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Abstract We apply mixed finite element approximations to the first-order form

of the acoustic wave equation. The semidiscrete method exactly conserves the sys-

tem energy. A fully discrete method employing the symplectic Euler time method

in time exactly conserves a positive-definite pertubed energy functional that is

equivalent to the actual energy under a CFL condition. In addition to proving

optimal-order L∞(L2) estimates, we also develop a bootstrap technique that al-

lows us to derive stability and error bounds for the time derivatives and divergence

of the vector variable beyond the standard under some additional regularity as-

sumptions.
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1 Introduction

We consider the linear acoustic wave equation

%pt +∇ · u = f,

κ−1ut +∇p = g,

(1)

posed on some domain Ω × [0, T ] ⊂ Rd × R with d = 2, 3. We assume that T is

finite and, for simplicity, that Ω is polyhedral so that it may be tesselated exactly

into simplices. We pose initial conditions p(x, 0) = p0(x) and u(x, 0) = u0(x) and

the boundary condition u · ν = 0 on ∂Ω, where ν is the unit outward normal

to Ω. Our analysis also covers homogeneous Dirichlet boundary conditions on

part or all of the boundary, and extensions to inhomogeneous Dirichlet condition

requires simply modifying the right-hand side of the weak form. We assume that

the material density, %, is some measurable function bounded below and above

by positive %∗ and %∗. The parameter κ is the bulk modulus of compressibility,

assumed bounded between positive κ∗ and κ∗. These equations are of essential

interest in, among many other areas of application, seismic imaging.

We are interested in discretization of these equations using mixed finite ele-

ment spaces, where p is discretized in some L2 space and u in some H(div) space.

Geveci [11] first considered such a discretization for the constant coefficient case,

proving existence and uniqueness and optimal a priori error estimates in L∞(L2)

for the semidiscrete formulation considered here. He also formulated but did not

analyze a backward Euler time-stepping scheme. Glowinski and Rossi [12] utilize

without analysis the first-order mixed formulation with a forward Euler time dis-

cretization in a control problem. Other analysis of mixed methods seems to focus on

a slightly different formulation in which two time derivatives appear on the vector
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variable and none on the other equation. This more clearly represents the acoustic

wave equation as a limiting result of elastodynamics, but less explicitly reveals the

conservation-law framework of the equations. Cowsar, Dupont and Wheeler [10]

prove a priori error estimates for this formulation and stability results for a fam-

ily of time discretizations. This analysis was extended by Jenkins, Rivière, and

Wheeler [17], and Jenkins provided numerical experimentation related to these re-

sults [16]. Chung and Engquist [9] also address the first-order formulation used by

Geveci, but use a provably optimal discontinuous Galerkin method with specially

chosen local spaces. Their numerical results use the (symplectic) leapfrog scheme,

but they do not address the interaction of this time discretization with energy

conservation or prove fully discrete estimates.

Our present work returns to the mixed formulation of Geveci, and strengthens

the existing results in two major ways. First, we are able to control the temporal

derivatives of both variables and the divergence of uh, and such estimates are ab-

sent in related publications. Second, we study energy conservation of fully discrete

schemes in the first-order system. In fact, the mixed form gives a Hamiltonian ODE

with an appropriately defined Poisson bracket. Rather than utilizing the general

theory of geometric numerical integration, however, we use a direct approach to

calculate the approximately conserved Hamiltonian. Because a discretized PDE

gives a family of ordinary differential equations, it is important to know how any

implied constants scale under mesh refinement. In fact, such behavior gives rise to

our CFL condition.

In a more abstract framework for spatial operators, Boffi, Buffa, and Gastaldi [5]

study semidiscrete hyperbolic equations where the underlying spaces have com-

muting properties. Their techniques capture the current first-order form using
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Raviart-Thomas spaces as well as Maxwell’s equations and others. In this paper,

we restrict to the particular case of acoustice wave equations, but we develop

stronger estimates that include the error in ∇ · uh and time derivatives instead of

just L∞(L2) norms. We also explicitly analyze fully discrete methods.

The interaction of our spatial and temporal discretizations represent the in-

tersection of two important trends in modern numerical analysis. On one hand,

research on the finite element exterior calculus [2] and mimetic methods [3] demon-

strate that the effectiveness of Raviart-Thomas-Nédeléc and related spaces derives

from the discrete preservation of the de Rham complex. On the other hand, the

theory of geometric integration has provided algorithms that reproduces essential

qualitative structures such as energy conservation, with practical implications for

long-term dynamics. In this way, our current discretization can be seen to preserve

the essential structure in both the spatial and temporal aspects of the wave equa-

tion. This combination has been formulated for electromagnetics [23,24], but ours

seems to be the first theoretical analysis combining symplectic time integration

with some form of mixed finite element space.

1.1 Mathematical Preliminaries

Let {Th}h be a family of quasiuniform triangulations of Ω [6]. We let W = L2(Ω)

and V the subspace of H(div) with vanishing normal trace. We let Vh be the

Raviart-Thomas-Nédélec space [21,22] of order r ≥ 0 over each triangulation Th

and Wh the space of discontinuous piecewise polynomials of degree r over Th. It is

possible to extend these mixed spaces to domains with a single curved facet [18],

although we do not dwell on this. Our techniques apply equally well to rectangular
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meshes, but the poor approximation capabilities for quadrilateral meshes discussed

in [1] suggest that the techniques of Bochev and Ridzal [4] may be required to

extend our analysis to that case. The results also hold for the simplicial Brezzi-

Douglas-Fortin-Marini spaces [7], but we suspect that the typical extra order of

convergence for the velocity variable in L2 would not be obtained for the Brezzi-

Douglas-Marini elements.

Throughout, (·, ·) denotes the L2(Ω) or
(
L2 (Ω)

)d
inner product, as needed. We

also make use of the standard Sobolev spaces Hm(Ω) and (Hm (Ω))d with norms

denoted by ‖ · ‖m and seminorms by | · |m in our error estimates, where m is some

nonnegative integer. We also use the spaces Lp(0, T ;X) consisting of functions

taking values in a normed space X at each time such that
∫ T
0
‖f(·, s)‖pXds < ∞,

with the usual modification for p =∞.

Our estimates make use of coefficient-weighted norms. For some strictly posi-

tive, bounded function ω, we define the weighted L2 norm ‖f‖ω by

‖f‖2ω ≡
∫
Ω

ω |f |2 dx, (2)

and if 0 < ω∗ ≤ ω(x) ≤ ω∗ throughout Ω, then we have the equivalence

√
ω∗ ‖f‖ ≤ ‖f‖ω ≤

√
ω∗ ‖f‖ . (3)

These norms admit weighted versions of Cauchy-Schwarz. With such a weight

function ω, we can bound a standard inner product as

(f, g) =
(
ω

1
2 f, ω−

1
2 g
)
≤ ‖f‖ω ‖g‖ω−1 . (4)

We make the standard inverse assumption about our spaces, namely that there

exists a positive constant C0 such that

‖∇ · vh‖ ≤
C0

h
‖vh‖ . (5)
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for all vh ∈ Vh.

We also use the standard projection operators π : W → Wh and Π : V → Vh

for the mixed spaces.

For any q ∈W , πq is the L2 projection satisfying

(πq,wh) = (q, wh) (6)

for all wh ∈Wh, and for v ∈ V , Πv ∈ Vh is defined by

(∇ ·Πv,wh) = (∇ · v, wh) (7)

for all wh ∈Wh.

These projections have well-known approximation properties [7]. In particular,

there exists a positive constant C1 such that

‖πq − q‖ ≤ C1h
m |q|m (8)

whenever q ∈ Hm(Ω) and 1 ≤ m ≤ r + 1.

There also exists a positive C2 such that

‖Πv − v‖ ≤ C2h
m|v|m (9)

for any v ∈ (Hm (Ω))d and for 1 ≤ m ≤ r + 1.

Because of the commuting relation between π,Π and the divergence (i.e., that

∇ ·Πu = π (∇ · u), we also have the bound

‖∇ · (Πv − v) ‖ ≤ C1h
m|∇ · v|m, (10)

provided ∇ · v ∈ (Hm)d for 1 ≤ m ≤ r + 1.

Similar facts hold for H(curl) elements, and so we could easily adapt our tech-

niques for curl-type equations.
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We introduce the energy functional E: W × V → R by

E(w, v) =
1

2
‖w‖2% +

1

2
‖v‖2κ−1 . (11)

The square root of this quantity defines a norm on the product space W ×V , that

is

‖(w, v)‖E ≡
√
E(w, v). (12)

1.2 Weak form and discretization

The solution of (1) satisfies the weak form of finding u : [0, T ]→ V ≡ H0(div) and

p : [0, T ]→W ≡ L2 such that

(%pt, w) + (∇ · u,w) = (f, w) ,(
κ−1ut, v

)
− (p,∇ · v) = (g, v) ,

(13)

together with initial conditions

p(x, 0) = p0(x),

u(x, 0) = u0(x).

(14)

Here H0(div) is the subspace of H(div) with functions of normal component van-

ishing on the boundary of the domain.

The semidiscrete mixed formulation of (13) is to find uh : [0, T ] → Vh and

ph : [0, T ]→Wh such that(
%ph,t, wh

)
+ (∇ · uh, wh) = (f, wh) ,(

κ−1uh,t, vh

)
− (ph,∇ · vh) = (g, vh)

(15)

for all wh ∈ Wh and vh ∈ Vh. We take as initial conditions for the semidiscrete

problem

ph(·, 0) = πp0,

uh(·, 0) = Πu0,

(16)
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where we have chosen the divergence projection rather than the L2 projection of

the initial condition for uh.

The mixed formulation can be rendered as a Hamiltonian system as follows.

Let F be a continuous mappings from H(div) × L2 into the reals. We define δF
δu

and δF
δp as the typical functional derivatives, acting on v ∈ H(div) and w ∈ L2 by

(
δF

δu
, v

)
+

(
δF

δp
, w

)
= lim
ε→0

1

ε
(F (u+ εv, p+ εw)− F (u, p)) .

The Riesz Representation Theorem shows that δF
δu ∈ H(div) and δF

δp ∈ L
2.

We can define the Poisson bracket on a pair of such functionals F and G by

{F,G} =

(
∇ ·
(
δF

δu

)
,
δG

δp

)
−
(
∇ ·
(
δG

δu

)
,
δF

δp

)

This bracket is antisymmetric and can be shown to satisfy the Jacobi identity

{F, {G,H}}+{H, {F,G}}+{G, {H,F}} = 0. With this definition, the Hamiltoninan

is

H(u, p) =
(
κ−1u, u

)
+ (%p, p) .

This structure is inherited by the mixed spatial discretization, so that we obtain

a Hamiltonian family of ODE on any mesh.

Let {φi}
|Wh|
i=1 and {ψi}

|Vh|
i=1 be bases for Wh and Vh, respectively. We define the

weighted mass matrices

M%
ij = (%φj , φi)

M̃κ−1

ij =
(
κ−1ψj , ψi

)
,

(17)

and we omit the superscript when % ≡ 1 or κ ≡ 1.

We also require the weak divergence operator Dij = (φi,∇ · ψj). We repre-

sent the discrete solutions Wh 3 ph(·, t) ≡
∑|Wh|
i=1 pi(t)φi and Vh 3 uh(·, t) ≡∑|Vh|

i=1 ui(t)ψi. We similarly let fi(t) and gi(t) denote the expansion coefficients
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of the L2 projections of the forcing terms f and g. That is, πf(·, t) =
∑|Wh|
i=1 fi(t)φi

and πg(·, t) =
∑|Vh|
i=1 gi(t)ψi. Finally, with p0 and u0 the vectors of expansion coeffi-

cients of the initial conditions (16), the semidiscrete form (15) satisfies the system

of ordinary differential equations

M%pt + Du = Mf,

M̃κ−1

ut −DTp = M̃g,

(18)

with initial conditions

p(0) = p0,

u(0) = u0.

(19)

An essential feature of the wave equation is its energy conservation, and it is

important to understand how the energy fares under time-stepping schemes. It is

well-known that the standard forward Euler method, such as used in [12], pro-

vides nondecreasing energy at each time step, while the backward Euler method,

proposed by Geveci [11], generates nonincreasing energy. Here, we will consider

the symplectic Euler method [13,25], which we will show exactly conserves a per-

turbed version of the system energy. Generally, symplectic methods nearly preserve

a nearby energy functional over long time periods, but for this linear problem, we

are able to exactly construct a conserved quantity.

Now, we partition the time interval [0, T ] into equispaced time steps 0 ≡ t0 <

t1 < t2 < · · · < tN , where ti = i∆t. Then, we approximate the solution to the

semidiscrete method (15) with ph(tn) ≈ pnh ∈Wh and uh(tn) ≈ unh ∈ Vh by the rule

(
%
∆pnh
∆t

,wh

)
+ (∇ · unh, wh) = (fn, wh) ,(

κ−1∆u
n
h

∆t
, vh

)
−
(
pn+1
h ,∇ · vh

)
=
(
gn+1, vh

)
,

(20)
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where fn = f(tn), gn = g(tn), and ∆pnh = pn+1
h − pnh is the standard forward

difference operator. This is sometimes called the semiimplicit Euler method, since

the first equation uses data at time level tn and the second at tn+1. In practice,

we use the first equation to solve for pn+1
h only by inverting a mass matrix and

then use that value of pn+1
h to solve for un+1

h in the second equation, again only

inverting a mass matrix.

2 Stability of semidiscrete method

The existence and uniqueness of the solution of the semidiscrete system (15)

with constant coefficients, as well as basic L∞(L2) stability results, are proven

by Geveci [11]. We will prove similar stability results with different techniques

that will more readily translate to the fully discrete methods later.

Before doing this, we prove a lemma that we will use in lieu of Young’s in-

equality on several occasions.

Lemma 1 Suppose that a real number x satisfies the quadratic inequality

x2 ≤ γ2 + βx

for β, γ ≥ 0 but β2 + γ2 > 0. Then

x ≤ β + γ.

Proof Rewrite the inequality as x2−βx−γ2 ≤ 0. The left-hand side is a quadratic

function with positive leading term. So, for the inequality to hold, x must be to

the left of the larger of the two roots of x2 − βx− γ2, which is

β +
√
β2 + 4γ2

2
.
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This is readily bounded by β + γ. Young’s inequality instead would only give

x ≤
√

2γ + β.

We define the energy of the semidiscrete solution by

a(t) = ‖(ph (·, t) , uh (·, t))‖E . (21)

Theorem 1 Let (ph, uh) be the solution to the semidiscrete problem (15). Provided

that f ∈ L1
(
0, T ;L2 (Ω)

)
and g ∈ L1

(
0, T ;

(
L2 (Ω)

)d)
, we have the stability bound

sup
0≤s≤T

a(s) ≤ a(0) +
√

2

∫ T

0

‖f (·, s)‖%−1 + ‖g (·, s)‖κ ds. (22)

Proof By selecting wh = ph and vh = uh at each time level in (15) and adding the

two equations, we find that

(
%ph,t, ph

)
+
(
κ−1uh,t, uh

)
= (f, ph) + (g, uh)

at each time 0 ≤ t ≤ T . We rewrite the left-hand side as

(
%ph,tph

)
+
(
κ−1uh,t, uh

)
=

1

2

d

dt
‖ph (·, t)‖2% +

1

2

d

dt
‖uh (·, t)‖2κ−1 =

d

dt
a2(t).

Now, we pick any 0 ≤ t̃ ≤ T and integrate from 0 to t̃ to obtain

a2(t̃) = a2(0) +

∫ t̃

0

(f, ph) + (g, uh) dt.

In the absence of forcing terms, this demonstrates that energy is conserved in the

semidiscrete system.

To proceed, we use the weighted Cauchy-Schwarz estimate and extend the

domain of integration to make the bound

a2
(
t̃
)
≤ a2 (0) +

∫ t̃

0

‖f (·, s)‖%−1 ‖ph (·, s)‖% ds+

∫ t̃

0

‖g (·, s)‖κ ‖uh (·, s)‖κ−1 ds

≤ a2 (0) +

∫ T

0

‖f (·, s)‖%−1 ‖ph (·, s)‖% + ‖g (·, s)‖κ ‖uh (·, s)‖κ−1 ds.
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Using the discrete Cauchy-Schwartz inequality under the integral sign, we have

a2
(
t̃
)
≤ a2 (0) +

∫ T

0

√
2a(s)

√
‖f (·, s)‖2%−1 + ‖g (·, s)‖2κds

≤ a2 (0) +
√

2

(
sup

0≤s≤T
a(s)

)∫ T

0

‖f (·, s)‖%−1 + ‖g (·, s)‖κ ds.

Now, the right-hand side is independent of t and f(t) = t2 is monotonic, so we

have the bound

sup
0≤s≤T

a2 (s) ≤ a2 (0) +
√

2

(
sup

0≤s≤T
a(s)

)∫ T

0

‖f (·, s)‖%−1 + ‖g (·, s)‖κ ds.

This has the form

x2 ≤ γ2 + βx,

where

x = sup
0≤t≤T

a(t),

β =
√

2

∫ T

0

‖f (·, s)‖%−1 + ‖g (·, s)‖κ ds > 0,

γ = a(0) ≥ 0.

Applying Lemma 1 finishes the proof.

Now, we will develop a bootstrap technique that will allow us to prove, assum-

ing greater regularity on the data, estimates in stronger norms. The system (18) is

a linear system of ODE, so the solution will be as differentiable as we like assuming

sufficient differentiability of the forcing terms. So, assuming that ft and gt exist in

a reasonable space (made precise in the following theorem), we may differentiate

the system to obtain

M%ptt + Dut = Mft,

M̃κ−1

utt −DTpt = M̃gt,

where M and M̃ are the mass matrices defined earlier in (17).
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We define q(t) = pt and r(t) = ut, and we rewrite the system above as

M%qt + Dr = Mft,

M̃κ−1

rt −DT q = M̃gt.

(23)

Given the equivalence between the system of ODE (18) and the variational prob-

lem (15), we can takeWh 3 qh(·, t) =
∑|Wh|
i=1 qi(t)φi and Vh 3 rh(·, t) =

∑|Vh|
i=1 ri(t)ψi.

This shows that the time derivatives ph,t = qh and uh,t = rh satisfy the variational

problem

(
%qh,t, wh

)
+ (∇ · rh, wh) = (ft, wh) ,(

κ−1rh,t, vh

)
− (qh,∇ · vh) = (gt, vh) .

(24)

The initial conditions for this system are specified by evaluating the system (15)

at time 0:

(%qh(·, 0), wh) + (∇ · uh(·, 0), wh) = (f(·, 0), wh) ,(
κ−1rh(·, 0), vh

)
− (ph(·, 0),∇ · vh) = (g(·, 0), vh) ,

so that the initial derivatives are weighted projections of the initial values of the

forcing terms and derivatives of the initial conditions. With uh(·, 0) ∈ Vh, ph,t(·, 0),

we pick wh = qh(·, 0) to give

‖qh (·, 0)‖2% = (f(·, 0), qh(·, 0))− (∇ · uh (·, 0) , qh(·, 0)) ,

from which follows the bound

‖qh (·, 0)‖% ≤ ‖f (·, 0)‖%−1 + ‖∇ · uh (·, 0)‖%−1 . (25)

We may also bound rh(·, 0). Taking vh = rh(·, 0) in the second equation in (15)

gives

‖rh (·, 0)‖2κ−1 = (g(·, 0), rh(·, 0)) + (ph(·, 0),∇ · rh(·, 0)) .
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Using Cauchy-Schwarz and the inverse assumption (5) to bound ‖∇ · rh (·, 0)‖ by

the L2 norm gives the estimate

‖rh (·, 0)‖κ−1 ≤ ‖g (·, 0)‖κ +
C0

√
κ∗

h
‖ph(·, 0)‖. (26)

This is only an O(h−1) bound, degrading as the mesh is refined. However, if the

initial condition p0 ∈ H1, the use of the inverse assumption and hence the h−1

factor may be avoided. Since ∇ · rh(·, 0) ∈ Wh and ph(·, 0) is the L2 projection of

p0, we have

(ph(·, 0),∇ · rh(·, 0)) =
(
πp0,∇ · rh(·, 0)

)
=
(
p0,∇ · rh(·, 0)

)
= −

(
∇p0, rh(·, 0)

)
,

giving the bound

‖rh (·, 0)‖κ−1 ≤ ‖g (·, 0)‖κ +
∥∥∥∇p0∥∥∥

κ
. (27)

If p0 /∈ H1, but is not merely L2 (say, it is piecewise smooth with jump dis-

continuities), it may be possible to get more refined estimates using elementwise

integration by parts. However, as we will typically apply this stability estimate to

error estimates with zero initial pressure, we do not pursue this further here.

A straightforward application of Theorem 1 to (24) gives a bound on the time

derivatives. We define

b(t) ≡
∥∥(ph,t (·, t) , uh,t (·, t)

)∥∥
E . (28)

Theorem 2 Let ph and uh be the solutions to (15). If ft ∈ L1(0, T ;L2(Ω)) and

gt ∈ L1(0, T ;
(
L2(Ω)

)d
), then

sup
0≤s≤T

b(s) ≤ b(0) +
√

2

∫ T

0

‖ft (·, s)‖%−1 + ‖gt (·, s)‖κ ds. (29)
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Bounds on the time derivatives lead to bounds on the divergence of the discrete

solution at each time. Selecting wh = ∇ · uh in the first equation of (15) gives

(
%ph,t,∇ · uh

)
+ ‖∇ · uh‖2 = (f,∇ · uh) , (30)

so that

‖∇ · uh‖ ≤ ‖f‖+
√
%∗
∥∥ph,t∥∥% , (31)

and in light of the previous theorem, we have

Theorem 3 Under the assumptions of Theorem 2, and assuming also that f ∈ L∞(0, T ;L2(Ω)),

we have that

sup
0≤s≤T

‖∇ · uh (·, s)‖ ≤ sup
0≤s≤T

‖f (·, s)‖+
√
%∗b(0)

+
√

2%∗
∫ T

0

‖ft (·, s)‖%−1 + ‖gt (·, s)‖κ ds.

(32)

3 Semidiscrete error estimates

We will bound the error in the semidiscrete method in various norms by comparing

the computed solution to the projections of the true solutions. To do this, we

restrict the test functions in (13) to the finite-dimensional spaces. Then, using the

properties of the projections π and Π, we have that

(%πpt, wh) + (∇ ·Πu,wh) = (f, wh) + (% (πpt − pt) , wh) ,(
κ−1Πut, vh

)
− (πp,∇ · vh) = (g, vh) +

(
κ−1 (Πut − ut) , vh

)
.

(33)

We may subtract the semidiscrete form (15) from these to obtain the error equa-

tions

(
%
(
πpt − ph,t

)
, wh

)
+ (∇ · (Πu− uh) , wh) = (% (πpt − pt) , wh) ,(

κ−1 (Πut − uh,t) , vh)− (πp− ph,∇ · vh) =
(
κ−1 (Πut − ut) , vh

)
.

(34)
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We define Wh 3 θh(·, t) ≡ πp(·, t) − ph(·, t) and Vh 3 χh(·, t) ≡ Πu(·, t) − uh(·, t)

to be the differences between projections and computed solutions. We also let

W 3 ξ(·, t) ≡ πp(·, t) − p(·, t) and V 3 η(·, t) ≡ Πu(·, t) − u(·, t) be the differences

between the exact solutions and their projections.

Because of the definitions of ξ and η and the properties of the projections,

these differences satisfy the semidiscrete problem.

(
%θh,t, wh

)
+ (∇ · χh, wh) = (%ξt, wh) ,(

κ−1χh,t, vh

)
− (θh,∇ · vh) =

(
κ−1ηt, vh

)
.

(35)

Because of the choice of initial conditions for ph and uh, the initial values θh(·, 0)

and χh(·, 0) are both zero.

A direct application of Theorems 1, 2 and 3 allows us to bound θh and χh in

various norms in terms of the projection errors. We define

ε(t) = ‖(θh(·, t), χh(·, t))‖E . (36)

Lemma 2 Suppose that the true solution (p, u) has time derivatives pt ∈ L1
(
0, T ;Hr+1(Ω)

)
and ut ∈ L1

(
0, T ;

(
Hr+1(Ω)

)d)
. Then, for 1 ≤ m ≤ r + 1, we have the bound

ε(t) ≤ C1h
m
√

2%∗
∫ T

0

|pt (·, s)|m ds+ C2h
m

√
2

κ∗

∫ T

0

|ut (·, s)|m ds. (37)

Proof Applying Theorem 1 to (35) and using the fact that ε2(0) = 0, we have that

sup
0≤s≤T

ε(s) ≤
√

2

∫ T

0

‖%ξt (·, s)‖%−1 +
∥∥∥κ−1ηt (·, s)

∥∥∥
κ
ds.

We rewrite the weighted norms

‖%ξt‖2%−1 =

∫
Ω

%−1 (%ξt)
2
dx =

∫
Ω

% (ξt)
2
dx = ‖ξt‖2% ,

with an analagous calculation showing
∥∥κ−1ηt

∥∥
κ

= ‖ηt‖κ−1 . This gives

sup
0≤s≤T

ε(s) ≤
√

2

∫ T

0

‖ξt (·, s)‖% + ‖ηt (·, s)‖κ−1 ds,
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and then we use norm equivalence and the approximation theoretic bounds (8)

and (9) to finish the proof.

We define the error quantity

ε(t) = ‖(p(·, t)− ph(·, t), u(·, t)− uh(·, t))‖E . (38)

Theorem 4 Suppose that the solutions have time derivatives pt ∈ L1
(
0, T ;Hr+1(Ω)

)
and ut ∈ L1

(
0, T ;

(
Hr+1(Ω)

)d)
and additionally that p ∈ L∞

(
0, T ;Hr+1(Ω)

)
and

u ∈ L∞
(

0, T ;
(
Hr+1(Ω)

)d)
. Then, for each 1 ≤ m ≤ r + 1, we have

sup
0≤s≤T

ε(s) ≤C1h
m
√
%∗

(
1√
2

sup
0≤s≤T

|p (·, s)|m +
√

2

∫ T

0

|pt (·, s)|m ds

)

+
C2h

m

√
κ∗

(
1√
2

sup
0≤s≤T

|u (·, s)|m +
√

2

∫ T

0

|ut (·, s)|m ds

)
.

(39)

Proof The triangle inequality gives

sup
0≤s≤T

ε(s) ≤ sup
0≤s≤T

‖(ξ (·, s) , η (·, s))‖E + sup
0≤s≤T

‖(θ (·, s) , χ (·, s))‖E . (40)

We use the approximation-theoretic bounds (8) and (9) on the first term:

‖(ξ (·, s) , η (·, s))‖E ≤
1√
2
‖ξ (·, s)‖% +

1√
2
‖η (·, s)‖κ−1

≤
√
%∗

2
‖ξ (·, s)‖ +

1√
2κ∗
‖η (·, s)‖

≤ C1h
m

√
%∗

2
|p (·, s)|m +

C2h
m

√
2κ∗
|u (·, s)|m .

The result follows by applying the previous theorem to the second term in (40)

and combining terms.

Now, we turn to the error in the time derivatives. We define

β(t) =
∥∥(πpt(·, t)− ph,t(·, t), Πut(·, t)− uh,t(·, t))∥∥E =

∥∥(θh,t(·, t), χh,t(·, t))∥∥E .
(41)
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Lemma 3 Suppose that ptt ∈ L1 (0, T ;Hm (Ω)), utt ∈ L1
(

0, T ; (Hm (Ω))d
)

and

also that pt (·, 0) ∈ Hm (Ω) and ut (·, 0) ∈ (Hm (Ω))d. Then

sup
0≤s≤T

β(s) ≤C1

√
%∗hm

(
1√
2
|pt (·, 0)|m +

√
2

∫ T

0

|ptt (·, s)| ds

)

+
C2h

m

√
κ∗

(
1√
2
|ut (·, 0)|m +

√
2

∫ T

0

|utt (·, s)| ds

)
.

(42)

Proof If we apply the stability result of Theorem 2 to the error equations (35), we

find that

sup
0≤s≤T

β(s) ≤ β(0) +
√

2

∫ T

0

‖%ξtt (·, s)‖%−1 +
∥∥∥κ−1ηtt (·, s)

∥∥∥
κ
ds.

We can bound β(0) using the error equations (35) together with bounds on the

initial derivatives (25) and (26):

β(0) ≤ 1√
2

∥∥θh,t (·, 0)
∥∥
%

+
1√
2

∥∥χh,t (·, 0)
∥∥
κ−1

≤ 1√
2
‖ξt (·, 0)‖% +

1√
2
‖ηt (·, 0)‖κ−1 .

The approximation results (8) and (9) give then that

β(0) ≤ C1h
m

√
%∗

2
|pt (·, 0)|m +

C2h
m

√
2κ∗
|ut (·, 0)|m .

For the remaining terms, rewriting the weighted norms and applying the approx-

imation estimates finishes the proof.

Now, we let

γ(t) =
∥∥(pt(·, t)− ph,t(·, t), ut(·, t)− uh,t(·, t))∥∥E , (43)

and we have an error estimate. Lemma 3 plus the approximation results give us a

bound on γ(t).
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Theorem 5 Under the assumptions of Lemma 3, we have that

sup
0≤s≤T

γ(s) ≤C1h
m
√
%∗

(
1√
2
|pt (·, 0)|m +

1√
2

sup
0≤s≤T

|pt (·, s)|m +
√

2

∫ T

0

|ptt (·, s)|m ds

)

+
C2h

m

√
κ∗

(
1√
2
|ut (·, 0)|m +

1√
2

sup
0≤s≤T

|ut (·, s)|m +
√

2

∫ T

0

|utt (·, s)|m ds

)
.

(44)

Proof First, we use the triangle inequality to write that

sup
0≤s≤T

γ(s) ≤ sup
0≤s≤T

β(s) + sup
0≤s≤T

‖(ξt(·, s), ηt(·, s))‖E .

The first term is bounded by the previous lemma. The second term satisfies the

bound

sup
0≤s≤T

‖(ξt(·, s), ηt(·, s))‖E ≤ sup
0≤s≤T

√
%∗

2
‖ξt (·, s)‖ + sup

0≤t≤T

1√
2κ∗
‖ηt (·, s)‖

≤ C1h
m√%∗√

2
sup

0≤s≤T
|pt (·, s)|m +

C2h
m

√
2κ∗

sup
0≤s≤T

|ut (·, s)|m ,

and the final result follows by combining these bounds with Lemma 3.

Finally, we consider the error in divergence of the vector variable.

Theorem 6 If the assumptions of Lemma 3 hold, plus that ∇·u ∈ L∞ (0, T ;Hm (Ω)),

we have

sup
0≤s≤T

‖∇ · (u− uh) (·, s)‖ ≤C1h
m%∗

(
|pt (·, 0)|m + sup

0≤s≤T
|pt (·, s)|m

+ sup
0≤s≤T

|∇ · u (·, s)|m + 2

∫ T

0

|ptt (·, s)|m ds

)

+ C2h
m

√
%∗

κ∗

(
|ut (·, 0)|m + 2

∫ T

0

|utt (·, s)|m ds

)
.

(45)

Proof First, we bound the divergence error at each time by the triangle inequality.

‖∇ · (u− uh) (·, s)‖ ≤ ‖∇ · χh (·, s)‖+ ‖∇ · η (·, s)‖ . (46)
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The latter term is bounded by (10). For the former, we note that an estimate

like (31) for the error equations (35) gives

sup
0≤s≤T

‖∇ · χh (·, s)‖ ≤ sup
0≤s≤T

‖%ξt (·, s)‖ +
√
%∗ sup

0≤s≤T

∥∥θh,t (·, s)
∥∥
%
.

The first term is bounded by

sup
0≤s≤T

‖%ξt (·, s)‖ ≤ C1%
∗hm sup

0≤s≤T
|pt (·, s)|m .

For the second term,
∥∥θh,t (·, s)

∥∥
%
≤
√

2β(s), so applying Lemma 3 gives

√
%∗ sup

0≤s≤T

∥∥θh,t (·, s)
∥∥
%
≤
√

2%∗ sup
0≤s≤T

β(s)

≤
√

2%∗

[
C1

√
%∗hm

(
1√
2
|pt (·, 0)|m +

√
2

∫ T

0

|ptt (·, s)|m ds

)]

+
√

2%∗

[
C2h

m

√
κ∗

(
1√
2
|ut (·, 0)|m +

√
2

∫ T

0

|utt (·, s)|m ds

)]

=C1h
m%∗

(
|pt (·, 0)|m + 2

∫ T

0

|ptt (·, s)|m ds

)

+ C2

√
%∗

κ∗
hm

(
|ut (·, 0)|m + 2

∫ T

0

|utt (·, s)|m ds

)
.

4 Fully discrete method

Energy conservation drives the semidiscrete estimates above, both for the stability

and also for the error estimates. Such a property for a time stepping scheme

would not only honor the physics of the system, but would also admit a similar

technique for the fully discrete analysis. Except for special time discretizations

(e.g. Crank-Nicholson and certain higher-order implicit methods), few methods

exactly conserve the system energy. Rather than dealing with implicit methods,

we will show that the symplectic Euler method applied to our problem preserves

a quantity that approximates the system energy. This is similar to the backward

analysis known for Hamiltonian systems [13].
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Energy techniques based on conservation are quite standard for semidiscrete

PDE, but finding and using a conserved quantity for the fully discrete case is a

new wrinkle in this paper. It makes techniques for the discrete-time case closely

parallel the semidiscrete. However, as our analysis relies on an explicit construction

rather than the existence of the conserved energy functional, we leave it as an

open question whether similar backward techniques can be adapted to nonlinear

problems.

4.1 Discrete energy and conservation

Given that we seek a quantity that is a perturbation of the exact system energy,

we will find it with some basic manipulations of the discrete equations. The true

system energy at each time level n is a2n = E(pnh, u
n
h), but we will also show that

that functional

Ẽ∆t(wh, vh) ≡ E(wh, vh)− ∆t

2
(∇ · vh, wh) (47)

on Wh × Vh appears and gives rise to our conserved approximate energy, with

ã2n ≡ Ẽ∆t(pnh, u
n
h). (48)

Before seeing how this quantity emerges from the analysis, we can see that

under a CFL-like restriction on ∆t it is in fact equivalent to the actual energy on

the finite element spaces

Lemma 4 Let

α ≡ C0

√
κ∗

2h
√
%∗
, (49)

and suppose that

α∆t < 1. (50)
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Then Ẽ∆t is positive-definite and satisfies

(1− α∆t) E (wh, vh) ≤ Ẽ∆t (wh, vh) ≤ 2E (wh, vh) (51)

for all wh ∈Wh and vh ∈ Vh.

Proof Let wh ∈Wh and vh ∈ Vh. Then using weighted Cauchy-Schwarz, the equiv-

alence of weighted norms, the inverse assumption (5) and Young’s inequality, we

have

|(∇ · vh, wh)| ≤ ‖∇ · vh‖%−1 ‖wh‖%

≤ 1
√
%∗
‖∇ · vh‖ ‖wh‖%

≤ C0

h
√
%∗
‖vh‖ ‖wh‖%

≤ C0

√
κ∗

h
√
%∗
‖vh‖κ−1 ‖wh‖%

≤ C0

√
κ∗

h
√
%∗
E (wh, vh) .

With this estimate, we have that

Ẽ∆t (wh, vh) = E (wh, vh)− ∆t

2
(∇ · vh, wh)

≥ E (wh, vh)− C0∆t
√
κ∗

2h
√
%∗
E (wh, vh)

= (1− α∆t) E (wh, vh) ,

(52)

the CFL condition and the positive-definiteness of E rendering the quantity positive-

definite. The upper bound follows in a similar fashion.

The perturbed energy is certainly well-defined on all of W × V , but our proof

of equivalence requires the inverse estimate, which only holds on the finite element

spaces.

Now, we can show that the quantity ã2n is in fact conserved.
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Lemma 5 If the forcing functions f , g both vanish, then for each 0 ≤ n < N , we have

that

ã2n+1 = ã2n. (53)

Proof Select wh =
pn+1
h +pnh

2 and vh =
un+1
h +un

h
2 in (20) to find that

1

2∆t

∥∥∥pn+1
h

∥∥∥2
%
− 1

2∆t

∥∥pnh∥∥2% +

(
∇ · unh,

pn+1
h + pnh

2

)
= 0,

1

2∆t

∥∥∥un+1
h

∥∥∥2
κ−1
− 1

2∆t

∥∥unh∥∥2κ−1 −

(
pn+1
h ,∇ ·

un+1
h + unh

2

)
= 0.

Adding the equations together, multiplying by ∆t, and some straightforward ma-

nipulations give the desired result.

4.2 Stability

Theorem 7 Supposing that the sum
∑N−1
n=0

(
‖fn‖%−1 +

∥∥gn+1
∥∥
κ

)
∆t is bounded and

the CFL condition (50) holds, the energy an of the solution to (20) satisfies the bound

max
0≤n≤N

an ≤
√

1

1− α∆t ã0 +

√
2

1− α∆t

N−1∑
n=0

(∥∥fn∥∥
%−1 +

∥∥∥gn+1
∥∥∥
κ

)
∆t (54)

Proof Selecting the test functions as in the previous theorem, the same manipula-

tions give us

ã2n+1 − ã2n = ∆t

(
fn,

pn+1
h + pnh

2

)
+∆t

(
gn+1,

un+1
h + unh

2

)
.

If we fix some 0 ≤M ≤ N and sum this equation from n = 0 to M − 1, we obtain

ã2M = ã20 +
M−1∑
n=0

∆t

(
fn,

pn+1
h + pnh

2

)
+
M−1∑
n=0

∆t

(
gn+1,

un+1
h + unh

2

)
.

Using Lemma 4 on the left-hand side and weighted Cauchy-Schwarz on the right

and extending the interval of summation give

(1− α∆t) a2M ≤ ã
2
0 +

M−1∑
n=0

∆t

2

(∥∥fn∥∥
%−1

∥∥∥pn+1
h + pnh

∥∥∥
%

+
∥∥∥gn+1

∥∥∥
κ

∥∥∥un+1
h + unh

∥∥∥
κ−1

)

≤ ã20 +
N−1∑
n=0

∆t

2

(∥∥fn∥∥
%−1

∥∥∥pn+1
h + pnh

∥∥∥
%

+
∥∥∥gn+1

∥∥∥
κ

∥∥∥un+1
h + unh

∥∥∥
κ−1

)
.
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Now, we apply the triangle inequality and the fact that ‖pnh‖% and ‖unh‖κ−1 are

each bounded by
√

2an to find that

max
0≤n≤N

a2n ≤
1

1− α∆t ã
2
0 +

√
2

1− α∆t

(
max

0≤n≤N
an

)N−1∑
n=0

(∥∥fn∥∥
%−1 +

∥∥∥gn+1
∥∥∥
κ

)
∆t

To complete the proof, we use Lemma 1 with x = max0≤n≤N an,

β =
( √

2
1−α∆t

)∑N−1
n=0

(
‖fn‖%−1 +

∥∥gn+1
∥∥
κ

)
∆t, and γ = 1√

1−α∆t ã0.

As with the semidiscrete case, we can apply a boostrapping argument to obtain

bounds in stronger norms. However, we will only deal with the case of discrete

initial conditions p0h = 0 and u0h = 0. This is all that is required for subsequent

error estimates. Using linearity, these results may also be adapted to nonzero initial

conditions by converting them to forcing functions.

We define the difference quotients.

qnh =
∆pnh
∆t

,

rnh =
∆unh
∆t

.

(55)

Then, time-differencing (20) gives us the new system of equations(
%
∆qnh
∆t

,wh

)
+ (∇ · rnh , wh) =

(
∆fn

∆t
,wh

)
,(

κ−1∆r
n
h

∆t
, vh

)
−
(
qn+1
h ,∇ · vh

)
=

(
∆gn+1

∆t
, vh

)
,

(56)

which holds for 0 ≤ n ≤ N − 1 rather than N . The initial conditions for q0h and r0h

are defined by evaluating (20) at n = 0(
%q0h, wh

)
+
(
∇ · u0h, wh

)
=
(
f0, wh

)
,(

κ−1r0h, vh

)
−
(
p1h, vh

)
=
(
g1, vh

)
.

(57)

Selecting wh = q0h in the first equation, applying the fact that u0h = 0 and using

Cauchy Schwarz immediately gives that

∥∥∥q0h∥∥∥
%
≤
∥∥∥f0∥∥∥

%−1
,
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but the presence of p1h rather than p0h in the second complicates matters somewhat.

We use the first equation, with u0h = 0, in (20) to bound p1h:

(
%p1h, wh

)
= ∆t

(
f0, wh

)
,

so that ∥∥∥p1h∥∥∥
%
≤ ∆t

∥∥∥f0∥∥∥
%−1

.

Then, the second equation in (20) gives that

(
κ−1r0h, vh

)
−
(
p1h,∇ · vh

)
=
(
g1, vh

)
.

Picking vh = r0h and using weighted Cauchy-Schwarz gives∥∥∥r0h∥∥∥2
κ−1
≤
∥∥∥p1h∥∥∥

%

∥∥∥∇ · r0h∥∥∥
%−1

+
∥∥∥g1∥∥∥

κ

∥∥∥r0h∥∥∥
κ−1

.

Now, we use our bound on
∥∥p1h∥∥%, equivalence of various norms, and the inverse

assumption to find that∥∥∥p1h∥∥∥
%

∥∥∥∇ · r0h∥∥∥
%−1
≤ ∆t
√
%∗

∥∥∥f0∥∥∥
%−1

∥∥∥∇ · r0h∥∥∥
≤ C0∆t

h
√
%∗

∥∥∥f0∥∥∥
%−1

∥∥∥r0h∥∥∥
≤ C0

√
κ∗∆t

h
√
%∗

∥∥∥f0∥∥∥
%−1

∥∥∥r0h∥∥∥
κ−1

.

Hence, we have that ∥∥∥r0h∥∥∥
κ−1
≤ C0

√
κ∗∆t

h
√
%∗

∥∥∥f0∥∥∥
%−1

+
∥∥∥g1∥∥∥

κ
. (58)

The CFL condition requires ∆t = O(h), so this bound does not degrade under

mesh refinement.

Now, we define the sequence bn to be the energy functional applied to qnh , r
n
h :

b2n =
∥∥(qnh , r

n
h)
∥∥2
E =

∥∥∥∥(∆pnh∆t
,
∆unh
∆t

)∥∥∥∥2
E

=
1

2

∥∥∥∥∆pnh∆t

∥∥∥∥2
%

+
1

2

∥∥∥∥∆unh∆t

∥∥∥∥2
κ−1

. (59)

We can apply our previous stability theorem to to the equations (56), at least up

to the penultimate time step to obtain



26 Robert C. Kirby, Thinh Tri Kieu

Theorem 8 If the initial conditions p0h and u0h vanish and the CFL condition (50)

holds, the time differences
∆pnh
∆t and

∆un
h

∆t satisfy the stability bound

max
0≤n≤N−1

bn ≤
1√

1− α∆t

((
1 +

C0∆t

h

√
κ∗

%∗

)∥∥∥f0∥∥∥
%−1

+
∥∥∥g1∥∥∥

κ

)
+

√
2

1− α∆t

N−2∑
n=0

(∥∥∥∥∆fn∆t

∥∥∥∥
%−1

+

∥∥∥∥∆gn+1

∆t

∥∥∥∥
κ

)
∆t,

(60)

provided that the quantities on the right-hand side are bounded.

Proof We apply the stability result of Theorem 7 to the equations (56) to find

max
0≤n≤N−1

bn ≤
1√

1− α∆t
b̃0 +

√
2

1− α∆t

N−1∑
n=0

(∥∥∥∥∆fn∆t

∥∥∥∥
%−1

+

∥∥∥∥∆gn+1

∆t

∥∥∥∥
κ

)
∆t,

and only the bound of the initial term requires explanation. We have

b̃0 ≤
√

2b0 ≤
∥∥∥q0h∥∥∥

%
+
∥∥∥r0h∥∥∥

κ−1
≤
∥∥∥f0∥∥∥

%−1
+
C0∆t

h

√
κ∗

%∗

∥∥∥f0∥∥∥
%−1

+
∥∥∥g1∥∥∥

κ
,

and collecting terms finishes the proof.

Using (20), we can also bound the divergence at each time level:

∥∥∇ · unh∥∥ ≤ ∥∥fn∥∥ +
√
%∗
∥∥∥∥∆pnh∆t

∥∥∥∥
%

≤
∥∥fn∥∥ +

√
2%∗bn, (61)

which gives the following theorem

Theorem 9 Under the hypotheses of Theorem 8, we have the bound

max
0≤n≤N−1

∥∥∇ · unh∥∥ ≤ max
0≤n≤N−1

∥∥fn∥∥
+

√
2%∗

1− α∆t

((
1 +

C0∆t

h

√
κ∗

%∗

)∥∥∥f0∥∥∥
%−1

+
∥∥∥g1∥∥∥

κ

)
+

2
√
%∗

1− α∆t

N−2∑
n=0

(∥∥∥∥∆fn∆t

∥∥∥∥
%−1

+

∥∥∥∥∆gn+1

∆t

∥∥∥∥
κ

)
∆t.

(62)
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4.3 Error estimates

Now, we turn to the question of estimating the error. Let pn(·) = p(·, tn) and

un(·) = u(·, tn) be the true solution evaluated at the discrete time levels. Let

πpn ∈ Wh and Πun ∈ Vh be the projections of the true solutions at the discrete

time levels.

As before, let ξ = πp−p. Then ξt = πpt−pt, and define ξn and ξnt be evaluating

ξ and its time derivative at the discrete time levels. We similarly define η = Πu−u

and its time derivative and evaluation at each tn. As in the semidiscrete case,

we let θh and χh denote the differences between the projections and computed

solutions, but now we only have these at discrete time levels: θnh = πpn − pnh and

χnh = Πun − unh.

To handle the fully discrete estimate, differences between time derivatives and

difference quotients also appear. We need difference operators applied to functions

of time. For some f(·, t), we define ∆f(·, t) = f(·, t + ∆t) − f(·, t). This exactly

agrees with differencing at discrete time levels. We define

ζ(·, t) =
∆p(·, t)
∆t

− pt(·, t),

ψ(·, t) =
∆u(·, t)
∆t

− ut(·, t),
(63)

and also ζn = ζ(·, tn) and ψn = ψ(·, tn). With these definitions, standard manipu-

lations show that the true solution satisfies the discrete equation

(
%
∆πpn

∆t
,wh

)
+ (∇ ·Πun, wh) = (fn, wh) +

(
%
∆ξn

∆t
,wh

)
+ (%ζn, wh) ,(

κ−1∆Πu
n

∆t
, vh

)
−
(
πpn+1,∇ · vh

)
=
(
gn+1, vh

)
+

(
κ−1∆η

n

∆t
, vh

)
+
(
κ−1ψn, vh

)
,

(64)
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and subtracting (20) from this gives error equations

(
%
∆θnh
∆t

,wh

)
+ (∇ · χnh, wh) =

(
%
∆ξn

∆t
,wh

)
+ (%ζn, wh) ,(

κ−1∆χ
n
h

∆t
, vh

)
−
(
θn+1
h ,∇ · vh

)
=

(
κ−1∆η

n

∆t
, vh

)
+
(
κ−1ψn, vh

)
.

(65)

Because the initial conditions for the discrete method coincide with the projections

of the true solution, we have that θ0h and χ0
h both vanish.

We define

εn =
∥∥(θnh , χ

n
h)
∥∥
E , (66)

and make the bound:

Lemma 6 Suppose that ptt ∈ L1
(
0, T ;L2 (Ω)

)
, utt ∈ L1

(
0, T ;

(
L2 (Ω)

)d)
, pt ∈

L1 (0, T ;Hm (Ω)), ut ∈ L1
(

0, T ; (Hm (Ω))d
)

, and that (50) holds. Then we have the

error estimate

max
0≤n≤N

εn ≤
√

2%∗

1− α∆t

(
C1h

m
∫ T

0

|pt (·, s)|m ds+∆t

∫ T

0

‖ptt (·, s)‖ ds

)

+

√
2

(1− α∆t)√κ∗

(
C2h

m
∫ T

0

|ut (·, s)|m ds+∆t

∫ T

0

‖utt (·, s)‖ ds

)
.

(67)

Proof First, we apply the stability result of Theorem 7 to (65), noting that the

initial conditions vanish, to find that

max
0≤n≤N

εn ≤
√

2

1− α∆t

N−1∑
n=0

(∥∥∥∥%(∆ξn∆t
+ ζn

)∥∥∥∥
%−1

+

∥∥∥∥κ−1

(
∆ηn

∆t
+ ψn

)∥∥∥∥
κ

)
∆t

=

√
2

1− α∆t

N−1∑
n=0

(∥∥∥∥∆ξn∆t
+ ζn

∥∥∥∥
%

+

∥∥∥∥∆ηn∆t
+ ψn

∥∥∥∥
κ−1

)
∆t.

Now, we bound each of these terms separately. For the first, we have that

N−1∑
n=0

∥∥∥∥∆ξn∆t
+ ζn

∥∥∥∥
%

∆t ≤
√
%∗

N−1∑
n=0

[∥∥∥∥∆ξn∆t

∥∥∥∥ +
∥∥ζn∥∥]∆t. (68)
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Since

N−1∑
n=0

∥∥∆ξn∥∥ =
N−1∑
n=0

∥∥∥∥∫ tn+1

tn

ξt(·, s)ds
∥∥∥∥

≤
N−1∑
n=0

∫ tn+1

tn

‖ξt(·, s)ds‖

≤ C1h
m
∫ T

0

|pt (·, s)|m ds.

and

N−1∑
n=0

∥∥ζn∥∥∆t =
N−1∑
n=0

∥∥∥pn+1 − pn −∆tpnt
∥∥∥

=
N−1∑
n=0

∥∥∥∥∫ tn+1

tn

(tn+1 − s) ptt (·, s) ds
∥∥∥∥

≤
N−1∑
n=0

∫ tn+1

tn

(tn+1 − s) ‖ptt (·, s)‖ ds

≤
N−1∑
n=0

∆t

∫ tn+1

tn

‖ptt (·, s)‖ ds

≤ ∆t
∫ T

0

‖ptt (·, s)‖ ds,

the first term in (68) is bounded by

√
2%∗

1− α∆t

[
C1h

m
∫ T

0

|pt (·, s)|m ds+∆t

∫ T

0

‖ptt (·, s)‖ ds

]
.

Similar techniques for the second term complete the proof.

This lemma allows us to bound the error

εn =
∥∥(pn − pnh, u

n − unh)
∥∥
E . (69)
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Theorem 10 Under the assumptions of the previous Lemma, we have that

max
0≤n≤N

εn ≤
√

2%∗

1− α∆t

(
C1h

m

2
sup

0≤s≤T
|p (·, s)|m + C1h

m
∫ T

0

|pt (·, s)|m ds

+∆t

∫ T

0

‖ptt (·, s)‖ ds

)

+

√
2

(1− α∆t)√κ∗

(
C2h

m

2
sup

0≤s≤T
|u (·, s)|m dt+ C2h

m
∫ T

0

|ut (·, s)|m ds

+∆t

∫ T

0

‖utt (·, s)‖ ds

)
.

(70)

Proof From the triangle inequality, we have

εn ≤
∥∥(ξn, ηn)

∥∥
E + εn.

The first term satisfies the bound

∥∥(ξn, ηn)
∥∥
E ≤

1√
2

∥∥ξn∥∥
%

+
1√
2

∥∥ηn∥∥
κ−1

≤
√
%∗

2

∥∥ξn∥∥+
1√
2κ∗

∥∥ηn∥∥ ,
and our approximation estimates give that

max
0≤n≤N

∥∥(ξn, ηn)
∥∥
E ≤ C1h

m

√
%∗

2
sup

0≤s≤T
|p (·, s)|m +

C2h
m

√
2κ∗

sup
0≤s≤T

|u (·, s)|m .

Combining this bound with the previous lemma and grouping terms completes the

proof.

Next, we estimate the error in time difference quotients. We define

βn =

∥∥∥∥(∆θnh∆t , ∆χnh∆t

)∥∥∥∥
E
. (71)

Lemma 7 Suppose that ptt ∈ L1 (0, T ;Hm (Ω)), utt ∈ L1
(

0, T ; (Hm (Ω))d
)

, and

pttt ∈ L1(0, T ;L2(Ω)), uttt ∈ L1(0, T ; (L2(Ω))d) and that the CFL condition (50)
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holds. Then we have the estimate

max
0≤n≤N−1

βn ≤hm
[

1√
1− α∆t

(
C1

√
%∗
(

1 +
C0∆t

h

√
κ∗

%∗

)
sup

0≤s≤∆t
|pt (·, s)|m

+
C2√
κ∗

sup
0≤s≤∆t

|ut (·, s)|m

)

+
2
√

2

1− α∆t

(
C1

√
%∗
∫ T

0

|ptt (·, s)|m ds

+
C2√
κ∗

∫ T

0

|utt (·, s)|m ds

)]

+∆t

[
1√

1− α∆t

(√
%∗
(

1 +
C0∆t

h

√
κ∗

%∗

)
sup

0≤s≤∆t
‖ptt (·, s)‖

+
1√
κ∗

sup
0≤s≤∆t

‖utt (·, s)‖

)

+
2
√

2

1− α∆t

(√
%∗
∫ T

0

‖pttt (·, s)‖ ds

+
1√
κ∗

∫ T

0

‖uttt (·, s)‖ ds

)]
.

(72)

Proof Since the initial conditions for the error equations (65) vanish, we can apply

the stability estimate in Lemma 8 to obtain

max
0≤n≤N−1

βn ≤
1√

1− α∆t

((
1 +

C0∆t

h

√
κ∗

%∗

)∥∥∥∥∆ξ0∆t
+ ζ0

∥∥∥∥
%

+

∥∥∥∥∆η0∆t
+ ψ0

∥∥∥∥
κ−1

)

+

√
2

1− α∆t

N−2∑
n=0

(∥∥∥∥∆2ξn

(∆t)2
+
∆ζn

∆t

∥∥∥∥
%

+

∥∥∥∥∆2ηn

(∆t)2
+
∆ψn

∆t

∥∥∥∥
κ−1

)
∆t.

(73)

We take each of the norms on the right in turn. The first two are evaluated at the

initial condition. We start with norm equivalence and the triangle inequality:

∥∥∥∥∆ξ0∆t
+ ζ0

∥∥∥∥
%

≤
√
%∗
∥∥∥∥∆ξ0∆t

∥∥∥∥+
√
%∗
∥∥∥ζ0∥∥∥ .

The first of these is estimated by

∥∥∥∥∆ξ0∆t

∥∥∥∥ =
1

∆t

∥∥∥∥∥
∫ ∆t

0

ξt (·, s) ds

∥∥∥∥∥ ≤ C1h
m sup

0≤s≤∆t
|pt (·, s)|m ,
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and the second by∥∥∥ζ0∥∥∥ =

∥∥∥∥∆p0∆t
− p0t

∥∥∥∥ ≤ 1

∆t

∥∥∥∥∥
∫ ∆t

0

(∆t− s) ptt (·, s) ds

∥∥∥∥∥ ≤ ∆t sup
0≤s≤∆t

‖ptt (·, s)‖ .

In a similar fashion, we find that∥∥∥∥∆η0∆t
+ ψ0

∥∥∥∥
κ−1

≤ C2h
m

√
κ∗

sup
0≤s≤∆t

|ut (·, s)|m +
∆t√
κ∗

sup
0≤s≤∆t

‖utt (·, s)‖ .

Now, we turn to the sums in (73). First, we have∑
0≤n≤N−2

∥∥∥∥∆2ξn

(∆t)2
+
∆ζn

∆t

∥∥∥∥
%

∆t ≤
√
%∗

∑
0≤n≤N−2

(∥∥∥∥∆2ξn

∆t

∥∥∥∥+
∥∥∆ζn∥∥)

≡
√
%∗ (I + II) ,

and we handle these in turn. To bound I, we start with the calculation

∆2ξn

∆t
=

1

∆t

(
∆ξn+1 −∆ξn

)
=

1

∆t

[(
∆ξn+1 −∆tξn+1

t

)
−
(
∆ξn −∆tξn+1

t

)]
=

1

∆t

∫ tn+2

tn+1

(tn+2 − s)ξtt (·, s) ds+

∫ tn+1

tn

(s− tn)ξtt (·, s) ds.

In both of these integrals, we make the change variables σ = s− tn+1 to find that

∆2ξn

∆t
=

1

∆t

∫ ∆t

0

(∆t− s) ξtt (·, σ + tn+1) ds+

∫ 0

−∆t
(∆t+ s) ξtt (·, σ + tn+1) ds

=
1

∆t

∫ ∆t

−∆t
(∆t− |σ|) ξtt (·, σ + tn+1) dσ

=
1

∆t

∫ tn+2

tn

(∆t− |s− tn+1|) ξtt (·, s) ds.

Using this calculation in I lets us make the bound

N−2∑
n=0

∥∥∥∥∆2ξn

∆t

∥∥∥∥ =
N−2∑
n=0

∥∥∥∥ 1

∆t

∫ tn+2

tn

(∆t− |s− tn+1|) ξtt (·, s) ds
∥∥∥∥

≤
N−2∑
n=0

1

∆t

∫ tn+2

tn

‖(∆t− |s− tn+1|) ξtt (·, s)‖ ds

≤
N−2∑
n=0

∫ tn+2

tn

‖ξtt (·, s)‖ ds

≤ 2

∫ T

0

‖ξtt (·, s)‖ ds

≤ 2C1h
m
∫ T

0

|ptt (·, s)|m ds.
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Now, we turn to II:

II =
N−2∑
n=0

∥∥∆ζn∥∥ =
N−2∑
n=0

∥∥∥∥∫ tn+1

tn

ζt (·, s) ds
∥∥∥∥ .

Differentiating (63), we find that

ζt(·, s) =
∆pt (·, s)

∆t
− ptt (·, s) =

1

∆t

∫ s+∆t

s
(s+∆t− τ) pttt (·, τ) dτ.

We insert this into II and make the bounds

N−2∑
n=0

∥∥∆ζn∥∥ =
N−2∑
n=0

∥∥∥∥∥
∫ tn+1

tn

1

∆t

(∫ s+∆t

s
(s+∆t− τ) pttt (·, τ) dτ

)
ds

∥∥∥∥∥
≤
N−2∑
n=0

∫ tn+1

tn

1

∆t

(∫ s+∆t

s
(s+∆t− τ) ‖pttt (·, τ)‖ dτ

)
ds

≤
N−2∑
n=0

∫ tn+1

tn

(∫ s+∆t

s

‖pttt (·, τ)‖ dτ

)
ds.

To proceed, we will interchange the order of integration. However, the limits of

integration on the inner integral depend on one of the variables, and this requires

writing the new inner integral with two separate integrals. We have

N−2∑
n=0

∥∥∆ζn∥∥ ≤ N−2∑
n=0

(∫ tn+1

tn

(∫ s

tn

‖pttt (·, τ)‖ ds
)
dτ +

∫ tn+2

tn+1

(∫ tn+1

s−∆t
‖pttt (·, τ)‖ ds

)
dτ

)

=
N−2∑
n=0

(∫ tn+1

tn

(s− tn) ‖pttt (·, τ)‖% dτ +

∫ tn+2

tn+1

(tn+2 − s) ‖pttt (·, τ)‖% dτ

)

≤ 2∆t

∫ T

0

‖pttt(·, τ)‖dτ.

Combining these estimates gives that

N−2∑
n=0

∥∥∥∥∆2ξn

(∆t)2
+
∆ζn

∆t

∥∥∥∥
%

∆t ≤ 2C1h
m
√
%∗
∫ T

0

|ptt (·, s)|m ds

+ 2∆t
√
%∗
∫ T

0

‖pttt (·, s)‖ ds.

(74)

Similar techniques allow us to write

N−2∑
n=0

∥∥∥∥∆2ηn

(∆t)2
+
∆ψn

∆t

∥∥∥∥
κ−1

∆t ≤ 2C2h
m

√
κ∗

∫ T

0

|utt (·, s)|m ds

+
2∆t√
κ∗

∫ T

0

‖uttt(·, s)‖ds.

(75)
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This result allows us to give optimal-order estimates for the difference between

the computed difference quotients and the true derivatives at each time step. We

define

Ξn =

∥∥∥∥(∆pnh∆t
− pnt ,

∆unh
∆t
− unt

)∥∥∥∥
E
, (76)

and have the following optimal-order estimate.

Theorem 11 If the assumptions of Lemma 7 hold, we have the estimate

max
0≤n≤N−1

Ξn ≤hm
[
C1

√
%∗

2
sup

0≤s≤T
|pt (·, s)|m +

C2√
2κ∗

sup
0≤s≤T

|ut (·, s)|m

]

+∆t

[√
%∗

2
sup

0≤s≤T
‖ptt (·, s)‖+

1√
2κ∗

sup
0≤s≤T

‖ptt (·, s)‖

]

+ max
0≤n≤N−1

βn.

(77)

Proof With the help of the triangle inequality, we write

max
0≤n≤N−1

Ξn ≤ max
0≤n≤N−1

∥∥(ζn, ψn)
∥∥
E + max

0≤n≤N−1

∥∥∥∥(∆ξn∆t
,
∆ηn

∆t

)∥∥∥∥
E

+ max
0≤n≤N−1

βn.

The first of these terms satisfies

max
0≤n≤N−1

∥∥(ζn, ψn)
∥∥
E ≤

√
%∗

2
max

0≤n≤N−1

∥∥ζn∥∥+
1√
2κ∗

max
0≤n≤N−1

∥∥ψn∥∥ .
We bound the ζn term by

max
0≤n≤N−1

∥∥ζn∥∥ ≤ 1

∆t
max

0≤n≤N−1

∥∥∆pn −∆tpnt ∥∥
=

1

∆t
max

0≤n≤N−1

∥∥∥∥∫ tn+1

tn

(s− tn) ptt (·, s) ds
∥∥∥∥

≤ ∆t sup
0≤s≤T

‖ptt (·, s)‖ .

Similarly, we have

max
0≤n≤N−1

∥∥ψn∥∥ ≤ ∆t sup
0≤s≤T

‖utt (·, s)‖ .
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We also have that

max
0≤n≤N−1

∥∥∥∥(∆ξn∆t
,
∆ηn

∆t

)∥∥∥∥
E
≤
√
%∗

2
max

0≤n≤N−1

∥∥∥∥∆ξn∆t

∥∥∥∥+
1√
2κ∗

max
0≤n≤N−1

∥∥∥∥∆ηn∆t

∥∥∥∥ .
The first term here satisfies

max
0≤n≤N−1

∥∥∥∥∆ξn∆t

∥∥∥∥ =
1

∆t
max

0≤n≤N−1

∥∥∥∥∫ tn+1

tn

ξt (·, s) ds
∥∥∥∥

≤ C1h
m sup

0≤s≤T
|pt (·, s)|m ,

and by the same argument,

max
0≤n≤N−1

∥∥∥∥∆ηn∆t

∥∥∥∥ ≤ C2h
m sup

0≤s≤T
|ut (·, s)|m .

We collect these estimates to finish the proof.

We also have optimal-order estimates for the divergence.

Theorem 12 If the assumptions of Lemma 7 hold and additionally ∇·u ∈ L∞ (0, T ;Hm (Ω)),

then for 0 ≤ m ≤ r + 1 we have the error estimate

max
0≤n≤N−1

∥∥∇ · (un − unh)
∥∥ ≤C1h

m

[
sup

0≤s≤T
|∇ · u (·, s)|m + %∗ sup

0≤s≤T
|pt (·, s)|m

]

+ %∗∆t sup
0≤s≤T

‖ptt (·, s)‖m +
√

2%∗ max
0≤n≤N−1

βn.

(78)

Proof We start by writing

max
0≤n≤N−1

∥∥∇ · (un − unh)
∥∥ ≤ max

0≤n≤N−1

∥∥∇ · ηn∥∥+ max
0≤n≤N−1

∥∥∇ · χnh∥∥ .
The first term is purely approximation-theoretic, and (10) gives

max
0≤n≤N−1

∥∥∇ · ηn∥∥ ≤ C1h
m sup

0≤s≤T
|∇ · u (·, s)|m .

We bound the second term by relating it back to our estimate for βn. Much like

the estimate for ‖∇ · unh‖ in (61), we can use the error equations (65) to find

∥∥∇ · χnh∥∥ ≤ %∗ ∥∥∥∥∆ξn∆t
+ ζn

∥∥∥∥+
√

2%∗βn.

Using standard techniques completes the proof.



36 Robert C. Kirby, Thinh Tri Kieu

5 Other time discretizations

Here, we briefly comment on a few other possible time discretizations with inter-

esting conservation properties. The Crank-Nicholson method, assuming no forcing

terms, satisfies (
%
∆pnh
∆t

,wh

)
+

(
∇ ·

(
un+1
h + unh

2

)
, wh

)
= 0,

(
κ−1∆u

n
h

∆t
, vh

)
−

(
pn+1
h + pnh

2
,∇ · vh

)
= 0.

(79)

If we select wh =
pnh+pn+1

h
2 and vh =

un
h+un+1

h
2 and add these equations the terms

with spatial derivatives cancel, giving

∥∥∥(pn+1
h , un+1

h )
∥∥∥
E

=
∥∥(pnh, u

n
h)
∥∥
E (80)

for each time step – exact energy conservation. However, this comes at the cost

of a more complicated linear system for each time step. While forward and sym-

plectic Euler involve only inverting mass matrices, we now have a skew symmetric

perturbation of the mass matrices, for the system matrix will have the form M% ∆tD

−∆tDT M̃κ−1

 . (81)

The complication of the skew pertubation could be offset by a larger allowable time

step and exact conservation provided an effective preconditioner were available,

but this is a subject of further investigation.

In fact, the Crank-Nicholson method can be seen as the lowest-order instance

of a family of continuous Galerkin methods in the time variable. Logg [19] shows

that this entire family of methods is exactly conservative for Hamiltonian systems

and develops methods with variable time stepping for individual components. Like
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Crank-Nicholson, these methods are all implicit. On the other hand, we can also

consider higher-order explicit methods, such as the Störmer-Verlet method [8],

which is second-order accurate and preserves a perturbation of the system energy

which is quadratic rather than linear in ∆t. For brevity, we will present the method

and discuss the energy conservation in the constant coefficient case of % = κ = 1.

The Störmer-Verlet method comes from combining the two variants of sym-

plectic Euler in an appropriate way. First, we take a half-time step of symplectic

Euler with the p variable explicit and the u variable implicitp
n+ 1

2

h − pnh
∆t
2

, wh

+ (∇ · unh, w) = (fn, wh) ,

u
n+ 1

2

h − unh
∆t
2

, vh

− (pn+ 1
2

h ,∇ · vh
)

=
(
gn+

1
2 , vh

)
.

Then, we advance from time level n+ 1
2 to n+ 1 with p implicit and u explicit:un+1

h − un+
1
2

h
∆t
2

, vh

− (pn+ 1
2

h ,∇ · vh
)

=
(
gn+

1
2 , vh

)
,

pn+1
h − pn+

1
2

h
∆t
2

, wh

+
(
∇ · un+1

h , wh

)
=
(
fn+1, wh

)
.

The two equations for u in these half-steps are readily combined to give the overall

method p
n+ 1

2

h − pnh
∆t
2

, wh

+ (∇ · unh, wh) = (fn, wh) ,

(
un+1
h − unh
∆t

, vh

)
−
(
p
n+ 1

2

h ,∇ · vh
)

=
(
gn+

1
2 , vh

)
,pn+1

h − pn+
1
2

h
∆t
2

, rh

+
(
∇ · un+1

h , rh

)
=
(
fn+1, rh

)
,

(82)

where we have renamed the test function in the last equation to emphasize its

independence from the test function in the first.
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A further simplification reducing the amount of computation is obtained by

combining the first and third equations into a single rule advancing p between half

time steps, but it is easier to analyze the conservation properties of the present

form. To do so, we assume that the forcing terms f and g both vanish and select

wh =
pnh + p

n+ 1
2

h

4

vh =
unh + un+1

h

2

rh =
p
n+ 1

2

h + pn+1
h

4

and add the three equations together to find that

1

2∆t

(∥∥∥pn+1
h

∥∥∥2 − ∥∥pnh∥∥2)+
1

2∆t

(∥∥∥un+1
h

∥∥∥2 − ∥∥unh∥∥2)+

∇ · unh, pn+ 1
2

h + pnh
4


−

(
p
n+ 1

2

h ,∇ ·

(
un+1
h + unh

2

))
+

∇ · un+1
h ,

pn+1
h + p

n+ 1
2

h

4

 = 0.

(83)

We can rewrite the last three terms on the left-hand side as

1

4

(
∇ · un+1

h , pn+1
h − pn+

1
2

h

)
− 1

4

(
∇ · unh, p

n+ 1
2

h − pnn
)

so that, multiplying (83) through by ∆t, we have

1

2

(∥∥∥pn+1
h

∥∥∥2 − ∥∥pnh∥∥2)+
1

2

(∥∥∥un+1
h

∥∥∥2 − ∥∥unh∥∥2)

+
∆t2

8

∇ · un+1
h ,

pn+1
h − pn+

1
2

h
∆t
2

− ∆t2

8

∇ · unh, pn+ 1
2

h − pnn
∆t
2

 = 0.

(84)

This does not quite have the form of some ã2n+1 − ã2n = 0, but if we pick test

functions wh = ∇ · unh, vh =
un
h+un+1

h
2 , and rh = ∇ · un+1

h in the first and third

equations of (82), again assuming zero forcing terms, we find that

1

2

(∥∥∥pn+1
h

∥∥∥2 − ∥∥pnh∥∥2)+
1

2

(∥∥∥un+1
h

∥∥∥2 − ∥∥unh∥∥2)−∆t28

∥∥∥∇ · un+1
h

∥∥∥2+
∆t2

8

∥∥∇ · unh∥∥2 = 0,

(85)
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so that if we define an = 1
2

(
‖pnh‖

2 + ‖unh‖
2
)
− ∆t2

8 ‖∇ · u
n
h‖, we see that

an+1 = an

for each time step. Moreover, use of the inverse assumption gives an equivalence of

the conserved quantity to the actual energy under a reasonable (i.e. ∆t = O (h))

assumption. The rest of the analysis will proceed just as for symplectic Euler, but

with second-order error estimates in time.

6 Numerical results

In this section, we give some simple numerical results illustrating the convergence

theory. We consider the constant coefficient wave equation on the unit square in

two dimensions, both equipped with homogeneous Dirichlet boundary conditions.

Since we only analyze a first order time discretization, we consider the lowest order

mixed method. We used FEniCS [20] to perform our numerical simulations.

In two dimensions, the function

p(x, y, t) = cos
(√

2πt
)

sin (πx) sin (πy)

exactly solves the second-order wave equation. We picked initial conditions p(x, y, 0)

consistent with this and initial velocity of zero. The corresponding velocity solution

u(x, y, t) is then obtained by antidifferentiating −∇p.

We divided the unit square into an N×N mesh of squares, each then subdivided

into two right triangles using the UnitSquareMesh class in FEniCS. For each mesh,

we solved the wave equation numerically until final time T = 1
2 . At this time,

we measured the L2 errors ‖p− ph‖, ‖u− uh‖, and ‖∇ · (u− uh)‖. Additionally,

since energy conservation is an important motivation for using a symplectic time
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N ‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖ maxn
|a2

n−a2
0|

a2
0

16 2.63E-02 2.27E-02 1.18E-01 4.12E-02

32 1.31E-02 1.13E-02 5.84E-02 2.05E-02

64 6.50E-03 5.64E-03 2.91E-02 1.03E-02

128 3.24E-03 2.82E-03 1.45E-02 5.18E-03

256 1.62E-03 1.41E-03 7.24E-03 2.60E-03

512 8.08E-04 7.05E-04 3.62E-03 1.30E-03

integrator, we measured the maximum relative deviation from the initial energy

in the system. That is, we computed the initial (exact) energy from the initial

condition by

a20 =
1

2

∥∥∥p0h∥∥∥2 +
1

2

∥∥∥u0h∥∥∥2 ,
and then the energy at each time level

a2n =
1

2

∥∥pnh∥∥2 +
1

2

∥∥unh∥∥2 .
At each time level, we measured ∣∣a2n − a20∣∣

a20
,

and we report the maximum of this over all time steps for each mesh.

7 Conclusion and future directions

We have developed a method for the acoustic wave equation that preserves the es-

sential structures of the spatial and temporal discretization. In addition to optimal

estimates in the typical L∞(L2)-based norms, our bootstrap techniques enable op-

timal estimates in stronger norms, as well. These results leave open many questions

for further study.
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Linear-algebraic questions related to handling the mass matrices for explicit

methods (whether the symplectic Euler or high-order methods) and matrices

like (81) for implicit ones will need to be addressed. On rectangular meshes, di-

agonalizing quadrature [14,15,26] would lead to explicit time-marching schemes

at the cost of an additional perturbation to the conserved energy functional and

restriction to highly structured geometry. In the low-order case, it may be possible

to handle general quadrilaterals by the techniques in [27]. For simplicial meshes,

Jenkins [16] reports that Vh mass matrices are easily handled by conjugate gradient

algorithms.

Additionally, we need to study the applicability of our methodology to other

kinds of equations. An application to curl-curl wave equations with edge elements

should be straightforward, and current research is focused on mixed formulations

of the Klein-Gordon equation. Finally, extension of the formulation and analysis

beyond basic reflecting boundary conditions remains an open question of interest.
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