SASM Definition (1L SASM)

Salts	1L	10X	
KH ₂ PO ₄	1 g	10 g	Use KCl and NaOH to adjust the pH to 7.0. Use
$K_2HPO_4 \cdot 3H_2O$	1 g	10 g	100mL of 10X Salt Stock for 1L of SASM
$(NH_4)_2SO_4$	1 g	10 g	
NaCl	10 mg	100 mg	
~ . ~			
Carbon Source	1L		
D-Glucose	10 g		20% stock solution can be prepared
Vitamines	1L	125X	
V manines	112	(500ml)	
Pyridoxine·HCl	1 mg	62.5 mg	Light shield the stock solution and keep it at 4 C.
Calcium Pantothenate	2 mg	125 mg	e e e e e e e e e e e e e e e e e e e
(B ₅)	8	120 1118	Use 8ml of 125X vitamin stock solution to final
Niacin (nicotinic acid)	2 mg	125 mg	1L of SASM.
Riboflavin	1 mg	62.5 mg	
Folid acid	0.1 mg	6.25 mg	
Thiamine HCl	2 mg	125 mg	
Biotin (B ₇)	0.1 mg	6.25 mg	
Inositol	1 mg	62.5 mg	
	U	U	
Nucleosides	1L		
Adenine	5 mg		Add directly. Stock solution cannot be prepared
Uracil	5 mg		due to low solubility of nucleosides. Heating
Cytosine	5 mg		(autoclave) helps.
Guanine	5 mg		
Xanthine	5 mg		
Trace Metals	1L	500X (100	
MgSO ₄ 7H ₂ 0	200 mg	ml) 10 g	Trace metal stock solution (500X) can be
$MnSO_4 7H_20$ $MnSO_4 7H_20$	200 mg	0.5 g	prepared at low pH (\sim 3.0). Prepare a separate
$CuSO_4 5H_20$	1 mg	50 mg	FeSO4 stock solution to prevent precipitation
$ZnSO_4 4H_20$	1 mg	50 mg	over time. Use 2ml of 500X stock to make 1L
$FeSO_4 5H_20$	10 mg	0.5 g	SASM.
1000401120	10 115	0.0 6	
Amino Acids			

All L-amino acids

100 mg

TYR has low solubility so no stock solution can be prepared. Dissolve 100 mg of TYR first.

Prepare 10 g/l stock solution containing amino acids ARG, THR, SER, HIS, MET, and ASN.

Prepare 5 g/l stock solution containing amino acids PRO, ILE, LEU, VAL, and PHE.

Prepare 5 g/l stock solution containing amino acids ASP, CYS, and TRP.

Add ALA, GLY, LYS, GLU, and GLN, separately depending on the isotope labeling scheme.

General description for preparing SASM and growing S. aureus

Preparing 1L SASM

- 1. To 500 ml of Grade I water add nucleosides (warming is needed to dissolve)
- 2. Add 100 mg of L-Tyr
- 3. Cool down the media to room temperature
- 4. Add 100 ml salt stock solution and 10 g of D-glucose
- 5. Add amino acids
- 6. Add 8 ml of vitamin stock solution
- 7. Adjust volume to 1L by adding water.
- 8. Add Trace Metals (drop by drop with stirring)
- 9. Adjust pH to 7.0
- 10. Sterile filter using 0.2 µm pore size.
- 11. The media can be stored at room temperature or at 4C without light.

To selectively incorporate D-Ala into the peptidoglycan of *S. aureus* we add alanine racemase inhibitor alaphosphin to final concentration of 5 μ g/ml.

S. aureus Growth

1. Starter culture is prepared by picking several colonies of *S. aureus* from a bacteria lawn plate and transferred to two culture tubes each containing 6ml of Trypticase Soy Broth for overnight growth.

2. Add 5 ml of overnight culture to each two 1 L flasks each containing 500 ml SASM (1 % inoculum). The cells are grown 37 C and shaken at 200 rpm.

- 3. Monitor the growth and harvest the cells at OD 1.0 (at 660 nm).
- 4. Resuspend the pellet in ~20 ml of water and then sterilize
- 5. Wash the cells 2 times in water
- 6. Resuspend the pellet in ~20 ml of 40 mM triethanolamine (pH 7.0)
- 6. Freeze the bacterial suspension using liquid N2 and then proceed with lyophilization.