BLOCK PRECONDITIONERS FOR COUPLED PHYSICS
PROBLEMS*

VICTORIA E. HOWLEf, ROBERT C. KIRBY?, AND GEOFFREY DILLONS

Abstract. Finite element discretizations of multiphysics problems frequently give rise to block-
structured linear algebra problems that require effective preconditioners. We build two classes of
preconditioners in the spirit of well-known block factorizations [21, 16] and apply these to the diffusive
portion of the bidomain equations and the Bénard convection problem. An abstract generalized
eigenvalue problem allows us to give application-specific bounds for the real parts of eigenvalues for
these two problems. This analysis is accompanied by numerical calculations with several interesting
features. One of our preconditioners for the bidomain equations converges in five iterations for a range
of problem sizes. For Bénard convection, we observe mesh-independent convergence with reasonable
robustness with respect to physical parameters, and offer some preliminary parallel scaling results
on a multicore processor via MPI.

1. Introduction. Numerical discretization of systems of partial differential
equations leads to challenging matrix equations with natural block structure. Iterative
methods for such problems require effective preconditioners, which frequently make
use of this block structure. Much of the early work on block preconditioners, such
as that of Benzi, Golub, and Liesen [2], Elman and Silvester [5], and Elman, Howle,
Shadid, Shuttleworth, and Tuminaro [6] focused on the Navier-Stokes equations. Our
interest is in extending such methodology to other coupled systems such as the bido-
main equations and Bénard convection. The bidomain equations are described in
Keener and Sneyd [18]. Examples of solver methodology for the bidomain equations
include the work of Mardal, Nielsen, Cai, and Tveito [20]. The Bénard convection
problem and current solution methods are described in Carey and Oden [4], Ferziger
and Peri¢ [8], and Gresho and Sani [11].

All of the problems we consider give rise to a linear system of the general block

form
A B ur| bl
With this block structure, we consider certain natural block preconditioners. A
major advantage of algebraic approaches is that they are relatively simple to adapt
to different kinds of problems. By considering two quite different problems, we give
some idea of our methods’ flexibility and also show how to adapt existing solvers for

use in coupled problems.
For one, we consider a block diagonal (i.e., Jacobi) preconditioner

A 0
o[t Y] 0
and block tridiagonal (i.e., Gauss-Seidel),
A B
oo [ ] as
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For symmetric problems, a blockwise symmetric Gauss-Seidel such as

po.._|A B][A 0] [a B]"
565~ 10 p||o D] |0 D
is also possible, but we do not consider such a preconditioner in this work.
The block Jacobi and block Gauss-Seidel preconditioners may be viewed as cases

of the preconditioners of Ipsen [16] that generalize the result of Murphy, Golub, and
Wathen [21],

A 0 A B
P—{O —S]’ and P—{O 5}7

where § is the Schur complement S = D — CA~!'B. While Murphy, Golub, and Wa-
then assume that D = 0, Ipsen handles D # 0, which is required in our applications.
The results in [16, 21] utilize S to provide a best-case result regarding eigenvalue
bounds, but practical considerations require approximating S with something sim-
pler. The preconditioners we consider amount to D = S. This was heuristically
motivated by PDE theory in our previous work [14], and in this paper we obtain some
application-specific eigenvalue bounds.

In particular, we consider the bidomain equations and Bénard convection problem,
both leading to the general block structure of (1.1), but with different assumptions
on the specific form of the subblocks A, B, C, and D. The bidomain equations, which
model electrical activity in the heart, have that A and D are both symmetric and
positive-definite, B = C, and B and C are both symmetric. We should point out
that the bidomain equations do not quite fall into the standard category of saddle-
point systems. Mardal, Nielsen, Cai, and Tveito [20] give theoretical and numerical
results for both Jacobi and symmetric Gauss-Seidel preconditioners for this problem.
For this problem, we focus on the nonsymmetric Gauss-Seidel preconditioner, which
in our current numerical experiments converges in five iterations and has a provably
better eigenvalue estimate than for block Jacobi.

We also consider the Bénard convection problem in which the Navier-Stokes equa-
tions are coupled to a scalar convection-diffusion problem. This system lacks the
off-diagonal symmetry since we do not have C' = B”, nor do we have the symmetry
of the diagonal blocks. This considerably complicates the analysis. We have given a
heuristic justification of the block triangular preconditioner (1.3) for this problem in
our previous work [14], where numerical results indicate it may be quite effective.

The differing assumptions on the form of the subblocks play a role in the analysis
of the preconditioner, but they do not effect the form of the preconditioner itself. We
view it as a feature of the algebraic approach that the preconditioner can be applied
successfully to two such different applications.

The rest of this paper is organized as follows. We present more details of the
bidomain problem and the Bénard convection problem and their finite element dis-
cretizations in Section 2. Then, we present eigenvalue analyses for the block Jacobi
and block Gauss-Seidel preconditioners in Section 3, where we also relate these bounds
to analytic properties of the problems and also compare to known results. Finally, we
provide numerical results for our preconditioners in Section 4.

2. Target applications. In this section, we describe the two target applications,
the bidomain equations and Bénard convection, in more detail.
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2.1. The bidomain equations. The bidomain system consists of a reaction-
diffusion system of partial differential equations coupled to the well-known Fitzhugh—
Nagumo equation. We assume that the reaction portion of the system (which has the
interesting physics) is split off from the diffusion portion (which is the most expensive
to calculate). Therefore we focus on the diffusion equations and effective precondition-
ers for the linear system arising from discretization using the finite element method
in the spatial dimensions and the backward Euler method in time.

We are interested in computing the extracellular potential u, and the transmem-
brane potential v = u; — u. where u; is the intracellular potential. There are two
formulations of the problem, one for computing the pair (u;, u.) and one for (u.,v).
Like other authors ([20, 23]), we shall concentrate on the latter formulation since
our methods perform substantially better on this formulation. Cardiac fibers are
anisotropic by nature, a fact accounted for in the model by the conductivity tensors
M;(x) and M. (x):

My(x) = o1 + (oF — o)a(x)a(x)?, s=i,e
where a(x) is the unit vector tangent to fiber at x €  C R?, I is the identity ten-

sor, and o7, 07 are conductivity constants (intracellular and extracellular) along and
across fibers.

The (ue,v) formulation of the problem is to find v(x,t), ue(x,t),x € Q,t € [0,T)
such that:

em O — divM; Vo + Loy, = divM;Vue + Lopp, in Q x [0,7],
—divMVu, = divM; Vv, in Q x [0,7],
nT M;Vv =0, n’ MVu, =0, onT x [0,T],

v(x,0) =0, in Q.

Here, I,p) is the current applied to begin the cardiac excitation process, I, is a cubic
polynomial of v, and ¢,, is the surface capacity of the membrane. Assuming that the
reaction and diffusion portions of the system are separated by operator splitting, the
computationally dominant step is solving the coupled diffusion system whose weak
form is given by

(™" w;) + (M; Vo™, Vuw;) + At (M; Vue, Vw;) = (g1, w;)
(MVue, Vwe) + (M; Vo™, Vw,) = (g2, we) (2.1)
where w; and w, are test functions, M = M; + M., and (-, -) represents the traditional

L? inner product. Discretization leads to a positive semidefinite system matrix of the
form

where M is given by

M= [ oo, do
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and K by
K= /(vqsi)TMswj dx
Terhn /T

for s = i,e, and where T}, is a triangulation of © (see [3]). Consequently, for this
system, the subblocks in our general block matrix (1.1) are

1

A=K+ 2

T A

B=C=K,
D=K,+K,

where A and D symmetric, with A positive definite and D semidefinite and B, C are
symmetric. When we use D™!, we refer to solution modulo the single-dimensional
null space. In practice, we have added a slight regularization term to D to avoid the
numerical intricacies of handling the null space.

2.2. Bénard convection. The Bénard convection problem consists of the
incompressible Navier—Stokes equations coupled to a temperature convection-diffusion
equation. The incompressible Navier—Stokes equations are given by:

—vAu+u-Vu+Vp=f
V-u=0,

where u and p are the fluid velocity and pressure and v is the fluid viscosity. They are
posed on some domain Q C R? for d = 2,3 and equipped with appropriate boundary
conditions.

Coupling these equations to a temperature convection-diffusion equation, we get
the Bénard convection equations:

—Au—}—u-Vu—ﬁ—Vp:—]]j—ZgT

V-u=0 (2.2)
1
S AT 4u-VT =
Pr tu 0,

again posed on some domain 2 along with boundary conditions. The fluid velocity
and pressure are again u and p, and the temperature is T. The Rayleigh number
Ra measures the ratio of energy from buoyant forces to viscous dissipation and heat
conduction, the Prandtl number Pr measures the ratio of viscosity to heat conduction,
and g denotes a unit vector along the axis in which gravity acts. This model employs
the Boussinesq approximation, in which temperature-dependent density variations
are assumed to affect the momentum balance only through a buoyant force. For
more information, including the non-dimensionalization used in (2.2), see [4, 8, 11].
We refer to the treatment of Carey and Oden [4] for more details. Note that, in
this nondimensionalization, the effective Reynolds number is one, but large Rayleigh
numbers can still lead to high fluid velocities.

We consider stabilized equal-order P! — P! discretizations of the fluid equa-
tions [15], and P! approximation of the temperature. We choose P! — P! because
it has fewer degrees of freedom per cell for the velocity. There are 10 x 3 velocity
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degrees of freedom per cell for quadratics, but only 4 x 3 for linears. Hence, P! — P!
is cheaper than Taylor-Hood. We let V}, be the vector-valued P! velocity space and
W), the scalar-valued P! pressure space. The stabilized thermal convection problem
admits the weak form

Ra
Pr
(V . uh,wh) + ﬁhQ (th, Vph) =0
1
Pr
where vy, 4 means the component of v, in the direction of gravity. Here, the term
Bh? (Vwy, Vpy,) is the stabilization term, where 3 is a stabilization parameter and h
is the cell diameter.

Our numerical simulations will use a more complicated weak form based on
Nitsche boundary conditions [1, 9, 22|, in which the boundary conditions are imposed
weakly via extra terms in the bilinear form rather than by extra constraint equations.
Standard row-replacement Dirichlet boundary conditions disturb the block structure,
while Nitsche boundary conditions leave the block structure intact and render self-
adjoint bilinear forms as symmetric matrices.

For simplicity of exposition, however, we use standard Dirichlet boundary condi-
tions in this paper, although the formulation naturally carries over to Nitsche-type
conditions.

We consider a Newton-type linearization for the nonlinear system of equations.
We linearize at the level of the weak form, leading to a linear variational problem for
the Newton step. The weak form of the Jacobian is:

(Vuh, V’Uh> + (uh . Vuh,vh) — (ph, V- Uh) = (Th,Uh,g)

(VTh, V?“h) + (uh . VTh,T'h) =0,

(Vuyp, Vo) + (u(,)l . Vuh,vh) + (uh . Vu?”vh) — (pn, V- vp) = @

Pr (Thvvh,g)
(V . uh,wh) + ﬂhQ (th, Vph) =0
1

o (YT, Vry) + (up - VT, ) + (un - VIR, ) = 0,

for Bénard convection, where T} and uf) are the temperature and velocity about which
the system is linearized.

For the Navier—Stokes problem, this linearization and discretization gives rise to
the following linear system for a single Newton step:

F BT
w A (2.3)
-B R||p f2
where B and BT are rectangular matrices corresponding to discrete divergence and
gradient operators, F' operates on the discrete velocity space, and R corresponds to
the stabilization term.

The linear system for a Newton step for the stabilized convection problem takes
the form

F B M| [u f1
-B R 0 p| = |f
My, o K||T| |%

The matrices F', B, and R are the same as in linearized Navier—Stokes. The matrix
M arises from the term (%T, vg), where g is the Cartesian direction in which gravity
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acts (y in 2d, z in 3d). In 2d, if the velocity variables in each direction are segregated,
this has the form of M} = (0, M), where M is a rectangular mass matrix with rows
corresponding to the P? basis functions and columns to P'. The matrix M, arises
from the Jacobian term (u-VTp, ), where Ty is the temperature in the current Newton
iterate. The matrix K comes from 5-(VT,Vr) + (ug - VT,r), so is a standard linear
convection-diffusion operator. In the simulations in this paper, the fluid velocity has
not become large enough to require additional stabilization of this term, although it
would not complicate the block structure if such terms were included.

If we group together the velocity and pressure vectors into a single vector x, the
convection system becomes

N Ml x| |9
M, K||[T| |fs]’
— M, — . .
where M, = 0| My = [M>,0], and N represents the Navier-Stokes system in
(2.3).

3. Analysis. In this section, we first set up generalized eigenvalue problems for
the block diagonal and block triangular preconditioners without any specific assump-
tions about the subblocks in the general linear system. We then specialize the results
to the specific cases represented in the bidomain equations and the Bénard convec-
tion problem. We include a graphical illustration of the preconditioner clustering the
eigenvalues away from zero in each case.

3.1. Generalized Eigenvalue Problems. We now analyze the generalized
eigenvalue problems for two types of block preconditioners: block diagonal (1.2) and
block triangular (1.3).

The generalized eigenvalue problem for the block diagonal preconditioner is:

o o 1= 5]l

Az 4+ By = Mz
Cz + Dy = A\Dy.

which translates to
(3.1)

If A =1, we need = € the nullspace of B and y € the nullspace of C. Otherwise, if
A # 1, solving for x we get x = ﬁA‘lBy, which when plugged into (3.1) gives us

CA™'By = (\—1)*Dy. (3.2)

We also note that when the block diagonal preconditioner is applied to the generic
system matrix, we get

(3.3)

-1
a2,

CA~! I

The generalized eigenvalue problem for the block triangular preconditioner is:

R
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which translates to
Ax 4+ By = Mx + ABy
Cz + Dy = ADy
yielding an equation of the form
CA™'By = (1 - \)Dy. (3.4)
Applying the block triangular preconditioner to A, we get:

1 0

-1 _
AP =lo4-1 1 _ca1pDp-1|>

(3.5)

which means the eigenvalues of AP}1 are 1 and 1 — A\, where X represents the eigen-
values of CA='BD~1!.

It is worth noting that both generalized eigenvalue problems are of the form
CA™'By = uDy,

where ;1 = (A — 1)? in the block diagonal case or ;4 = 1 — X in the block triangular
case.

3.2. Application-specific Eigenvalue Bounds. In the next sections we spe-
cialize our generic eigenvalue bounds for the bidomain equations and the Bénard
convection problem.

3.2.1. Bidomain equations. Mardal et al. [20, p. 90] obtain the following
general result for the block diagonal preconditioner and apply it to the bidomain
system:

THEOREM 3.1. Under the assumptions that C = BT and that 3o € (0,1) such
that

2|(Bv,u)| < a(Au,u) + (Dv,v)) Yo, u € R¥, (3.6)

we have that:

1+ a

K(APD) S I—a
where k denotes the ratio of the maximum real parts of the eigenvalues of a given
matriz to the minimum real parts of the eigenvalues.

The assumption (3.6) is proved for the bidomain equations in [20] on pages 92-
93. With this assumption, we can show a stronger result for the block triangular
preconditioner.

THEOREM 3.2. Under the same assumptions as above, we have that

l1+a 1-%
AP < . 2
i T)_l—a 1+3

Proof. The technique here is similar to that in Mardal et al. [20]. We need to find
constants ¢y and ¢ such that

co((Au,u) + (Bv,u) + (Dv,v)) < (Au,u) + 2(Bv,u) + (Dv,v)

<
< c1((Au,u) + (Bo,u) + (Dv,v)).
7



To begin, write

uTAu+ uwTBv+ 0" Do =uT Au + 2u” Bv + v" Dv — u” B
=uT Au + 2u” Bv +v" Dv — zu” Bv — (1 — z)u” Bv

for some x € (0,1). Then, by using assumption (3.6) we get that

uT Au+ 4T Bv + v Dv > uT Au + 2u” Bv + o7 Do

- [%(uTAu +vTDv) + (1 - x)uTBv]

= (’LLTAU + 2UTB'U + ’UTDU) (1 — 2(0[03»1))
+1

8

= (u” Au 4 2u” Bv + v Do) 2
a+1

a+1
e

% and since generically

Similarly we get that co = =%
2

and so we have ¢; =

the result follows. O

Next we examine graphically the eigenvalues clustering from the preconditioner.
In figure 3.1 we show eigenvalues from the unpreconditioned system (blue x’s) and
generalized eigenvalues from the preconditioned system (red circles). The domain
is the unit square divided into an N x N grid, with N = 16 and N = 32; each
square is subdivided into two right triangles. The conductivity constants used are
of =25x 1073, 0f = 1.25 x 1073, of = 2.0 x 1073, 0! = 4.16 x 10~%, and the
timestep is 7 = 4.0 x 1072, These values are taken from [23]. Figure 3.2 shows just
the preconditioned eigenvalues for the same problems and preconditioners.

In Figures 3.1 and 3.2 the left two subfigures show eigenvalues for the system with
the diagonal preconditioner for N = 16 and N = 32. The two subfigures on the right
show eigenvalues for the system with the triangular preconditioner for N = 16 and
N = 32. The eigenvalues and generalized eigenvalues were obtained using MATLAB’s
eig function.



N=186, diagonal preconditioner N=18, triangular preconditioner
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F1G. 3.1. The left subfigures show eigenvalues for the system with the diagonal preconditioner
for N =16 and N = 32. The two right subfigures show eigenvalues for the system with the triangular
preconditioner for N = 16 and N = 32. Unpreconditioned eigenvalues are shown as blue z’s and
generalized eigenvalues from the preconditioned system are shown as red circles.

Both preconditioners move the eigenvalues away from zero, but we can see that
the triangular preconditioner clusters the eigenvalues somewhat better.

3.2.2. Bénard convection. We shall now estimate the size of the real parts of
the eigenvalues of the problems (3.2) and (3.4) for the Bénard convection problem.
We define X}, =V}, x W}, to be the product of the velocity and pressure/temperature
spaces. The Jacobian operator of the equations can be written abstractly as

A B
C D
where A: Xp, = X;, B: W, = X;,C: X, = W/, and D: W}, — W} are given by

(A (un,pn) s (vh,wr)) = (Vun, Vo) + (u) - Vg, vn) = (P, V - 0n)
+ (v *Up, wh) + ﬂhz (vwha Vph)
Ra

(BT, (vp,wy)) = — B (Th,vn,g)

1
(C (un,pn),rn) =P (up - VTR, 1)

1
(DT, rn) =P (VTh, Vry) + (uj - VTh,7p)

The matrices A, B, C, D forming the blocks of the system matrix correspond to choos-
ing test and trial functions as bases for the various finite element spaces. We will use
the correspondence between the matrices and variational forms to establish eigenvalue
bounds.

In order to prove our estimates we will need two lemmas.
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N=186, diagonal preconditioner N=186, triangular preconditioner
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N=32, diagonal preconditioner N=32, triangular preconditioner
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Fic. 3.2. The left subfigures show eigenvalues for the system with the diagonal preconditioner
for N =16 and N = 32. The two right subfigures on the right show eigenvalues for the system with
the triangular preconditioner for N = 16 and N = 32.

LEMMA 3.3. Let D represent the (2,2) block of the Bénard convection problem
and assume that V -ug = 0. Let {¢:}22"" be a basis for Wy, y € RIMWn pe

arbitrary, and rj, = Z?:f Wh i Then

1

T 2
Dy=— .

y Dy = 5_lIrall,

Proof. We have that

1
yTDy = (Drp,rp) = iz (Vrn, Vrp) + (uo - Ve, ).

P
However if V - ug = 0 the bilinear form (ug - VIy,rn) = —(ug - Vrp, Th) is skew
symmetric, so (ug - Vrp,ry) = 0 and the result follows. O

This next lemma gives us a bound on the real parts of the eigenvalues of y from
(3.1).

LEMMA 3.4. Fory and rp, as in the previous Lemma, we have

4+ Ra

Ty g1 < fia
y"CAT Byl < (Cr)'

VT | - ly" Dyl

where Cp represents the constant from Poincaré’s inequality, ||VT2|| is the usual
infinity norm.
Proof. We first need estimates for the B and C blocks. From the B block of (2.2)
10



we have that

Ra
(B, o on) | < g
Ra 9
< Pr (Cp)" llvnllw, lrellw,
Ra

< o (Ce)* (lenlhy, + lwnlz2) 7,

and so ”B”L(Wh,x,g) < B2(Cp)2. From the C block of (2.2) we get

< |lvn - VI3 12 |Irallz2
< (Cp)*IVTH o lonllw, lIrallw,
< (CpIIVTH s (lvallw, + llwallzz) [Irallw,

| (C(vn, wn),Tn) |

which means ||CH['(Xh,7W;IL) < (Cp)?||VTE|s- We now exploit with the following

relationship:
y"CA™'By = (r;,,CA ' Bry,)
and break up the latter term as follows:

(rns CA'Bri) < [[CA™B] oy, awr) Il

— 2
< ”C”E(Xh,,W,Q ‘A 1Hc(xg,xh) ||B||L(Wh,X,’L) ||7“h||wh,

—1 2
|-A HE(X;/L,Xh,) ||B||£(Wh,Xh/) ||77t||W;1

|A_1HL‘(X;L,X;L) ||B||£(Wth:1) yTDy

< NCH 2 x, w7

= ||C||.c(xh,W;L)
by the previous lemma and the result follows. O

These two lemmas give bounds on |R(u)|, where u is a generalized eigenvalue of
(3.3), and we will use them to obtain bounds for the preconditioned systems later.

THEOREM 3.5. The real parts of the eigenvalues of the Bénard convection system
with a block diagonal preconditioner are given by

R
RO < 1+ (Cp)? J o 19T e 1A ey -

The [|A™Y|z(x/,x) term will have a mesh independent bound that depends on
|[uol| rp amongst others. For details see [15].

Proof.

By equation (3.2) and the previous lemma, we have

4Ra

(A=1)%< (Cp) Pr

VT o 1A 2y 0

and so

Ra
RN <1+ (CP)Q\/PT HVT(?HOO HA_lH[Z(X}’L,Xh)'
11



The eigenvalues of the preconditioned system (3.5) have the following bound:
THEOREM 3.6. The eigenvalues of CA*BD~! for the Bénard convection prob-
lem are bounded by

4 Ra

RO < 1+ (Cp)

VT 147 1P

' ||L‘(X;L,Xh, IHE(W;/I,Wh) ’

Proof. First, note that

Al <1+ HCA‘lBD‘lHﬁ(W},L)

<1+ [Cllecxnwyy A 2o x0 1Bl 2w, x))
D~ 2wy w) -

The result follows by now applying lemma 3.4.
0

Next we examine graphically the eigenvalue clustering from the preconditioner.
The problem used here is a slight modification of the classic two-dimensional Bénard
convection problem with fluid in a box with no-slip boundary conditions for the fluid.
A unit temperature difference is imposed in the horizontal direction, and insulating
boundary conditions are applied on the remaining sides.

In Figures 3.3 and 3.4, the left two subfigures show eigenvalues for the system
with the diagonal preconditioner for N = 16 and N = 32. The two subfigures on the
right show eigenvalues for the system with the triangular preconditioner for N = 16
and N = 32. In both figures, the system has Rayleigh number 2 x 10%.

In Figure 3.3, we show eigenvalues from the unpreconditioned system (blue x’s)
and generalized eigenvalues from the preconditioned system (red circles) on two di-
mensional problems with 16 and 32 nodes. Figure 3.4 shows just the preconditioned
eigenvalues for the same problems and preconditioners. The eigenvalues and general-
ized eigenvalues were obtained using MATLAB’s eig function.

Both preconditioners cluster the eigenvalues, but we can see that the triangular
preconditioner leads to a tighter cluster, particularly in the imaginary axis. The
diagonal preconditioner gives a more skew system and the triangular preconditioner
a less skew system.

4. Numerical Results. In this section we examine results for the block Jacobi
and block Gauss-Seidel versions of the preconditioners on the bidomain equations and
on the Bénard convection problem.

For our numerical calculations, we are using the Sundance library [19], which is
part of the Trilinos framework [13], also making use of various Trilinos packages for
the linear solves that arise. For the preconditioner to be efficient, we employ iterative
methods with fairly low accuracy on the linear subsolves. This requires the use of
flexible GMRES (FGMRES) [24], for the outer iteration, which we access through the
package Belos [25].

4.1. Bidomain Results. We begin with applying the two preconditioners to
the bidomain equations. In each case, application of the preconditioner involves two
linear subsolves. For the inner subsolves, we use GMRES with an algebraic multigrid
preconditioner. We use the Trilinos package Belos [25] for GMRES with ML [10] for
the algebraic multigrid.
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N=186, diagonal preconditioner N=186, triangular preconditioner
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Fic. 3.3. The left two figures show eigenvalues for the system with the diagonal preconditioner
for N =16 and N = 32. The two figures on the right show eigenvalues for the system with the
triangular preconditioner for N = 16 and N = 32. FEigenvalues from the unpreconditioned system
are shown as blue ©’s and generalized eigenvalues from the preconditioned system are shown as red
circles.

We assume a convergence tolerance of 1 x 1078 for both the inner and outer
linear solves. The domain is the unit square divided into an N x N grid with each
square subdivided into two right triangles. The conductivity constants used are o} =
25 x 1073, of = 1.25 x 1073, o} = 2.0 x 1073, and o} = 4.16 x 107%, and the
conductivity tensors are

I[J;Jrai U;J;:l _1{Jf+ate oy —of
I’ 6_2

Mi=3loi -0t of+oi of ~ 0§ of +0f
We use a time step of At =4 x 1072 as recommended in [23].

Table 4.1 reports outer iteration counts and solve times for the block Jacobi and
block Gauss-Seidel preconditioners on a serial run. Iteration counts are given first,
with timings, in seconds, given in parentheses. These calculations are performed on a
Mac Pro desktop with dual quad-core 2.8 GHz Xeon processors with 32GB of RAM
running OSX version 10.5 and using gcc 4.4.4 installed from the MacPorts system.

We can see in Table 4.1 that the block triangular preconditioner performs quite
well, needing only five outer iterations regardless of the mesh. The dominant cost of
this one outer iteration is the pair of variable-coefficient diffusion solves to comparable
tolerance and one matrix-vector product that are required to apply the preconditioner.
The block diagonal preconditioner, on the other hand, takes more outer iterations,
but does seem to scale better on these problems in terms of timing.

4.2. Bénard Results. We consider a three-dimensional version of the coupled
fluid-convection problem. In this problem, we have fluid in a three-dimensional box
with no-slip boundary conditions for the fluid. We impose a temperature ' = 1 on
one face, T'= 0 on the opposite face, and ‘3—3; = 0 on the remaining faces. At larger

13



N=186, diagonal preconditioner N=18, triangular preconditioner
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F1G. 3.4. The left two figures show etgenvalues for the system with the diagonal preconditioner
for N = 16 and N = 32. The two figures on the right show eigenvalues for the system with the
triangular preconditioner for N = 16 and N = 32.

N Block Diagonal | Block Triangular
128 9 (2.957) 5 (1.614)
256 10 (15.95) 5 (7.622)
512 10 (76.48) 5 (37.09)
1024 10 (407.2) 5 (199.8)

TABLE 4.1

Bidomain problem comparing block diagonal and block triangular preconditioner: Number of
FGMRES iterations when the linear system is solved using the inexact block diagonal and block
triangular preconditioners. An FGMRES tolerance of 1 x 1076 was used for the outer iteration, and
GMRES with a tolerance 1 x 10~ and preconditioned with algebraic multigrid was used for the
preconditioner subsolves.

Rayleigh numbers, this creates an instability leading to overturning cells. We consider
a range of Rayleigh numbers and problem sizes, labeled “cube-i” with numbers of
vertices and tetrahedra as shown in Table 4.2.

The Bénard convection problem is a much more difficult problem than the bido-
main equations. These calculations are performed on a Dell Precision desktop with
dual 2.7 GHz eight-core Xeon processors and 128 GB of RAM running Linux Mint 13
and using gcc 4.6.3.

We applied both the block diagonal and block triangular preconditioners to this
problem. In all cases, we used a simple Newton iteration to an outer Euclidean
tolerance of 1076 and preconditioned flexible GMRES with Euclidean tolerance of
1078 for the linear solve. Both our preconditioners require solution of the underlying
linearized Navier-Stokes and temperature equations. These were done with flexible
GMRES, to begin with to a relatively tight tolerance of 107¢. For the Navier-Stokes
solve, we used the Pressure Convection—Diffusion (PCD) preconditioner [17, 6, 7].
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Mesh | Vertices | Tetrahedra
cube-1 144 456
cube-2 855 3648
cube-3 5805 29184

TABLE 4.2

Numbers of vertices and tetrahedra for each of the four meshes used for Bénard convection

simulations.

The PCD preconditioner requires solves on the convection-diffusion block F', on a
pressure Laplacian matrix A4,, and on a pressure mass matrix M,'. Within the PCD
preconditioner, each subsolve was performed with GMRES (for F') and CG (for 4,
and M,) to a tolerance of 1078, preconditioned with algebraic multigrid. We use the
Trilinos package Belos for the PCD linear systems and Aztec [12] for the K solve,
with ML [10] for the algebraic multigrid.

NS tol = 1075, PCD tols = 1078, K tol = 10~®
Ra 2 x 10? 2 x 10° 2 x 10%
Mesh NL  LIN (Time) | NL  LIN (Time) | NL  LIN (Time)

cube-1 4 6.5 (17.7) 5 98 (3454) | 7 16 (97.87)
cube-2 i 675 (1347) | 5 10 (148.5) 7 19 (513.3)
cube-3 3 6.33 (479.3) ) 10 (1483) 7 20.29 (5660)
TABLE 4.3

3D problem with block diagonal preconditioner: Number of Newton steps and average FGMRES
iteration count per Newton step when the linear system is solved using the block diagonal precon-
ditioner. “NL” refers to the number of nonlinear iterations required to obtain a residual of 10~6,
“LIN” the average number of outer GMRES iterations per Newton step, and Time the total number
of seconds spent in the solve. The number of Newton iterations and the average number of iterations
per Newton step are essentially independent with some moderate dependence on Ra.

NS tol = 10~%, PCD tols = 10~%, K tol = 10~°
Ra 2 x 102 2 x 103 2 x 10%
N NL  LIN (Time) | NL  LIN (Time) | NL  LIN (Time)

cube-l | 4 35 (1059) | 5 44 (17.25) | 7  7.57 (50.8p)
cube-2 | 4 3.33(39.86) | 5 48 (74.54) | 7  8.57 (236.7)
cube-3 | 3 3.33(2695) | 5 5 (735.5) 7 9.29 (2711)

TABLE 4.4

3D problem with block triangular preconditioner: Number of Newton steps and average FGM-
RES iteration count per Newton step when the linear system is solved using the inexact block trian-
gular preconditioner. “NL” refers to the number of nonlinear iterations required to obtain a residual
0of 106, “LIN” the average number of outer GMRES iterations per Newton step, and Time the total
number of seconds spent in the solve. The number of Newton iterations and the average number of
iterations per Newton step are essentially independent with some dependence on Ra. The run-times
and iteration counts are lower than for the block diagonal case.

We can see that for both preconditioners, the number of Newton iterations and the

1Some gains in efficiency can be obtained by lumping masses or neglecting off-diagonal terms to
obtain a trivially invertible approximation to M, L However, applying F~! is far more expensive
than Mp_l, so this is a small practical gain that we neglect for the purposes of understanding our
preconditioner
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average number of FGMRES iterations per Newton step are essentially independent
with respect to problems size. The number of Newton steps is mildly dependent on
Ra, and the number of FGMRES iterations per Newton step grows more strongly
with Ra as expected. The block triangular preconditioner seems to perform better
than the block diagonal, both in terms of the run times and linear iteration counts.
Although the times are quite large, we may interpret the overall cost as follows. For
the block triangular preconditioner, the Newton iteration averaged less than ten linear
solves to achieve convergence. As the dominant cost of each iteration is the linearized
Navier-Stokes solve, this means that the coupled problem is, per Newton iteration,
less than ten times the cost of Navier-Stokes. We interpret this as a very positive
result, especially as any progress in preconditioning the Navier-Stokes equations can
readily be incorporated into this strategy.

Using flexible GMRES, loosening the tolerances used in the solvers embedded in
the preconditioners often offers some advantage as a significant reduction in the cost
per iteration can outweights a moderate increase in iteration count. To investigate
this for Bénard convection, we raised the FGMRES tolerance for the Navier-Stokes
and temperature solutions to 1072 and the tolerances inside the PCD preconditioner
to 10™%. We see in Tables 4.5 and 4.6 that this situation occurs for the block diagonal
but not the block triangular iteration. The increased tolerances do lead to moderate
growth in the number of linear iterations but a lower overall run time. However,
the block triangular preconditioner degrades far more severely with the increased
tolerances, leading to a net growth in run time. From these results, it seems that the
block triangular preconditioner with a relatively tight tolerance seems to provide the
best results.

NS tol = 10~2, PCD tols = 10~%, K tol = 1072
Ra 2 x 102 2 % 103 2 x 10%
N NL  LIN (Time) | NL  LIN (Time) | NL.  LIN (Time)

cube-1 | 4 975 (16.57) | 5 14.6 (32.32) | 7 23 (92.66)
cube-2 | 4 9.75(63.31) | 5 156 (133.3) | 7  26.71 (414.5)
cube-3 | 3 9.33(358.9) | 5 16 (1220) 7 29.43 (4202)

TABLE 4.5

3D problem with block diagonal preconditioner and relaxed inner solve tolerances: Number of
Newton steps and average FGMRES iteration count per Newton step when the linear system is solved
using the inexact block diagonal preconditioner. “NL” refers to the number of nonlinear iterations
required to obtain a residual of 106, “LIN” the average number of outer GMRES iterations per
Newton step, and Time the total number of seconds spent in the solve. The number of Newton
iterations and the average number of iterations per Newton step are still essentially independent of
the mesh with some dependence on Ra. Relative to the block-diagonal preconditioner with tighter
tolerances, the linear iteration count increases and the total run-time decreases.

As the block triangular preconditioner with moderately tight tolerances seemed
to perform the best, we examined its parallel speedup by using one, two, four, and
eight MPI jobs on the same multicore machine for the Ra = 2.e4 case on cube-3. In
Table 4.7, we see that

Finally, in Table 4.7 we examine parallel speed up for the two block precondition-
ers. We show timings as we increase the number of MPI jobs (on a single multicore
node) from 1 to 8 for the 3D Bénard problem with Rayleigh number 2 x 10* on the
fine mesh cube-3. We see superlinear speedup observed for 2 and 4 processors is likely
the result of better cache usage, but a speedup of 7.28 is still obtained using 8 cores,
amounting to 90% parallel efficiency. This offers hope of scalability to larger machines.
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NS tol = 1072, PCD tols = 10~%, K tol = 1072
Ra 2 x 102 2 x 10° 2 x 10%
N | NL  LIN (Time) | NL _ LIN (Time) | NL _ LIN (Time)
cubel | 4 65(10.07) | 5 11(1622) | 7  28.14 (58.74)
cube-2 | 4 6.75(4220) | 6 124 (77.79) | 7 3242 (200)
3 7

cube-3 7 (259) 5 11.8 (668.1) 35 (3202)
TABLE 4.6

3D problem with block triangular preconditioner and relaxed inner solve tolerances: Number of
Newton steps and average FGMRES iteration count per Newton step when the linear system is solved
using the inexact block diagonal preconditioner. “NL” refers to the number of nonlinear iterations
required to obtain a residual of 106, “LIN” the average number of outer GMRES iterations per
Newton step, and Time the total number of seconds spent in the solve. The number of Newton
iterations and the average number of iterations per Newton step are still essentially independent of
the mesh with some dependence on Ra, but increasing the Navier-Stokes tolerances so increases the
linear iteration count that the run-times increase.

NP | total time (sec) time per linear solve | speedup efficiency
1 2711 387 1 1
2 1269 181 2.14 1.07
4 529 88.1 5.12 1.28
8 372 62 7.28 0.91
TABLE 4.7

Speedup obtained by parallelizing the Bénard convection problem with Ra = 2e4 on multiple
MPI processes of a single workstation using the block triangular preconditioner. The superlinear
speedup observed for 2 and 4 processors is likely the result of better cache usage, but a speedup of
7.28 is still obtained using 8 cores, amounting to 90% parallel efficiency.

5. Conclusions. Based on a particular kind of Schur complement approxima-
tion, we have applied the framework of Ipsen [16] to two problems of contemporary
interest, the bidomain equations and Bénard convection. Although much work re-
mains, such as field-of-values analysis that would rigorously describe GMRES conver-
gence theory, our eigenvalue analysis for Bénard convection seems to be the first such
theoretical consideration in the literature. By reusing scalable solvers for the compo-
nent problems, we are stepping toward a scalable solution strategy for multiphysics
problems. Our block triangular preconditioner for the bidomain equations, empiri-
cally converging five iterations, requires a matrix-vector product and two variable-
coefficient elliptic solves as its dominant cost. For Bénard convection, we are able to
reuse scalable Navier-Stokes methodology such as the PCD preconditioner to obtain
empirical mesh-independence, and MPI-based scalability on a multicore platform.
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