FDAAs

FDAAs


We developed a series of fluorescent probes, named fluorescent D-amino acids (FDAAs), for bacterial peptidoglycan labeling. These probes incorporate to peptidoglycan through the activity of cell wall synthases, indicating the formation and remodeling of peptidoglycan in situ.

FDAAs labeling in Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative).

Figure 1 legends: FDAAs labeling in Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative). Hsu et, al. 10.1039/C7SC01800B

Successive FDAA labeling in polar growing bacteria, Streptomyces venezuelae. This labeling method is also known as virtual time-lapse labeling

Figure 2 legends: Successive FDAA labeling in polar growing bacteria, Streptomyces venezuelae. This labeling method is also known as virtual time-lapse labeling. Hsu et, al. 10.1039/C7SC01800B

Structures and spectra of FDAAs developed in the VanNieuwenhze Lab.

Figure 3 legends: Structures and spectra of FDAAs developed in the VanNieuwenhze Lab.

Photochemical and physical properties of FDAAs.

Figure 4 legends: Photochemical and physical properties of FDAAs. Hsu et, al. 10.1039/C7SC01800B


FDAA application and reference

First AuthorResearch TitleJournal/Year
Developing D-amino acid-based probes for PG study
E. KuruIn situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acidsACIEE 2012
M. SiegristD-amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogenACS Chem. Biol. 2012
M. LebarReconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesisJACS 2014
E. KuruSynthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situNat. Protoc. 2014
J. FuraD-amino acid probes for penicillin binding protein-based bacterial surface labelingASBMB 2015
S. PidgeonMetabolic profiling of bacteria by unnatural c-terminated D-amino acidsACIEE 2015
S. PidgeonMetabolic remodeling of bacterial surfaces via tetrazine ligationsChem. Commun. 2015
Y. HsuFull color palette of fluorescent D‐amino acids for in situ labeling of bacterial cell wallsChem. Sci. 2017
Identifying the formation and/or structures of PG
M. PilhoferDiscovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtszNat. Commun. 2013
G. BillingsDe novo morphogenesis in L-forms via geometric control of cell growthMol. Microbiol. 2014
G. LiechtiA new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatisNature 2014
M. van TeeselingAnammox planctomycetes have a peptidoglycan cell wallNat. Commun. 2015
G. LiechtiPathogenic chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by mreb, for cell divisionPLoS Pathog. 2016
Studying bacterial morphogenesis and PG growth pattern
E. TochevaPeptidoglycan transformations during Bacillus subtilis sporulationMol. Microbiol. 2013
A. BerezukSite-directed fluorescence labeling reveals a revised n-terminal membrane topology and functional periplasmic residues in the escherichia coli cell division protein FtskJ Biol. Chem. 2014
C. KerrSalinity-dependent impacts of Proq, Prc, and Spr deficiencies on Escherichia coli cell structureJ Bacteriol. 2014
A. MöllCell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activatorsJ Bacteriol. 2014
T. UrsellRod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localizationPNAS 2014
J. MonteiroCell shape dynamics during the staphylococcal cell cycleNat. Commun. 2015
H. SamalMolecular modeling, simulation and virtual screening of murd ligase protein from Salmonella typhimurium LT2J Pharmacol. Toxicol. Methods 2015
M. WilliamsShort-stalked Prosthecomicrobium hirschii cells have a Caulobacter-like cell cycleJ Bacteriol. 2016
A. Bisson-FilhoTreadmilling by Ftsz filaments drives peptidoglycan synthesis and bacterial cell divisionScience 2017
E. CsertiDynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacterium Hyphomonas neptuniumMol. Microbiol. 2017
A. DajkovicHydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg2+ in Bacillus subtilisMol. Microbiol. 2017
H. VeigaStaphylococcus aureus requires at least one Ftsk/spoiiie protein for correct chromosome segregationMol. Microbiol. 2017
X. YangGTpase activity–coupled treadmilling of the bacterial tubulin Ftsz organizes septal cell wall synthesisScience 2017
Q. YaoShort Ftsz filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesisEMBO J. 2017
Determining PG synthesis activity and sites
Y. EunDivin: a small molecule inhibitor of bacterial divisome assemblyJACS 2013
T. CameronPeptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell divisionMBio. 2014
A. FleurieInterplay of the serine/threonine-kinase Stkp and the paralogs DivIVA and Gpsb in Pneumococcal cell elongation and divisionPLoS Genet. 2014
A. FleurieMapz marks the division sites and positions Ftsz rings in Streptococcus pneumoniaeNature 2014
C. JiangSequential evolution of bacterial morphology by co-option of a developmental regulatorNature 2014
H. TsuiPbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39Mol. Microbiol. 2014
T. DörrEndopeptidase-mediated beta lactam tolerancePLoS Pathog. 2015
B. LiuRoles for both Ftsa and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coliMol. Microbiol. 2015
A. MöllA D, D-carboxypeptidase is required for Vibrio cholerae halotoleranceEnviron. Microbiol. 2015
K. SundararajanThe bacterial tubulin Ftsz requires its intrinsically disordered linker to direct robust cell wall constructionNat. Commun. 2015
K. SchirnerLipid-linked cell wall precursors regulate membrane association of bacterial actin MreBNat. Chem. Biol. 2015
A. TavaresMreC and MreD proteins are not required for growth of Staphylococcus aureusPLoS ONE 2015
A. YakhninaThe cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viabilityMol. Microbiol. 2015
B. JutrasLyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cellsPNAS 2016
S. ManuseStructure–function analysis of the extracellular domain of the Pneumococcal cell division site positioning protein MapZNat. Commun. 2016
A. MuraRoles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniaeJ. Bacteriol. 2016
A. PereiraFtsz-dependent elongation of a Coccoid bacteriumMBio 2016
D. RanjitColanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acidJ Bacteriol. 2016
P. YagȕeSubcompartmentalization by cross-membranes during early growth of Streptomyces hyphaeNat. Commun. 2016
D. AngelesPentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division siteMol. Microbiol. 2017
H. BotellaMycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stressEMBO J. 2017
L. HamoucheBacillus subtilis swarmer cells lead the swarm, multiply, and generate a trail of quiescent descendantsMBio 2017
A. SugimotoDeciphering the mode of action of cell wall-inhibiting antibiotics using metabolic labeling of growing peptidoglycan in Streptococcus pyogenesSci. Rep. 2017

Table 1. Examples of FDAAs applications in recent studies. Sub-headings classify the use of FDAAs in the experiment designs of each study.