ON THE FINITENESS OF STRONG MAXIMAL FUNCTIONS ASSOCIATED TO FUNCTIONS WHOSE INTEGRALS ARE STRONGLY DIFFERENTIABLE

PAUL HAGELSTEIN AND GIORGI ONIANI

Abstract

Besicovitch proved that if f is an integrable function on \mathbb{R}^{2} whose associated strong maximal function $M_{S} f$ is finite a.e., then the integral of f is strongly differentiable. On the other hand, Papoulis proved the existence of an integrable function on \mathbb{R}^{2} (taking on both positive and negative values) whose integral is strongly differentiable but whose associated strong maximal function is infinite on a set of positive measure. In this paper, we prove that if $n \geq 2$ and if f is a measurable nonnegative function on \mathbb{R}^{n} whose integral is strongly differentiable and moreover such that $f\left(1+\log ^{+} f\right)^{n-2}$ is integrable, then $M_{S} f$ is finite a.e. We also show this result is sharp by proving that, if φ is a continuous increasing function on $[0, \infty)$ such that $\varphi(0)=0$ and with $\varphi(u)=o\left(u\left(1+\log ^{+} u\right)^{n-2}\right)(u \rightarrow \infty)$, then there exists a nonnegative measurable function f on \mathbb{R}^{n} such that $\varphi(f)$ is integrable on \mathbb{R}^{n} and the integral of f is strongly differentiable, although $M_{S} f$ is infinite almost everywhere.

1. Introduction

One of the foundational results of modern analysis, the Lebesgue Differentiation Theorem tells us that, if f is an integrable function on \mathbb{R}^{n}, then for a.e. $x \in \mathbb{R}^{n}$ we have

$$
\lim _{k \rightarrow \infty} \frac{1}{\left|B_{k}\right|} \int_{B_{k}} f=f(x)
$$

holds for every sequence $\left\{B_{k}\right\}$ of balls containing x whose diameters tend to 0 . This result does not necessarily hold, however, if we replace balls by more general convex sets. For example, Saks proved in [9] that there exists a function $f \in L^{1}\left(\mathbb{R}^{2}\right)$ such that, for a.e. $x \in \mathbb{R}^{2}$, there exists a sequence $\left\{R_{k}\right\}$ of rectangles with sides parallel to the coordinate axes containing x whose diameters tend to 0 for which

$$
\lim _{k \rightarrow \infty} \frac{1}{\left|R_{k}\right|} \int_{R_{k}} f=\infty
$$

However, Jessen, Marcinkiewicz, and Zygmund proved in [5] that if a measurable function f on \mathbb{R}^{2} satisfies the more stringent size condition that $f\left(1+\log ^{+}|f|\right)$ is integrable, then for

[^0]a.e. $x \in \mathbb{R}^{2}$ we have
\[

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{\left|R_{k}\right|} \int_{R_{k}} f=f(x) \tag{1.1}
\end{equation*}
$$

\]

holds for every sequence $\left\{R_{k}\right\}$ of rectangles with sides parallel to the coordinate axes containing x whose diameters tend to 0 .

We briefly recall some useful definitions and terminology. If for a given function f on \mathbb{R}^{n} the limit (1.1) holds for a.e. $x \in \mathbb{R}^{n}$, we say that the integral of f is strongly differentiable, frequently abbreviated $\int f$ is strongly differentiable. If this limit holds for every x in a set E, we say that $\int f$ is strongly differentiable on the set E. Also, given a measurable function f on \mathbb{R}^{n}, the strong maximal function of f is denoted by $M_{S} f$ and defined on \mathbb{R}^{n} by

$$
M_{S} f(x)=\sup _{x \in R \in \mathcal{B}_{n}} \frac{1}{|R|} \int_{R}|f|
$$

where \mathcal{B}_{n} is defined to be the collection of open rectangular parallelepipeds in \mathbb{R}^{n} whose sides are parallel to the coordinate axes. (Note this definition holds for any measurable f, keeping in mind that the integrals over R above may take on infinite value.)

In [1] Besicovitch generalized the result of Jessen, Marcinkiewicz, and Zygmund by proving the following:

Theorem 1 (Besicovitch). Let f be an integrable function on \mathbb{R}^{2} whose associated strong maximal function $M_{S} f$ is finite a.e. Then $\int f$ is strongly differentiable.

The multidimensional version of Theorem 1 was proved by Ward [11]. Extensions for certain general classes of differentiation bases were suggested by de Guzmán and Menárguez [3] (see Section IV.3) and Oniani [6, 7]. Hagelstein, Herden, and Stokolos proved in [4] an analogue of Theorem 1 for ergodic means.

Besicovitch's theorem provides a generalization of the result of Jessen, Marcinkiewicz, and Zygmund as the strong maximal operator M_{S} satisfies the weak type estimate ${ }^{1}$

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: M_{S} f(x)>\alpha\right\}\right| \leq C_{n} \int_{\mathbb{R}^{n}} \frac{|f|}{\alpha}\left(1+\log ^{+} \frac{|f|}{\alpha}\right)^{n-1} \tag{1.2}
\end{equation*}
$$

It is natural to consider whether Besicovitch's Theorem has a converse, namely, if $f \in$ $L^{1}\left(\mathbb{R}^{n}\right)$ is such that $\int f$ is strongly differentiable, must $M_{S} f$ be finite a.e.? Note that in the one-dimensional case this does hold but the situation is somewhat misleading, as on \mathbb{R}^{1} the strong maximal operator M_{S} agrees with the Hardy-Littlewood maximal operator which satisfies a weak type $(1,1)$ inequality. It is the case of dimensions $n \geq 2$ that the problem

[^1]becomes interesting.
In general, the converse does not hold, as was first shown by the following result [8] of Papoulis:

Theorem 2 (Papoulis). There exists an integrable function f on \mathbb{R}^{2} such that $\int f$ is strongly differentiable but for which $M_{S} f$ is infinite on a set of positive measure.

Of particular interest here is the fact that the function f constructed by Papoulis is such that $\int|f|$ is not strongly differentiable. This invites the following problem: if f is a nonnegative integrable function on \mathbb{R}^{2} whose integral is strongly differentiable, must $M_{S} f$ be finite a.e.? The purpose of this paper is to prove that this is indeed the case, and moreover we have the following.

Theorem 3. Let $n \geq 2$ and f be a measurable nonnegative function on \mathbb{R}^{n} whose integral is strongly differentiable. If $f\left(1+\log ^{+} f\right)^{n-2}$ is integrable on \mathbb{R}^{n}, then $M_{S} f$ is finite a.e.

Moreover, we show this result is sharp in the sense that it does not hold if we replace the $u\left(1+\log ^{+} u\right)^{n-2}$ condition by a weaker one:

Theorem 4. Let $n \geq 2$, and let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing function with $\varphi(0)=0$ satisfying the condition $\varphi(u)=o\left(u\left(1+\log ^{+} u\right)^{n-2}\right)(u \rightarrow \infty)$. Then there exists a nonnegative function f on \mathbb{R}^{n} so that $\varphi(f)$ is integrable on \mathbb{R}^{n} and $\int f$ is strongly differentiable, although $M_{S} f$ is infinite almost everywhere.

Note that a nonnegative function $f \in L^{1}\left(\mathbb{R}^{3}\right)$ with strongly differentiable integral for which $M_{S} f$ is infinite on a set of positive measure was constructed by Zerekidze [12].

Note also that the integral of every function f on $\mathbb{R}^{n}(n \geq 2)$ of the type $f(x, y)=$ $g(x) \chi_{[0,1]^{n-1}}(y)\left(x \in \mathbb{R}, y \in \mathbb{R}^{n-1}\right)$, where $g \in L^{1}(\mathbb{R})$, is strongly differentiable. This easily implies that there exist nonnegative functions f on \mathbb{R}^{n} with strongly differentiable integrals for which $f\left(1+\log ^{+} f\right)^{n-2}$ is integrable but $f\left(1+\log ^{+} f\right)^{n-1}$ not.

In the second section of this paper we provide a proof of Theorem 3; in the third section we provide a proof of Theorem 4.

We wish to thank the referee for insightful comments and suggestions regarding this paper.

2. Proof of Theorem 3

Suppose f is a measurable nonnegative function on $\mathbb{R}^{n}, \int f$ is strongly differentiable, and $M_{S} f$ is infinite on a set of positive measure. It suffices to show that

$$
\int_{\mathbb{R}^{n}} f\left(1+\log ^{+} f\right)^{n-2}=\infty
$$

We assume without loss of generality that f is finite a.e. For $1 \leq j \leq n$, we define the maximal operator $M_{S, j}$ on measurable functions on \mathbb{R}^{n} by

$$
M_{S, j} g(x)=\sup _{x \in R} \frac{1}{|R|} \int_{R}|g|
$$

where the supremum is over all parallelepipeds R in \mathcal{B}_{n} containing x whose longest side lies in the j-th coordinate direction. Since $M_{S} f(x)=\max _{1 \leq j \leq n} M_{S, j} f(x)$, there exists $1 \leq j \leq n$ so that $M_{S, j} f$ is infinite on a set E of positive measure in \mathbb{R}^{n}. Without loss of generality we assume $j=1$. Now, taking into account that f is measurable and finite a.e., we can find $0<c<\infty$ for which $f(x) \leq c$ on a set $E^{\prime} \subset E$ of positive measure. Since $\int f$ is strongly differentiable, there exists a set $E^{\prime \prime} \subset E^{\prime}$ with $\left|E^{\prime} \backslash E^{\prime \prime}\right|=0$ such that for every $x \in E^{\prime \prime}$, $\frac{1}{|R|} \int_{R} f \rightarrow f(x)$ as $x \in R \in \mathcal{B}_{n}$ and diam $R \rightarrow 0$. Hence, for every $x \in E^{\prime \prime}$ there exists $k_{x} \in \mathbb{N}$ for which

$$
\sup _{x \in R \in \mathcal{B}_{n}, \text { diam } R<1 / k_{x}} \frac{1}{|R|} \int_{R} f \leq c+1 .
$$

Note that for every $k \in \mathbb{N}$ the function

$$
g_{k}(x)=\sup _{x \in R \in \mathcal{B}_{n}, \text { diam } R<1 / k} \frac{1}{|R|} \int_{R} f
$$

is measurable, and the sequence of the functions $g_{k}(k \in \mathbb{N})$ is nonincreasing. This implies that the sequence of the measurable sets $E_{k}=\left\{x \in E^{\prime \prime}: g_{k}(x) \leq c+1\right\}(k \in \mathbb{N})$ is nondecreasing. Taking into account the equality $\cup_{k=1}^{\infty} E_{k}=E^{\prime \prime}$, we find $k \in \mathbb{N}$ for which E_{k} is of positive measure. Now setting $F=E_{k}, C=c+1$ and $\varepsilon=1 /\left(n^{1 / 2} k\right)$, we conclude the validity of the following claim: There exist a set F with positive measure and numbers $C>1$ and $\epsilon>0$ such that $M_{S, 1} f(x)=\infty$ for every $x \in F$ and $\frac{1}{|R|} \int_{R} f<C$ for every rectangular parallelepiped R in \mathcal{B}_{n} containing some point x from F and with diameter less than $n^{1 / 2} \epsilon$. Clearly, there exists $t \in \mathbb{R}$ such that $\left(\{t\} \times \mathbb{R}^{n-1}\right) \cap F$ is of positive \mathcal{H}^{n-1} measure. Denote $A=\left(\{t\} \times \mathbb{R}^{n-1}\right) \cap F$. Without loss of generality, we assume $t=0$.

We now introduce a rearrangement f^{*} of f along lines parallel to the first coordinate axis. In particular, we define $f^{*}(t, y)$ such that, for fixed $y \in \mathbb{R}^{n-1}, f^{*}(\cdot, y)$ and $f(\cdot, y)$ are equimeasurable, $f^{*}(t, y)=0$ if $t \leq 0$, and $f^{*}\left(t_{1}, y\right) \geq f^{*}\left(t_{2}, y\right)$ whenever $0<t_{1} \leq t_{2}$. Note that f^{*} is supported on the "right-half" of \mathbb{R}^{n} and such that on that right half f^{*} is nonincreasing along lines parallel to the x_{1}-axis.

Note that as f and f^{*} are equimeasurable, we have

$$
\int_{\mathbb{R}^{n}} f^{*}\left(1+\log ^{+} f^{*}\right)^{n-2}=\int_{\mathbb{R}^{n}} f\left(1+\log ^{+} f\right)^{n-2}
$$

For $y \in \mathbb{R}^{n-1}$ we set

$$
\bar{f}(y)=\frac{1}{\epsilon} \int_{0}^{\epsilon} f^{*}(t, y) d t
$$

Let $\gamma>C$. Since $\frac{1}{|R|} \int_{R} f<C$ for every $R \in \mathcal{B}_{n}$ of diameter less than $n^{1 / 2} \epsilon$ and containing some point from A, for every $(0, y) \in A$ there must exist $R=(a, b) \times R^{\prime} \in \mathcal{B}_{n}$ such that
$a<0<b, b-a \geq \varepsilon, R^{\prime} \in \mathcal{B}_{n-1}, y \in R^{\prime}$ and

$$
\frac{1}{\left|(a, b) \times R^{\prime}\right|} \int_{(a, b) \times R^{\prime}} f>\gamma
$$

(Note that, as a matter of technique, it is at this point that we have used that $M_{S, 1} f$ is infinite on a set of positive measure. Note this condition has enabled us to construct a set A of \mathcal{H}^{n-1} positive measure lying in a section of \mathbb{R}^{n} orthogonal to the x_{1} axis and $\epsilon>0$ so that, for every $\gamma>0$, we have every point in A is contained in a rectangular parallelepiped R with x_{1}-length no less than ϵ so that the average of f over R exceeds γ.)

Hence, by the definition of f^{*} it is easy to see that

$$
\frac{1}{\left|(0, \varepsilon) \times R^{\prime}\right|} \int_{(0, s) \times R^{\prime}} f^{*} \geq \frac{1}{\left|(a, b) \times R^{\prime}\right|} \int_{(a, b) \times R^{\prime}} f>\gamma
$$

Then we have

$$
\frac{1}{\left|R^{\prime}\right|_{n-1}} \int_{R^{\prime}} \bar{f}=\frac{1}{\left|(0, \varepsilon) \times R^{\prime}\right|} \int_{(0, \varepsilon) \times R^{\prime}} f^{*}>\gamma
$$

Thus for every $(0, y) \in A$ we have the equality $M_{S, \mathbb{R}^{n-1}} \bar{f}(x)>\gamma$. (Here and below for clearness we use the notation $M_{S, \mathbb{R}^{n-1}}$ for the strong maximal operator related with \mathbb{R}^{n-1}.) Consequently, by the weak type estimate (1.2) for $M_{S, \mathbb{R}^{n-1}} \bar{f}$, we obtain

$$
\mathcal{H}^{n-1}(A) \leq C_{n-1} \int_{\mathbb{R}^{n-1}} \frac{\bar{f}}{\gamma}\left(1+\log ^{+} \frac{\bar{f}}{\gamma}\right)^{n-2}
$$

and hence

$$
\begin{aligned}
\gamma C_{n-1}^{-1} \mathcal{H}^{n-1}(A) \leq & \int_{\mathbb{R}^{n-1}} \bar{f}\left(1+\log ^{+} \bar{f}\right)^{n-2} \\
\leq & \frac{1}{\epsilon} \int_{(0, \epsilon) \times \mathbb{R}^{n-1}} f^{*}\left(1+\log ^{+} f^{*}\right)^{n-2} \quad \text { (by Jensen's Inequality) } \\
& \leq \frac{1}{\epsilon} \int_{\mathbb{R}^{n}} f\left(1+\log ^{+} f\right)^{n-2}
\end{aligned}
$$

Note that γ can be arbitrarily large in the last estimate. Hence

$$
\int_{\mathbb{R}^{n}} f\left(1+\log ^{+} f\right)^{n-2}=\infty
$$

as desired.

3. Proof of Theorem 4

We first consider the case that $n=2$. Here we have that $\varphi(u)=o(u)$, and hence there exists a function h on \mathbb{R} supported and nonincreasing on $(0,1)$ such that $h \notin L^{1}(\mathbb{R})$ although $\varphi(h)$ is integrable. Setting $f\left(x_{1}, x_{2}\right)=h\left(x_{1}\right) \chi_{[0,1] \times[0,1]}\left(x_{1}, x_{2}\right)$ provides the desired example, since f is strongly differentiable a.e. and $\varphi(f)$ is integrable on \mathbb{R}^{2}, although $M_{S} f$ is infinite
on \mathbb{R}^{2}.
For the remainder of the proof we assume $n>2$.
From the paper [10] of Saks (namely, see Theorem A in [10]), we know there exists a nonnegative function $h \in L^{1}\left(\mathbb{R}^{n-1}\right)$ with $\{h \neq 0\} \subset[0,1]^{n-1}$ such that $\varphi(h)$ is integrable and $M_{S, \mathbb{R}^{n-1}} h$ is infinite a.e. on $[0,1]^{n-1}$. From h we may construct a function $g \in L^{1}\left(\mathbb{R}^{n-1}\right)$ such that $\varphi(g)$ is integrable and $M_{S, \mathbb{R}^{n-1}} g$ is infinite a.e. on \mathbb{R}^{n-1}. This can be done, for instance, by setting

$$
g\left(x_{1}, \ldots, x_{n-1}\right)=\sum_{j_{1}=-\infty}^{\infty} \ldots \sum_{j_{n-1}=\infty}^{\infty} c_{j_{1}, \ldots, j_{n-1}} h\left(x_{1}-j_{1}, \ldots, x_{n-1}-j_{n-1}\right),
$$

defining the constants $c_{j_{1}, \ldots, j_{n-1}}$ to be in $(0,1)$ and such that $\varphi(g)$ is integrable. This holds provided

$$
\sum_{j_{1}=-\infty}^{\infty} \cdots \sum_{j_{n-1}=\infty}^{\infty}\left\|\varphi\left(c_{j_{1}, \ldots, j_{n-1}} h\right)\right\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}<\infty
$$

and can be achieved by setting the $c_{j_{1}, \ldots, j_{n-1}}$ to satisfy (say)

$$
\left\|\varphi\left(c_{j_{1}, \ldots, j_{n-1}} h\right)\right\|_{L^{1}\left(\mathbb{R}^{n-1}\right)}<2^{-\left(\left|j_{1}\right|+\cdots+\left|j_{n-1}\right|\right)} .
$$

That this may be done can be seen by the Lebesgue Dominated Convergence Theorem, taking advantage of the fact that $\lim _{u \rightarrow 0^{+}} \varphi(u)=0$.

Let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of nonnegative real numbers such that, if we define the sets $E_{k} \subset \mathbb{R}^{n-1}$ by

$$
E_{k}=\left\{a_{k}<g \leq a_{k+1}\right\},
$$

we have

$$
\left|\left\{M_{S, \mathbb{R}^{n-1}}\left(g \chi_{E_{k}}\right)>2^{k}\right\} \cap[-k, k]^{n-1}\right|_{n-1} \geq(2 k)^{n-1}-2^{-k} .
$$

Define the function f on \mathbb{R}^{n} by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{\infty} \chi_{(k-1, k)}\left(x_{1}\right) g\left(x_{2}, \ldots, x_{n}\right) \chi_{E_{k}}\left(x_{2}, \ldots, x_{n}\right)
$$

Observe that, by the Fubini Theorem, we have $\varphi(f)$ is integrable on \mathbb{R}^{n}. Moreover, as f is bounded on any strip $(-t, t) \times \mathbb{R}^{n-1}(t>0)$, we have that $\int f$ is strongly differentiable.

It remains to show that $M_{S} f$ is infinite a.e. on \mathbb{R}^{n}. To do this, it suffices to show that, if $j \geq 1$, then $M_{S} f$ is infinite a.e. on the cube $[-j, j]^{n}$. Note that if $k \geq j$, we have

$$
\left|\left\{x \in[-j, j]^{n}: M_{S} f(x)>\frac{2^{k}}{2 k}\right\}\right| \geq(2 j)^{n}-2 j \cdot 2^{-k}
$$

as can be seen by averaging f over rectangular parallelepipeds of the form $(-k, k) \times R$, where $R \in \mathcal{B}_{n-1}$. Letting k tend to infinity, we see

$$
\left|\left\{x \in[-j, j]^{n}: M_{S} f(x)=\infty\right\}\right|=(2 j)^{n},
$$

and hence $M_{S} f$ is infinite a.e. on the cube $[-j, j]^{n}$, as desired.

References

[1] A. S. Besicovitch, On differentiation of Lebesgue double integrals, Fund. Math. 25 (1935), 209-216. $\uparrow 2$
[2] N. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288. MR308364 $\uparrow 2$
[3] M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}, Lecture Notes in Mathematics, vol. 481, SpringerVerlag, 1975. MR0457661 $\uparrow 2$
[4] P. Hagelstein, D. Herden, and A. Stokolos, A theorem of Besicovitch and a generalization of the Birkhoff ergodic theorem, Proc. Amer. Math. Soc. 8 (2021), 52-59. $\uparrow 2$
[5] B. Jessen, J. Marcinkiewicz, and A. Zygmund, A note on differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234. $\uparrow 1$
[6] G. G. Oniani, On the differentiation of integrals with respect to translation invariant convex density bases, Fund. Math. 246 (2019), 205-216. $\uparrow 2$
[7] G. G. Oniani, On upper and lower derivatives of integrals with respect to convex differentiation bases, Math. Notes 76 (2004), 702-714. $\uparrow 2$
[8] A. Papoulis, On the strong differentiation of the indefinite integral, Trans. Amer. Math. Soc. 69 (1950), 130-141. MR0037339 $\uparrow 3$
[9] S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257261. $\uparrow 1$
[10] S. Saks, On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235-252. $\uparrow 6$
[11] A. J. Ward, On the derivation of additive functions of intervals in m-dimensional space, Fund. Math. 28 (1937), 265-279. 个2
[12] T. Sh. Zerekidze, On the question of interrelation between the strong differentiability of integrals and the convergence of multiple Fourier-Haar series (Russian), Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 86 (1987), 62-73. English trans. Integral Operators and Boundary Properties of Fourier Series, ed. O. D. Tseretili, Nova Science Publishers, New-York (1992), 83-99. MR0922253 $\uparrow 3$
P. H.: Department of Mathematics, Baylor University, Waco, Texas 76798, USA

Email address: paul_hagelstein@baylor.edu
G. O.: School of Computer Science and Mathematics, Kutaisi International University, Youth Avenue, Turn 5/7, Kutaisi 4600, Georgia

Email address: giorgi.oniani@kiu.edu.ge

[^0]: 2020 Mathematics Subject Classification. Primary 42B25.
 Key words and phrases. maximal functions, differentiation basis.
 P. H. is partially supported by a grant from the Simons Foundation (\#521719 to Paul Hagelstein).

[^1]: ${ }^{1}$ This estimate, frequently known as the Jessen-Marcinkiewicz-Zygmund inequality, seems to first appear in the paper [2] of Fava.

