1

∆tn
, χn

)
+ (∇ · Y n, χn) = 0, χn ∈Wn

h ,

n = N∗ − 1, N∗ − 2, . . . , 1,

(3.18)

where Y n ∈ V nh satisfies

(Y n, vn) = (wn,∇ · vn), vn ∈ V nh ,(3.19)

and wN
∗

= ψN
∗

c . The trick is to find a tight bound for the term∑
n

||wn − wn+1||(3.20)

in terms of ||ψN∗c ||. This bound is used in handling the first term on the right side of
(3.16), which is the critical term in the estimate.

Rather than pursue this type of estimate, we study a special but very practical
situation, and for simplicity we restrict our attention to triangular elements in R2.
We assume the following:
(A1) Ω ⊂ R2.
(A2) Each partition T 0, T 1, etc., consists of disjoint triangular elements such that

no vertex of any triangle lies on the interior of a side of another triangle.
Boundary triangles may have one curved edge.

(A3) Each mesh T n is a refinement of some given coarse partition T of Ω. Moreover,
T n is obtained by at most one level of refinement or coarsening of the mesh
T n−1. Thus, for example, if Ωn−1

e is an element in T n−1, then it may be
refined into four smaller triangles by joining the midpoints of the edges, and
its neighbors must also be refined by joining the midpoints of the refined
edges to the opposite vertex; see Figure 3.1. Furthermore, if Ωn−1

e is part of
a larger triangle which was previously refined, the mesh may be coarsened to
the larger triangle. The extension to a triangle with a curved edge is obvious.

Setting wn = ψnc in (3.16) and vn = ψnz in (3.17), adding these equations, and
using (2.3), we find

1

2∆tn
(||ψnc ||2 − ||ψn−1

c ||2 + ||ψnc − ψn−1
c ||2)+ ||ψnz ||2(3.21)

= (ρn, ψnc ) + (θnz , ψ
n
z ) +

(
θnc − θn−1

c

∆tn
, ψnc

)
.

Let N be the time-step at which ||ψnc || is maximized, that is,

||ψNc ||2 = max
1≤n≤N∗

||ψnc ||2.(3.22)

Multiplying (3.21) by 2∆tn and summing on n, n = 1, . . . , N , we find

||ψNc ||2 +
N∑
n=1

||ψnc − ψn−1
c ||2 + 2

N∑
n=1

||ψnz ||2∆tn(3.23)

= 2
N∑
n=1

[
(ρn, ψnc ) + (θnz , ψ

n
z ) +

(
θnc − θn−1

c

∆tn
, ψnc

)]
∆tn.
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Fig. 3.1. Refinement of an element Ωn−1
e and its neighbors.

The first two terms on the right side of (3.23) are easily shown to be bounded by

1

2
||ψNc ||2 +K

( N∑
n=1

||ρn||∆tn
)2

+
1

4

N∑
n=1

||ψnz ||2∆tn +K

N∑
n=1

||θnz ||2∆tn.(3.24)

Consider the third term on the right side of (3.23). Since, by the definition of θnc ,

(θnc , ψ
n
c ) = 0,(3.25)

this term becomes

−
N∑
n=1

(θn−1
c , ψnc ).(3.26)

On the mesh T n, let EC denote the set of elements which are unchanged or result
from coarsening of elements in T n−1. Let ER denote those elements which are obtained
by refining elements in T n−1. Then, dropping the subscript c momentarily in (3.26),
consider

(θn−1, ψn) =
∑
e∈EC

(θn−1, ψn)Ωne +
∑
e∈ER

(θn−1, ψn)Ωne .(3.27)

On element Ωne , e ∈ EC , ψn and Πcn−1 are both piecewise constants; thus the first sum
vanishes by the definition of θn−1

c , and we need to consider only the second term. By
our assumption on the relationship between meshes T n and T n−1, a refined element
Ωne is one of four elements (or two elements) making up a triangle in T n−1. Assume

Ωn−1
e = ∪4

j=1Ωnej ;(3.28)

see Figure 3.2. Then the second sum in (3.27) involves terms like

4∑
j=1

(θn−1, ψn)Ωnej
= (θn−1, ψn)Ωn−1

e
(3.29)

= (θn−1, ψn − ψ̄n)Ωn−1
e

,
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Fig. 3.2. Elements and edges in Ωn−1
e .

where

ψ̄n =
1

m(Ωn−1
e )

∫
Ωn−1
e

ψndx(3.30)

=
1

m(Ωn−1
e )

4∑
j=1

m(Ωnej )ψ
n
j dx

with ψnj representing the constant value of ψn on Ωnej .
Let Γl, l = 1, 2, 3, denote the edges between elements Ωnej (see Figure 3.2), let νl

be a unit vector normal to Γl, and let hl denote the length of the edge. Let [ψn]Γl
denote the jump in ψn across Γl in the direction of the normal vector. Then it is
easily shown that ∫

Ωn−1
e

|ψn − ψ̄n|2dx ≤ Khn
3∑
l=1

|[ψn]Γl |2hl.(3.31)

For any v ∈ V nh , v is specified in the interior of Ω by specifying v · ν (which is
constant) on each edge, where ν is a normal vector to the edge. On boundary elements
having one curved edge, v · ν is specified on the two straight edges, and ∇ · v is also
specified, which then determines the average value of v · ν on the curved edge. Let
σ ∈ V nh satisfy

σ · νl = [ψn]Γl on Γl(3.32)

and let σ · ν have average value zero on all other edges. In particular then σ ≡ 0
outside of Ωn−1

e . Consider

(ψn,∇ · σ) = (ψn,∇ · σ)Ωn−1
e

(3.33)

=

4∑
j=1

ψnj

∫
Ωnej

∇ · σ

= −
3∑
l=1

|[ψn]Γl |2 hl,

where hl = m(Γl).
On the other hand, by (3.17) and the definition of σ,

−(ψnc ,∇ · σ) = −(ψnz , σ) + (θnz , σ)(3.34)
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≤
(
||ψnz ||Ωn−1

e
+ ||θnz ||Ωn−1

e

)
||σ||

≤ K(||ψnz ||Ωn−1
e

+ ||θnz ||Ωn−1
e

)

(
hn
∑
l

|[ψn]Γl |2 hl
)1/2

.

Thus by (3.33) and (3.34),∑
l

|[ψn]Γl |2 hl ≤ Khn(||ψnz ||2Ωn−1
e

+ ||θnz ||2Ωn−1
e

).(3.35)

Combining (3.29)–(3.35) we find

(ψnc − ψ̄nc , θn−1
c )Ωn−1

e
≤ ε

∆tn
||ψnc − ψ̄nc ||2Ωn−1

e
+K||θn−1

c ||2
Ωn−1
e

∆tn(3.36)

≤ Kεhn

∆tn

∑
l

|[ψnc ]Γl |2 hl +K||θn−1
c ||2

Ωn−1
e

∆tn

≤ Kε(hn)2

∆tn
(||ψnz ||2Ωn−1

e
+ ||θnz ||2Ωn−1

e
)

+K||θn−1
c ||2

Ωn−1
e

∆tn.

Thus, returning to (3.26), we find

N∑
n=1

(θn−1
c , ψnc ) ≤ K

N∑
n=1

ε

(
hn

∆tn

)2 (||ψnz ||2 + ||θnz ||2
)

∆tn

+ K
N∑
n=1

||θn−1
c ||2∆tn.

(3.37)

Choosing ε sufficiently small and using (2.2), we find

N∑
n=1

(θn−1
c , ψnc ) ≤ 1

4

N∑
n=1

||ψnz ||2∆tn +K
N∑
n=1

(||θnz ||2 + ||θn−1
c ||2)∆tn.(3.38)

Combining (3.38) with (3.21) and (3.24) we obtain

||ψNc ||2 +
N∑
n=1

||ψnz ||2∆tn(3.39)

≤ K
(

N∑
n=1

||ρn||∆tn
)2

+K
N∑
n=1

(||θnz ||2 + ||θn−1
c ||2)∆tn

≤ K
(
N∗∑
n=1

||ρn||∆tn
)2

+K
N∗∑
n=1

(||θnz ||2 + ||θn−1
c ||2)∆tn.

Applying the triangle inequality, we obtain the following theorem.
Theorem 3.1. Assume (A1)–(A3) hold and ∆tn satisfies (2.2). Then

max
1≤n≤N∗

||cn − Cn||2

≤ K
(
N∗∑
n=1

||cnt −
cn − cn−1

∆tn
||∆tn

)2

+K
N∗∑
n=1

(||zn − πzn||2 + ||cn − πcn||2)∆tn.

(3.40)
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Thus, if c is sufficiently smooth,

max
1≤n≤N∗

||cn − Cn|| ≤ Kh.(3.41)

We note that this estimate has optimal rate for the lowest-order mixed method.

4. A more general approach. In this section, we outline a modification of the
scheme (3.7) that preserves the estimate above, without the assumption (A3) on the
mesh. This estimate also holds in Rd, d = 1, 2, 3, and for more general elements. We
still assume (2.1) and (2.2).

In order to motivate this approach, consider a simple one-dimensional example.
Suppose we have three intervals Ω1 = [0, 1], Ω2 = [1, 2], and Ω3 = [2, 3] at time tn−1

and the solution Cn−1 = 1 in Ω1, 1/2 in Ω2, and 0 in Ω3. Based on some error
indicator, we may decide to refine Ω2 into two subintervals [1,1.5] and [1.5,2]. Using
the method described above in section 3, the projected solution onto each of the
refined subintervals has the value 1/2, which doesn’t take into account the solution
values in Ω1 or Ω3. In order to improve the projected solution, we construct a linear
function on Ω2 with average value 1/2, say,

Cn−1(x) = .5− (x− 1.5), x ∈ Ω2,

which we note also satisfies Cn−1(1) = 1 and Cn−1(2) = 0. When this function is
projected into the new mesh using L2 projection, the new function has the value of
3/4 in the interval [1,1.5] and 1/4 in the interval [1.5,2], which intuitively is a better
approximation of the behavior of the solution in this region.

Therefore, given Cn−1 ∈ Wn−1
h , define a linear function Cn−1 on element Ωn−1

e

by

Cn−1|Ωn−1
e

= Cn−1(xn−1
e ) + (x− xn−1

e ) · δCn−1
e .(4.1)

Here xn−1
e is the midpoint (barycenter) of Ωn−1

e and δCn−1
e is a gradient or slope

approximation, discussed below.
The modified scheme is as follows:(

Cn − Cn−1

∆tn
, wn

)
+ (∇ · Zn, wn) = (fn, wn) , wn ∈Wn

h ,(4.2)

(Zn, vn) = (Cn,∇ · vn), vn ∈ V nh .(4.3)

We remark that the linear term in Cn−1 only needs to be added when the mesh
changes, for otherwise this term integrates to zero, that is,

(Cn−1, wn) = (Cn−1, wn),(4.4)

when Wn−1
h = Wn

h . Moreover, because this term integrates to zero, the scheme above
is mass-preserving, that is, ∫

Ω

Cn−1dx =

∫
Ω

Cn−1dx.(4.5)

The gradient δCne could be calculated in a number of ways. One way is to rec-
ognize that for the heat equation above the mixed method gives an approximation to
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∇C, namely, −Z. This choice also lends itself to our analysis. Therefore, we consider
the case where

δCne = − 1

m(Ωne )

∫
Ωne

Zn(x)dx,(4.6)

that is, δCne is the mean value of Zn on Ωne . Other types of approximations based on
linear reconstruction [8, 3, 13] are equally inexpensive and lead to similar theoretical
results; we further comment on this below.

The error estimate proceeds as follows. Using the same definitions as in the
previous section, subtracting (3.13) from (4.2) and (3.14) from (4.3), we find(

ψnc − ψn−1
c

∆tn
, wn

)
+ (∇ · ψnz , wn)(4.7)

=

(
ψn−1
c − ψn−1

c

∆tn
, wn

)
−
(
cn−1 −Πcn−1

∆tn
, wn

)
+ (ρn, wn), wn ∈Wn

h ;

(ψnz , v
n) = (ψnc ,∇ · vn) + (θnz , v

n), vn ∈ V nh .(4.8)

Here ψn−1
c = Cn−1 −Πcn−1, where we define

Πcn|Ωne = Πcn(xne )− (x− xne ) ·
(

1

m(Ωne )

∫
Ωne

πzndy

)
,(4.9)

n = 0, 1, . . ..
The first term on the right side of (4.7) is bounded as follows. First we note that(

ψn−1
c − ψn−1

c

∆tn
, wn

)
≤ 1

∆tn
||ψn−1

c − ψn−1
c || ||wn||(4.10)

≤ ε

(∆tn)2
||ψn−1

c − ψn−1
c ||2 +K||wn||2.

Consider for an arbitrary time tn

||ψnc − ψnc ||2 =
∑
e

∫
Ωne

|ψnc − ψnc |2dx(4.11)

=
∑
e

∫
Ωne

∣∣∣∣∣(x− xne ) · 1

m(Ωne )

∫
Ωne

ψnz dy

∣∣∣∣∣
2

dx

≤
∑
e

(hne )2||ψnz ||2Ωne
≤ (hn)2||ψnz ||2.

Substituting (4.11) into (4.10) and using (2.1) and (2.2), we find(
ψn−1
c − ψn−1

c

∆tn
, wn

)
≤ ε(hn−1)2

(∆tn)2
||ψn−1

z ||2 +K||wn||2(4.12)

≤ Kε||ψn−1
z ||2 +K||wn||2.
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Next, consider the second term on the right side of (4.7),(
cn−1 −Πcn−1

∆tn
, wn

)
≤ K

(∆tn)2
||cn−1 −Πcn−1||2 +K||wn||2.(4.13)

By Taylor’s series, for x ∈ Ωne and c sufficiently smooth,

cn(x) = cn(xne )− (x− xne ) · zn(xne ) +O((hne )2)(4.14)

= Πcn(xne )− (x− xne ) · 1

m(Ωne )

∫
Ωne

zndy +O((hne )2).

Here we have used

cn(xne )−Πcn(xne ) = O((hne )2)

and

zn(xne )− 1

m(Ωne )

∫
Ωne

zndy = O((hne )2)

by the midpoint rule of integration. Therefore

||cn −Πcn||2 =
∑
e

∫
Ωne

|cn −Πcn|2dy(4.15)

=
∑
e

∫
Ωne

∣∣∣∣∣(x− xne ) · 1

m(Ωne )

∫
Ωne

θnz dy +O((hne )2)

∣∣∣∣∣
2

dx

≤ K(hn)2||θnz ||2 +K(hn)4

≤ K(hn)4.

Substituting (4.15) into (4.13) and using (2.1) and (2.2), we find(
cn−1 −Πcn−1

∆tn
, wn

)
≤ K(hn−1)2 +K||wn||2.(4.16)

Returning to (4.7) and (4.8), letting wn = ψnc and vn = ψnz , and substituting
(4.12) and (4.16), we find

||ψnc ||2 − ||ψn−1
c ||2

2∆tn
+ ||ψnz ||2(4.17)

≤ Kε||ψn−1
z ||2 +K||θnz ||2 +K||ρn||2 +K||ψnc ||2 +K(hn−1)2.

Multiplying by ∆tn, summing on n = 1, . . . , N , where here N is arbitrary, choosing ε
sufficiently small, and hiding the first term on the right side of (4.17), we find

||ψNc ||2 +
N∑
n=1

||ψnz ||2∆tn ≤ K
N∑
n=1

||ψnc ||2∆tn +K(h2 + ∆t2).(4.18)

Finally, applying Gronwall’s inequality, we obtain the following error estimate.
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Theorem 4.1. Assume that ∆tn satisfies (2.1) and (2.2). Then assuming c is
sufficiently smooth, there exists a constant K, independent of h and ∆t, such that

max
n
||cn − Cn|| ≤ Kh.(4.19)

Remark. For other choices of δCne , in order to obtain the estimate above, it is
necessary that an inequality of the form (4.11) can be shown and that the approxima-
tion property (4.15) holds. If, for example, one constructs δCne by some type of finite
difference approximation based on Cn, it is intuitive that one could demonstrate that
these bounds hold, since ψz is related to finite differences of ψc through (4.8).

5. Extension to advection-diffusion equations.

5.1. A general case. In this section, we extend the method in the section
above to include an advection term and allow for variable coefficients. In particular,
we consider the equations

ct +∇ · (g + z) = f
z̃ = −∇c
z = Dz̃
g = uc

 on Ω× (0, T ],(5.1)

c(x, 0) = c0(x), x ∈ Ω,(5.2)

c(x, t) = 0, x ∈ ∂Ω, t > 0.(5.3)

Here D = D(x, t) is assumed to be a symmetric, positive definite tensor, bounded
below by a positive constant D∗, and u = u(x, t) is a given velocity field. This model
is typical of equations arising in transport problems. In previous papers [4, 5], we have
proposed and analyzed so-called Godunov-mixed methods for approximating solutions
to these equations. Here we will extend these methods to the case of dynamically
changing meshes.

The weak form of (5.1) we consider is

(ct +∇ · (g + z), w) = (f, w), w ∈ L2(Ω),

(z̃, v) = (c,∇ · v), v ∈ H(Ω; div),

(z, χ) = (Dz̃, χ), χ ∈ (L2(Ω))d.

The method can then be outlined as follows. At time level tn, we approximate cn by
Cn ∈ Wn

h and z, z̃, and the advective flux g by Zn, Z̃n, and Gn, all in V nh . Defining

Cn−1 as before (see (4.1) and (4.6)) using Z̃ instead of Z, these approximations are
determined by the following system of equations:(

Cn − Cn−1

∆tn
, wn

)
+ (∇ · (Gn + Zn), wn) = (fn, wn) , wn ∈Wn

h ,(5.4)

(Z̃n, vn) = (Cn,∇ · vn), vn ∈ V nh ,(5.5)

(Zn, vn) = (DnZ̃n, vn), vn ∈ V nh .(5.6)
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Here we are using the so-called “expanded” mixed finite element method, proposed
by Arbogast, Wheeler, and Yotov, for elliptic equations [1], which gives us a gradient
approximation Z̃ as well as an approximation to the diffusive flux z.

The advective flux approximation Gn is constructed from the solution C. There
is a number of ways in which this can be determined, but we shall concentrate only
on simple upwind methods. Since gn = 0 on ∂Ω by (5.3), we set the integral average
of Gn · ν = 0 on boundary edges, where ν is the unit outward normal to Ω. Suppose
elements Ωne and Ωne′ share an interior edge l, xl is the midpoint of the edge, and νl
points from Ωne to Ωne′ . Then one can define, for example,

Gn · νl =

{
Cne (un · νl)(xl), (un · νl)(xl) ≥ 0,
Cne′(u

n · νl)(xl), (un · νl)(xl) < 0,
(5.7)

where Cne and Cne′ are the constant values of Cn on the elements. Here, we have
defined Gn implicitly in terms of Cn. This complicates the solution of (5.4)–(5.5) by
making the system of linear equations which arises nonsymmetric. Another approach
would be to calculate Gn explicitly in the following way. Given Cn−1, let C̃n−1 ∈Wn

h

denote the L2 projection of Cn−1, that is,

(Cn−1 − C̃n−1, wn) = 0, wn ∈Wn
h .(5.8)

We can then modify the definition of Gn by

Gn · νl =

{
C̃n−1
e (un · νl)(xl), (un · νl)(xl) ≥ 0,

C̃n−1
e′ (un · νl)(xl), (un · νl)(xl) < 0.

(5.9)

Higher order approximations to g can be constructed by postprocessing C̃n−1 to
obtain a piecewise linear function on each element Ωne , much in the same way that
Cn−1 is constructed. Since our overall method is at best first order, we will not
pursue including these higher order approximations in our analysis, however, they
can result in superior solutions, especially for advection-dominated problems, and we
often include them when doing simulations.

The error estimate proceeds as in section 4. Define Πz̃ ∈ V nh to be the L2

projection of z̃, that is,

(Πz̃n − z̃n, vn) = 0, vn ∈ V nh ,(5.10)

and let ψ̃z = Z̃ −Πz̃ and θ̃z = z̃ −Πz̃. Using the same definitions as in section 3 for
the other terms, with the modification that

Πcn|Ωne = Πcn(xne )− (x− xne ) ·
(

1

m(Ωne )

∫
Ωne

Πz̃ndx

)
,(5.11)

we find (
ψnc − ψn−1

c

∆tn
, wn

)
+ (∇ · ψnz , wn)(5.12)

=

(
ψn−1
c − ψn−1

c

∆tn
, wn

)
−
(
cn−1 −Πcn−1

∆tn
, wn

)
+ (ρn, wn)

+ (∇ · (gn −Gn), wn), wn ∈Wn
h ,
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(ψ̃nz , v
n) = (ψnc ,∇ · vn), vn ∈ V nh ,(5.13)

and

(ψnz , v
n) = (Dψ̃nz , v

n)− (Dθ̃nz , v
n) + (θnz , v

n), vn ∈ V nh .(5.14)

Setting wn = ψnc in (5.12), vn = ψnz in (5.13), and vn = ψ̃nz in (5.14), we find(
ψnc − ψn−1

c

∆tn
, ψnc

)
+ (Dψ̃nz , ψ̃

n
z )(5.15)

=

(
ψn−1
c − ψn−1

c

∆tn
, ψnc

)
+

(
cn−1 −Πcn−1

∆tn
, ψnc

)
+ (ρn, ψnc )

+ (∇ · (gn −Gn), ψnc ) + (Dθ̃nz , ψ̃
n
z )− (θnz , ψ̃

n
z ).

The first and second terms on the right side of (5.15) are bounded as before; see
(4.12) and (4.16), where now ψ̃z is playing the role of ψz. In particular,(

ψn−1
c − ψn−1

c

∆tn
, ψnc

)
≤ 1

8
(Dψ̃n−1

z , ψ̃n−1
z ) +K(D−1

∗ )||ψnc ||2(5.16)

and (
cn−1 −Πcn−1

∆tn
, ψnc

)
≤ Kh2 +K||ψnc ||2.(5.17)

Consider the fourth term on the right side of (5.15). Let πgn ∈ V nh denote the π
projection of gn, thus

(∇ · (πgn − gn), wn) = 0, wn ∈Wn
h ,(5.18)

and set vn = πgn −Gn in (5.13); then

(∇ · (gn −Gn), ψnc ) = (ψ̃nz , πg
n −Gn)(5.19)

≤ 1

8
(Dψ̃nz , ψ̃

n
z ) +K(D−1

∗ )||πgn −Gn||2.

Let hl denote the length of an interior edge Γl. Let νl denote a unit vector normal
to edge l and xl denote the midpoint of the edge, as before, and assume Ωne and Ωne′
share edge l. By the properties of the π-projection [17, 14], we have∫

Γl

πgn · νl =

∫
Γl

cn(un · νl)ds,(5.20)

and it is easily seen that for gn sufficiently smooth,

1

hl

∫
Γl

πgn · νl − ((un · νl)cn)(xl) = O(h2
l )(5.21)

by the midpoint rule of integration. Suppose Gn is defined by (5.7) and assume
without loss of generality that (un · νl)(xl) ≥ 0; then

1

hl

∫
Γl

(πgn −Gn) · νl = (un · νl)(xl)(cn(xl)− Cne ) +O(h2
l ).(5.22)
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Moreover,

cn(xl)− Cne = cn(xl)− cn(xne ) + cn(xne )−Πcn(xne ) + Πcn(xne )− Cne .
Therefore, for cn sufficiently smooth,

|cn(xl)− Cne | ≤ |ψc(xne )|+O(hn).(5.23)

Thus, by (5.21)–(5.23),

||πgn −Gn||2 ≤ K||ψnc ||2 +K(hn)2.(5.24)

Next, consider the case where Gn is defined by (5.9). In this case, following the
steps that led to (5.24), we find

||πgn −Gn||2 ≤ K||C̃n−1 −Πcn||2 +K(hn)2.(5.25)

Consider the first term on the right side of (5.25). By (5.8) and the definition of Πc
we have

(C̃n−1 −Πcn, C̃n−1 −Πcn) = (Cn−1 − cn, C̃n−1 −Πcn)

≤ ||Cn−1 − cn|| ||C̃n−1 −Πcn||,
thus

||C̃n−1 −Πcn|| ≤ ||Cn−1 − cn||.(5.26)

Moreover

||Cn−1 − cn|| ≤ ||Cn−1 −Πcn−1||+ ||Πcn−1 − cn−1||+ ||cn−1 − cn||(5.27)

≤ ||ψn−1
c ||+Khn−1||ψ̃n−1

z ||+K(hn−1 + ∆tn).

Combining (5.25)–(5.27), we find

||πgn −Gn||2 ≤ K||ψn−1
c ||2 +K(hn−1)2||ψ̃n−1

z ||2 +K(h2 + ∆t2).(5.28)

Combining (5.24) or (5.28) with (5.15), bounding the other terms on the right
side of (5.15), and using estimates for θz and θ̃z, we obtain(

ψnc − ψn−1
c

∆tn
, ψnc

)
+ (Dψ̃nz , ψ̃

n
z )(5.29)

≤ 1

4
(Dψ̃n−1

z , ψ̃n−1
z ) +

1

4
(Dψ̃nz , ψ̃

n
z ) +K||ψnc ||2 +K(hn−1)2||ψ̃n−1

z ||2

+K||ψn−1
c ||2 +K(h2 + ∆t2).

If we multiply (5.29) by ∆tn, sum on n, hide ψ̃z terms assuming h is sufficiently
small, note that ψ̃0

z = 0 by (5.13) since ψ0
c = 0, and apply Gronwall’s inequality, we

have the following result.
Theorem 5.1. Assume that ∆tn satisfies (2.1) and (2.2). Then assuming c

and u are sufficiently smooth and h is sufficiently small, there exists a constant K,
independent of h and ∆t, such that

max
n
||cn − Cn|| ≤ Kh.(5.30)
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5.2. A special case. We conclude this section by considering a special case
which allows us to prove an error estimate for the method above, assuming that the
diffusion coefficient D is only nonnegative. This is the first convergence proof for an
upwind-mixed method with possibly zero diffusion.

Assume the following:
(A4) u and D are constant, and D is a nonnegative scalar.
(A5) The mesh is modified at most M times, and M ≤M∗, where M∗ is independent

of h and ∆t.
(A6) We set Cn−1 = Cn−1.
(A7) Gn is defined by (5.7).
(A8) The domain Ω is polygonal, so that all elements have straight edges. Thus, the

normal vector to an edge is constant over that edge.
Under these assumptions, the first term on the right side of (5.15) is zero. We

can rearrange terms to obtain(
ψnc − ψn−1

c

∆tn
, ψnc

)
+D||ψ̃nz ||2 + (∇ · (Gn − πgn), ψnc )(5.31)

=

(
cn−1 −Πcn−1

∆tn
, ψnc

)
+ (ρn, ψnc ) + (∇ · (gn − πgn), ψnc )

+D(θ̃nz , ψ̃
n
z )− (θnz , ψ̃

n
z ).

Here we are defining πgn differently than above. We define πgn analogously to the
definition of Gn in (5.7), with Πcn playing the role of Cn.

In order to analyze this equation, we define some additional terms. On an edge
Γl in the mesh at time tn, let νl denote a unit normal vector as before. For x ∈ Γl let

ψ−c (x) = lim
s→0−

ψc(x+ sνl)

and

ψ+
c (x) = lim

s→0+
ψc(x+ sνl).

As in section 3, we define

[ψc] = ψ+
c − ψ−c

with the understanding that for an edge on the boundary of the domain, ψ+
c = 0. Let

ψuc denote the upwind value of ψc, as determined by the sign of u · νl, and ψdc denote
the downwind value. Let

ψac = (ψ−c + ψ+
c )/2 = (ψuc + ψdc )/2.

Consider the third term on the left side of (5.31). We will drop the superscript n
momentarily for convenience.

(∇ · (G− πg), ψc) =
∑
e

∫
Ωe

∇ · (G− πg)ψcdx(5.32)

= −
∑
l

∫
Γl

(G− πg) · νl[ψc]ds

= −
∑
l

∫
Γl

u · νlψuc [ψc]ds
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= −1

2

∑
l

∫
Γl

u · νl(ψuc − ψdc )[ψc]ds

−1

2

∑
l

∫
Γl

(u · νl)ψac [ψc]ds.

If u ·νl > 0, then (ψuc −ψdc )[ψc] = −[ψc]
2. If u ·νl ≤ 0, then this term has the opposite

sign. Thus, the first term on the right side of (5.32) satisfies

−1

2

∑
l

∫
Γl

u · νl(ψuc − ψdc )[ψc]ds =
1

2

∑
l

∫
Γl

|u · νl|[ψc]2ds.(5.33)

The second term on the right side of (5.32) satisfies

−1

2

∑
l

∫
Γl

u · νlψac [ψc]ds = −1

2

∑
l

∫
Γl

u · νl
{

(ψ+
c )2 − (ψ−c )2

}
ds

=
1

2

∑
e

∫
Ωe

(ψc)
2∇ · u dx

= 0(5.34)

since u is constant, and hence divergence free, and ψc is constant on each element.
Therefore, by (5.31)–(5.33), we find that

(∇ · (Gn − πgn), ψnc ) =
1

2

∑
l

∫
Γl

|u · νl|[ψnc ]2ds ≥ 0.(5.35)

As we did earlier in the paper, let

||ψNc || = max
1≤n≤N∗

||ψnc ||.

By assumption (A5) and (3.11),

N∑
n=1

(
cn−1 −Πcn−1, ψnc

) ≤ KM∗h||ψNc ||(5.36)

≤ K(M∗h)2 +
1

4
||ψNc ||2.

Furthermore

N∑
n=1

(ρn, ψnc )∆tn ≤ 1

4
||ψNc ||2 +K

(
N∑
n=1

||ρn||∆tn
)2

(5.37)

≤ 1

4
||ψNc ||2 +K∆t2.

Next, consider

(∇ · (g − πg), ψc) =
∑
l

∫
Γl

u · νl(c−Πcu)[ψc]ds

≤ K
∑
l

∫
Γl

|u · νl||c−Πcu|2ds+
1

4

∑
l

∫
Γl

|u · νl|[ψc]2ds(5.38)

≤ Kh+
1

4

∑
l

∫
Γl

|u · νl|[ψc]2ds
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since |c−Πcu| = O(h) and
∑
l

∫
Γl
ds = O(h−1).

Moreover, since D is assumed to be constant,

(Dθ̃nz , ψ̃
n
z ) = D(θ̃nz , ψ̃

n
z ) = 0(5.39)

by the definition of Πz̃. Moreover,

(θnz , ψ̃
n
z ) = (zn − πzn, ψ̃nz )

= D(z̃n − πz̃n, ψ̃nz ),

where πz̃n ∈ V nh is the π-projection of z̃n. Thus

(θnz , ψ̃
n
z ) ≤ KD||z̃n − πz̃n||2 +

D

2
||ψ̃nz ||2(5.40)

≤ KDh2 +
D

2
||ψ̃nz ||2.

Multiplying (5.31) by ∆tn and summing on n, and substituting (5.32)–(5.40),
hiding terms as we go, we find

||ψNc ||2 +D
N∑
n=1

||ψ̃nz ||2∆tn ≤ K
(

1 +
(
D + (M∗)2

)
h
)
h+K∆t2.(5.41)

Finally, we obtain the following theorem.
Theorem 5.2. Assume that (A4)–(A8) hold. Then assuming c is sufficiently

smooth, there exists a constant K, independent of h, ∆t such that

max
n
||cn − Cn|| ≤ K(h1/2 + ∆t) +K(D,M∗)h.(5.42)

Moreover, this estimate holds when D = 0, as long as the solution remains smooth.
Remark. It is possible to extend this result to the case of u smooth but noncon-

stant, as long as ∇ · u = 0. The assumption that D is constant allows us to handle
difficulties with the convergence of the expanded mixed finite element method when
the diffusion coefficient goes to zero.

6. Experimental results. In this section, we present numerical results for the
methods analyzed above. We consider a one-dimensional problem

ct + cx − cxx = f, 0 < x < 1,(6.1)

with f and initial and boundary conditions chosen so that c(x, t) = xe−xt. In the
tables below, we present results for both methods with and without the addition of
the gradient term δCe in computing Cn−1. Setting this term to zero coincides with
the method discussed in section 3. In the tables, the L2 error at t = 1 is given.
Comparisons are given for changing the mesh every p steps. We also give errors
for static meshes. The mesh modifications are obtained by refining and coarsening
alternate elements in the mesh, by at most one level of refinement or coarsening.
This is the one-dimensional analogue of the case considered in section 3. In all runs
∆tn = hn.

In Table 6.1 we present results for the method presented in section 5, with the
gradient term included in Cn−1.

Note that asymptotically, in all cases the error decreases by a factor of two as h
decreases by the same factor, indicative of first order convergence.
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Table 6.1

h Static mesh p = 5 p = 10
.0625 3.8347e-03 2.1819e-03 2.1733e-03
.03125 2.1563e-03 1.3739e-03 1.3181e-03
.015625 1.1431e-03 7.3857e-04 7.3694e-04
.007812 5.8843e-04 3.8626e-04 3.8510e-04
.003906 2.9851e-04 1.9745e-04 1.9717e-04

Table 6.2

h p = 5 p = 10
.0625 2.4330e-03 2.1818e-03
.03125 3.5402e-03 1.3862e-03
.015625 7.6188e-04 7.4478e-04
.007812 3.9698e-04 3.9085e-04
.003906 2.0365e-04 1.9984e-04

In Table 6.2 we present results for the same problem without including the gra-
dient term in Cn−1, that is, the generalization of the method in section 3 to include
an advection term.

Asymptotically the convergence is again first order, as predicted by the theory.
However, we also notice that in the p = 5 case, the error oddly increases as the size
of the mesh decreases from h = .0625 to h = .03125, before settling down to the
expected convergence rate. We expect this is an anomaly and would not occur if we
were refining the mesh based on a reasonable error indicator.

7. Conclusions. In this paper, we have taken a first step at developing and
analyzing mixed and upwind-mixed methods for diffusion equations, when the mesh
changes dynamically. The next step is to develop a posteriori error estimates which
can be used to indicate where and when mesh modification and time-step control are
needed. This will be the topic of subsequent work.
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