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Abstract. Besicovitch proved that if f is an integrable function on R2 whose associated
strong maximal function MSf is finite a.e., then the integral of f is strongly differentiable.
On the other hand, Papoulis proved the existence of an integrable function on R2 (taking
on both positive and negative values) whose integral is strongly differentiable but whose
associated strong maximal function is infinite on a set of positive measure. In this paper,
we prove that if n ≥ 2 and if f is a measurable nonnegative function on Rn whose integral is
strongly differentiable and moreover such that f(1 + log+ f)n−2 is integrable, then MSf is
finite a.e. We also show this result is sharp by proving that, if ϕ is a continuous increasing
function on [0,∞) such that ϕ(0) = 0 and with ϕ(u) = o(u(1 + log+ u)n−2) (u → ∞), then
there exists a nonnegative measurable function f on Rn such that ϕ(f) is integrable on Rn

and the integral of f is strongly differentiable, although MSf is infinite almost everywhere.

1. Introduction

One of the foundational results of modern analysis, the Lebesgue Differentiation Theorem
tells us that, if f is an integrable function on Rn, then for a.e. x ∈ Rn we have

lim
k→∞

1
|Bk|

ˆ
Bk

f = f(x)

holds for every sequence {Bk} of balls containing x whose diameters tend to 0. This result
does not necessarily hold, however, if we replace balls by more general convex sets. For
example, Saks proved in [9] that there exists a function f ∈ L1(R2) such that, for a.e.
x ∈ R2, there exists a sequence {Rk} of rectangles with sides parallel to the coordinate axes
containing x whose diameters tend to 0 for which

lim
k→∞

1
|Rk|

ˆ
Rk

f =∞ .

However, Jessen, Marcinkiewicz, and Zygmund proved in [5] that if a measurable function f
on R2 satisfies the more stringent size condition that f(1 + log+ |f |) is integrable, then for
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a.e. x ∈ R2 we have

(1.1) lim
k→∞

1
|Rk|

ˆ
Rk

f = f(x)

holds for every sequence {Rk} of rectangles with sides parallel to the coordinate axes con-
taining x whose diameters tend to 0.

We briefly recall some useful definitions and terminology. If for a given function f on Rn

the limit (1.1) holds for a.e. x ∈ Rn, we say that the integral of f is strongly differentiable,
frequently abbreviated

´
f is strongly differentiable. If this limit holds for every x in a set

E, we say that
´
f is strongly differentiable on the set E. Also, given a measurable function

f on Rn, the strong maximal function of f is denoted by MSf and defined on Rn by

MSf(x) = sup
x∈R∈Bn

1
|R|

ˆ
R

|f | ,

where Bn is defined to be the collection of open rectangular parallelepipeds in Rn whose sides
are parallel to the coordinate axes. (Note this definition holds for any measurable f , keeping
in mind that the integrals over R above may take on infinite value.)

In [1] Besicovitch generalized the result of Jessen, Marcinkiewicz, and Zygmund by proving
the following:

Theorem 1 (Besicovitch). Let f be an integrable function on R2 whose associated strong
maximal function MSf is finite a.e. Then

´
f is strongly differentiable.

The multidimensional version of Theorem 1 was proved by Ward [11]. Extensions for cer-
tain general classes of differentiation bases were suggested by de Guzmán and Menárguez
[3] (see Section IV.3) and Oniani [6, 7]. Hagelstein, Herden, and Stokolos proved in [4] an
analogue of Theorem 1 for ergodic means.

Besicovitch’s theorem provides a generalization of the result of Jessen, Marcinkiewicz, and
Zygmund as the strong maximal operator MS satisfies the weak type estimate 1

(1.2) | {x ∈ Rn : MSf(x) > α} | ≤ Cn

ˆ
Rn

|f |
α

(
1 + log+ |f |

α

)n−1

.

It is natural to consider whether Besicovitch’s Theorem has a converse, namely, if f ∈
L1(Rn) is such that

´
f is strongly differentiable, must MSf be finite a.e.? Note that in

the one-dimensional case this does hold but the situation is somewhat misleading, as on R1

the strong maximal operator MS agrees with the Hardy-Littlewood maximal operator which
satisfies a weak type (1, 1) inequality. It is the case of dimensions n ≥ 2 that the problem

1This estimate, frequently known as the Jessen-Marcinkiewicz-Zygmund inequality, seems to first appear
in the paper [2] of Fava.
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becomes interesting.

In general, the converse does not hold, as was first shown by the following result [8] of
Papoulis:

Theorem 2 (Papoulis). There exists an integrable function f on R2 such that
´
f is strongly

differentiable but for which MSf is infinite on a set of positive measure.

Of particular interest here is the fact that the function f constructed by Papoulis is such
that

´
|f | is not strongly differentiable. This invites the following problem: if f is a nonneg-

ative integrable function on R2 whose integral is strongly differentiable, must MSf be finite
a.e.? The purpose of this paper is to prove that this is indeed the case, and moreover we
have the following.

Theorem 3. Let n ≥ 2 and f be a measurable nonnegative function on Rn whose integral is
strongly differentiable. If f(1 + log+ f)n−2 is integrable on Rn, then MSf is finite a.e.

Moreover, we show this result is sharp in the sense that it does not hold if we replace the
u(1 + log+ u)n−2 condition by a weaker one:

Theorem 4. Let n ≥ 2, and let ϕ : [0,∞) → [0,∞) be a continuous increasing function
with ϕ(0) = 0 satisfying the condition ϕ(u) = o(u(1 + log+ u)n−2) (u → ∞). Then there
exists a nonnegative function f on Rn so that ϕ(f) is integrable on Rn and

´
f is strongly

differentiable, although MSf is infinite almost everywhere.

Note that a nonnegative function f ∈ L1(R3) with strongly differentiable integral for which
MSf is infinite on a set of positive measure was constructed by Zerekidze [12].

Note also that the integral of every function f on Rn (n ≥ 2) of the type f(x, y) =
g(x)χ[0,1]n−1(y) (x ∈ R, y ∈ Rn−1), where g ∈ L1(R), is strongly differentiable. This easily
implies that there exist nonnegative functions f on Rn with strongly differentiable integrals
for which f(1 + log+ f)n−2 is integrable but f(1 + log+ f)n−1 not.

In the second section of this paper we provide a proof of Theorem 3; in the third section
we provide a proof of Theorem 4.

We wish to thank the referee for insightful comments and suggestions regarding this paper.

2. Proof of Theorem 3

Suppose f is a measurable nonnegative function on Rn,
´
f is strongly differentiable, and

MSf is infinite on a set of positive measure. It suffices to show thatˆ
Rn

f
(
1 + log+ f

)n−2
= ∞ .
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We assume without loss of generality that f is finite a.e. For 1 ≤ j ≤ n, we define the
maximal operator MS,j on measurable functions on Rn by

MS,jg(x) = sup
x∈R

1
|R|

ˆ
R

|g| ,

where the supremum is over all parallelepipeds R in Bn containing x whose longest side lies
in the j-th coordinate direction. Since MSf(x) = max1≤j≤nMS,jf(x), there exists 1 ≤ j ≤ n
so that MS,jf is infinite on a set E of positive measure in Rn. Without loss of generality we
assume j = 1. Now, taking into account that f is measurable and finite a.e., we can find
0 < c < ∞ for which f(x) ≤ c on a set E ′ ⊂ E of positive measure. Since

´
f is strongly

differentiable, there exists a set E ′′ ⊂ E ′ with |E ′ \ E ′′| = 0 such that for every x ∈ E ′′,
1
|R|

´
R
f → f(x) as x ∈ R ∈ Bn and diam R→ 0. Hence, for every x ∈ E ′′ there exists kx ∈ N

for which
sup

x∈R∈Bn,diamR<1/kx

1
|R|

ˆ
R

f ≤ c+ 1.

Note that for every k ∈ N the function

gk(x) = sup
x∈R∈Bn,diamR<1/k

1
|R|

ˆ
R

f

is measurable, and the sequence of the functions gk (k ∈ N) is nonincreasing. This implies
that the sequence of the measurable sets Ek = {x ∈ E ′′ : gk(x) ≤ c + 1} (k ∈ N) is
nondecreasing. Taking into account the equality ∪∞k=1Ek = E ′′, we find k ∈ N for which Ek
is of positive measure. Now setting F = Ek, C = c + 1 and ε = 1/(n1/2k), we conclude the
validity of the following claim: There exist a set F with positive measure and numbers C > 1
and ε > 0 such that MS,1f(x) = ∞ for every x ∈ F and 1

|R|

´
R
f < C for every rectangular

parallelepiped R in Bn containing some point x from F and with diameter less than n1/2ε.
Clearly, there exists t ∈ R such that ({t} × Rn−1) ∩ F is of positive Hn−1 measure. Denote
A = ({t} × Rn−1) ∩ F . Without loss of generality, we assume t = 0.

We now introduce a rearrangement f ∗ of f along lines parallel to the first coordinate
axis. In particular, we define f ∗(t, y) such that, for fixed y ∈ Rn−1, f ∗(·, y) and f(·, y)
are equimeasurable, f ∗(t, y) = 0 if t ≤ 0, and f ∗(t1, y) ≥ f ∗(t2, y) whenever 0 < t1 ≤ t2.
Note that f ∗ is supported on the “right-half” of Rn and such that on that right half f ∗ is
nonincreasing along lines parallel to the x1-axis.

Note that as f and f ∗ are equimeasurable, we haveˆ
Rn

f ∗(1 + log+ f ∗)n−2 =
ˆ
Rn

f(1 + log+ f)n−2 .

For y ∈ Rn−1 we set
f̄(y) = 1

ε

ˆ ε

0
f ∗(t, y) dt .

Let γ > C. Since 1
|R|

´
R
f < C for every R ∈ Bn of diameter less than n1/2ε and containing

some point from A, for every (0, y) ∈ A there must exist R = (a, b) × R′ ∈ Bn such that
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a < 0 < b, b− a ≥ ε, R′ ∈ Bn−1, y ∈ R′ and
1

|(a, b)×R′|

ˆ
(a,b)×R′

f > γ.

(Note that, as a matter of technique, it is at this point that we have used that MS,1f is
infinite on a set of positive measure. Note this condition has enabled us to construct a set
A of Hn−1 positive measure lying in a section of Rn orthogonal to the x1 axis and ε > 0 so
that, for every γ > 0, we have every point in A is contained in a rectangular parallelepiped
R with x1-length no less than ε so that the average of f over R exceeds γ.)

Hence, by the definition of f ∗ it is easy to see that
1

|(0, ε)×R′|

ˆ
(0,ε)×R′

f ∗ ≥ 1
|(a, b)×R′|

ˆ
(a,b)×R′

f > γ.

Then we have
1

|R′|n−1

ˆ
R′
f̄ = 1

|(0, ε)×R′|

ˆ
(0,ε)×R′

f ∗ > γ.

Thus for every (0, y) ∈ A we have the equality MS,Rn−1 f̄(x) > γ. (Here and below for
clearness we use the notation MS,Rn−1 for the strong maximal operator related with Rn−1.)
Consequently, by the weak type estimate (1.2) for MS,Rn−1 f̄ , we obtain

Hn−1(A) ≤ Cn−1

ˆ
Rn−1

f̄

γ

(
1 + log+ f̄

γ

)n−2

,

and hence

γC−1
n−1Hn−1(A) ≤

ˆ
Rn−1

f̄
(
1 + log+ f̄

)n−2

≤ 1
ε

ˆ
(0,ε)×Rn−1

f ∗
(
1 + log+ f ∗

)n−2
(by Jensen’s Inequality)

≤ 1
ε

ˆ
Rn

f
(
1 + log+ f

)n−2
.

Note that γ can be arbitrarily large in the last estimate. Henceˆ
Rn

f
(
1 + log+ f

)n−2
=∞ ,

as desired.

3. Proof of Theorem 4

We first consider the case that n = 2. Here we have that ϕ(u) = o(u), and hence there
exists a function h on R supported and nonincreasing on (0, 1) such that h /∈ L1(R) although
ϕ(h) is integrable. Setting f(x1, x2) = h(x1)χ[0,1]×[0,1](x1, x2) provides the desired example,
since f is strongly differentiable a.e. and ϕ(f) is integrable on R2, although MSf is infinite
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on R2.

For the remainder of the proof we assume n > 2.

From the paper [10] of Saks (namely, see Theorem A in [10]), we know there exists a
nonnegative function h ∈ L1(Rn−1) with {h 6= 0} ⊂ [0, 1]n−1 such that ϕ(h) is integrable and
MS,Rn−1h is infinite a.e. on [0, 1]n−1. From h we may construct a function g ∈ L1(Rn−1) such
that ϕ(g) is integrable and MS,Rn−1g is infinite a.e. on Rn−1. This can be done, for instance,
by setting

g(x1, . . . , xn−1) =
∞∑

j1=−∞
· · ·

∞∑
jn−1=∞

cj1,...,jn−1h(x1 − j1, . . . , xn−1 − jn−1) ,

defining the constants cj1,...,jn−1 to be in (0, 1) and such that ϕ(g) is integrable. This holds
provided

∞∑
j1=−∞

· · ·
∞∑

jn−1=∞
‖ϕ(cj1,...,jn−1h)‖L1(Rn−1) <∞

and can be achieved by setting the cj1,...,jn−1 to satisfy (say)

‖ϕ(cj1,...,jn−1h)‖L1(Rn−1) < 2−(|j1|+···+|jn−1|) .

That this may be done can be seen by the Lebesgue Dominated Convergence Theorem, taking
advantage of the fact that limu→0+ ϕ(u) = 0 .

Let {ak}∞k=1 be an increasing sequence of nonnegative real numbers such that, if we define
the sets Ek ⊂ Rn−1 by

Ek = {ak < g ≤ ak+1} ,
we have

|{MS,Rn−1(gχEk
) > 2k} ∩ [−k, k]n−1|n−1 ≥ (2k)n−1 − 2−k .

Define the function f on Rn by

f(x1, . . . , xn) =
∞∑
k=1

χ(k−1,k)(x1)g(x2, . . . , xn)χEk
(x2, . . . , xn) .

Observe that, by the Fubini Theorem, we have ϕ(f) is integrable on Rn. Moreover, as f
is bounded on any strip (−t, t)× Rn−1 (t > 0), we have that

´
f is strongly differentiable.

It remains to show that MSf is infinite a.e. on Rn. To do this, it suffices to show that, if
j ≥ 1, then MSf is infinite a.e. on the cube [−j, j]n. Note that if k ≥ j, we have∣∣∣∣∣

{
x ∈ [−j, j]n : MSf(x) > 2k

2k

}∣∣∣∣∣ ≥ (2j)n − 2j · 2−k
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as can be seen by averaging f over rectangular parallelepipeds of the form (−k, k)×R, where
R ∈ Bn−1. Letting k tend to infinity, we see

|{x ∈ [−j, j]n : MSf(x) =∞}| = (2j)n ,
and hence MSf is infinite a.e. on the cube [−j, j]n, as desired.
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