The variance of coefficients of the characteristic polynomial of regular quantum graphs

Jon Harrison ${ }^{1}$ and Tori Hudgins ${ }^{2}$
${ }^{1}$ Baylor University, ${ }^{2}$ University of Kansas

Spectral Theory and Applications 2023

Supported by Simons Foundation collaboration grant 354583.

Dynamical approach to spectral statistics

'71 Gutzwiller's trace formula for the density of states in the semiclassical limit.
'85 Berry - Diagonal approximation to the form factor using Hannay-Ozorio de Almeida sum rule.
'99 Kottos and Smilansky - trace formula for the density of states of quantum graphs.
'01 Sieber and Richter - 2nd order contribution to the small parameter asymptotics of the form factor from figure 8 orbits with one self-intersection.
'03 Berkolaiko, Schanz and Whitney - 2nd and 3rd order contributions on quantum graphs.
'04 Müller, Heusler, Braun, Haake and Altland - all higher order contributions.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.
- The origin and terminus of $b=(i, j)$ are $o(b)=i$ and $t(b)=j$.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.
- The origin and terminus of $b=(i, j)$ are $o(b)=i$ and $t(b)=j$.
- $b=(i, j)$ is outgoing at i and incoming at j.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.
- The origin and terminus of $b=(i, j)$ are $o(b)=i$ and $t(b)=j$.
- $b=(i, j)$ is outgoing at i and incoming at j.
- We consider 4-regular graphs with 2 incoming and 2 outgoing bonds at each vertex.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.
- The origin and terminus of $b=(i, j)$ are $o(b)=i$ and $t(b)=j$.
- $b=(i, j)$ is outgoing at i and incoming at j.
- We consider 4-regular graphs with 2 incoming and 2 outgoing bonds at each vertex.

Quantizing a graph

- Assign length $L_{b}>0$ to each bond b.

Quantizing a graph

- Assign length $L_{b}>0$ to each bond b.
- Assign unitary vertex scattering matrix $\sigma^{(v)}$ to each vertex v.

A democratic choice is the discrete Fourier transform matrix,

$$
\boldsymbol{\sigma}^{(v)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right) .
$$

Quantizing a graph

- Assign length $L_{b}>0$ to each bond b.
- Assign unitary vertex scattering matrix $\sigma^{(v)}$ to each vertex v.

A democratic choice is the discrete Fourier transform matrix,

$$
\boldsymbol{\sigma}^{(v)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right) .
$$

Bond scattering matrix,

$$
\boldsymbol{\Sigma}_{b^{\prime}, b}= \begin{cases}\boldsymbol{\sigma}_{b^{\prime}, b}^{(v)} & v=t(b)=o\left(b^{\prime}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Quantizing a graph

- Assign length $L_{b}>0$ to each bond b.
- Assign unitary vertex scattering matrix $\sigma^{(v)}$ to each vertex v.

A democratic choice is the discrete Fourier transform matrix,

$$
\boldsymbol{\sigma}^{(v)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right) .
$$

Bond scattering matrix,

$$
\boldsymbol{\Sigma}_{b^{\prime}, b}= \begin{cases}\boldsymbol{\sigma}_{b^{\prime}, b}^{(v)} & v=t(b)=o\left(b^{\prime}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Quantum evolution op. $\mathbf{U}(k)=\boldsymbol{\Sigma} \mathrm{e}^{\mathrm{i} k \mathbf{L}}$, with $\mathbf{L}=\operatorname{diag}\left\{L_{1}, \ldots, L_{B}\right\}$, defines a unitary stochastic matrix ensemble - Tanner '01.

Characteristic polynomial

Characteristic polynomial of $\mathbf{U}(k)$

$$
\operatorname{det}(\mathbf{U}(k)-\zeta \mathbf{I})=\sum_{n=0}^{B} a_{n}(k) \zeta^{B-n}
$$

- Secular equation $\operatorname{det}(\mathbf{U}(k)-\mathbf{I})=0$.
- Riemann-Siegel lookalike formula, $a_{n}=a_{B-n}^{*}$ - Kottos and Smilansky '99
- Variance of coeffs of characteristic polynomial of binary graphs in semiclassical limit using a diagonal approximation - Tanner '02, Band-Harrison-Sepanski '19

- A periodic orbit $\gamma=\left(b_{1}, \ldots, b_{m}\right)$ is the equivalence class of closed paths under cyclic shifts, $t\left(b_{j}\right)=o\left(b_{j+1}\right)$.
- A primitive periodic orbit is a periodic orbit that is not a repetition of a shorter orbit.
- Topological length of γ is m.
- Metric length of γ is $L_{\gamma}=\sum_{b_{j} \in \gamma} L_{b_{j}}$.
- Stability amplitude is $A_{\gamma}=\Sigma_{b_{2} b_{1}} \Sigma_{b_{3} b_{2}} \ldots \Sigma_{b_{m} b_{m-1}} \Sigma_{b_{1} b_{m}}$.

- A pseudo orbit $\bar{\gamma}=\left\{\gamma_{1}, \ldots, \gamma_{M}\right\}$ is a set of periodic orbits.
- $m_{\bar{\gamma}}=M$ no. of periodic orbits in $\bar{\gamma}$.
- Metric length $L_{\bar{\gamma}}=\sum_{j=1}^{M} L_{\gamma_{j}}$.
- Stability amplitude $A_{\bar{\gamma}}=\prod_{j=1}^{M} A_{\gamma_{j}}$.
- A primitive pseudo orbit (PPO) is a set of distinct primitive periodic orbits.
- \mathcal{P}^{n} set of PPO with n bonds.

Theorem 1 (Band-Harrison-Joyner '12)

Coefficients of the characteristic polynomial are given by,

$$
a_{n}=\sum_{\bar{\gamma} \in \mathcal{P}^{n}}(-1)^{m_{\bar{\gamma}}} A_{\bar{\gamma}} e^{i k L_{\bar{\gamma}}} .
$$

Idea

- Expand $\operatorname{det}(\mathbf{U}(k)-\zeta \mathbf{I})$ as a sum over permutations.
- A permutation $\rho \in S_{B}$ can contribute iff $\rho(b)$ is adjacent to b for all b in ρ.
- Representing ρ as a product of disjoint cycles each cycle is a primitive periodic orbit.

Variance of coefficients of the characteristic polynomial

$$
\begin{gather*}
\left\langle a_{n}\right\rangle= \begin{cases}1 & n=0 \\
0 & \text { otherwise }\end{cases} \\
\left.\left.\langle | a_{n}\right|^{2}\right\rangle_{k}=\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \mathcal{P}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \lim _{K \rightarrow \infty} \frac{1}{K} \int_{0}^{K} \mathrm{e}^{\mathrm{i} k\left(L_{\bar{\gamma}}-L_{\bar{\gamma}^{\prime}}\right)} \mathrm{d} k \\
=\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \mathcal{P}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}} \tag{3}
\end{gather*}
$$

Diagonal contribution

$$
\left.\left.\langle | a_{n}\right|^{2}\right\rangle_{\text {diag }}=\sum_{\bar{\gamma} \in \mathcal{P}^{n}}\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}\left|\mathcal{P}^{n}\right|
$$

Theorem 2 (Harrison-Hudgins '22)

For a 4-regular quantum graph with $\left\{L_{b}\right\}$ incommensurate,

$$
\left.\left.\langle | a_{n}\right|^{2}\right\rangle=\frac{1}{2^{n}}\left(\left|\mathcal{P}_{0}^{n}\right|+\sum_{N=1}^{n} 2^{N}\left|\widehat{\mathcal{P}}_{N}^{n}\right|\right)
$$

where $\mathcal{P}_{0}^{n} \subset \mathcal{P}^{n}$ with no self-intersections and $\widehat{\mathcal{P}}_{N}^{n} \subset \mathcal{P}^{n}$ with N self-intersections, all of which are 2-encounters of length zero.

- 2-encounter: $\bar{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ with no self-intersections in $\gamma_{2}, \ldots, \gamma_{m}$ and $\gamma_{1}=(1,2)$, link 1 followed by link 2.
- 3-encounter: Define $\bar{\gamma}$ similarly but with $\gamma_{1}=(1,2,3)$.
- Encounter length zero if it contains no bonds, $v_{0}=v_{r}$.

Example: Binary de Bruijn graph with $B=2^{4}$

n	$\left\|\mathcal{P}_{0}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{1}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{2}^{n}\right\|$	$\left.\left.\langle \| a_{n}\right\|^{2}\right\rangle$	Numerics	Error
0	1	0	0	1	1.000000	0.000000
1	2	0	0	1	0.999991	0.000009
2	2	0	0	$1 / 2$	0.499999	0.000001
3	4	0	0	$1 / 2$	0.499999	0.000001
4	8	0	0	$1 / 2$	0.499999	0.000001
5	8	8	0	$3 / 4$	0.749998	0.000002
6	8	20	0	$3 / 4$	0.749986	0.000014
7	16	16	8	$5 / 8$	0.624989	0.000011
8	16	16	24	$9 / 16$	0.562501	-0.000001

Figure 1: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary de Bruijn graphs with 2^{r} vertices.

Example: Binary graph with $B=3 \cdot 2^{2}$

n	$\left\|\mathcal{P}_{0}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{1}^{n}\right\|$	$\left.\left.\langle \| a_{n}\right\|^{2}\right\rangle$	Numerics	Error
0	1	0	1	1.000000	0.000000
1	2	0	1	1.000000	0.000000
2	3	0	$3 / 4$	0.750001	-0.000001
3	6	0	$3 / 4$	0.750003	-0.000003
4	10	4	$7 / 8$	0.874999	0.000001
5	8	4	$1 / 2$	0.499998	0.000002
6	8	8	$3 / 8$	0.374999	0.000001

Figure 2: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary graphs with $3 \cdot 2^{r}$ vertices.

Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits where no bonds are repeated $\widehat{\mathcal{P}}^{n}$.

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{4}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{5}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of irreducible PPO length $L_{\bar{\gamma}}$.

Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits where no bonds are repeated $\widehat{\mathcal{P}}^{n}$.

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{4}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{5}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of irreducible PPO length $L_{\bar{\gamma}}$.

- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}}=\{\bar{\gamma}\}$ and $\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}$ producing the 1st term in Theorem 2.

Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits where no bonds are repeated $\widehat{\mathcal{P}}^{n}$.

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{4}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{5}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of irreducible PPO length $L_{\bar{\gamma}}$.

- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}}=\{\bar{\gamma}\}$ and $\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}$ producing the 1st term in Theorem 2.
- A PPO with an encounter of positive length is not irreducible.

Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits where no bonds are repeated $\widehat{\mathcal{P}}^{n}$.

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{4}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{5}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of irreducible PPO length $L_{\bar{\gamma}}$.

- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}}=\{\bar{\gamma}\}$ and $\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}$ producing the 1st term in Theorem 2.
- A PPO with an encounter of positive length is not irreducible.
- A PPO with an l-encounter with $I \geq 3$ is not irreducible as there are repeated bonds before and after the encounter.

Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits where no bonds are repeated $\widehat{\mathcal{P}}^{n}$.

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{4}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{5}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of irreducible PPO length $L_{\bar{\gamma}}$.

- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}}=\{\bar{\gamma}\}$ and $\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}$ producing the 1st term in Theorem 2.
- A PPO with an encounter of positive length is not irreducible.
- A PPO with an l-encounter with $I \geq 3$ is not irreducible as there are repeated bonds before and after the encounter.
- A PPO with a single 2-encounter length zero if $\bar{\gamma}^{\prime} \neq \bar{\gamma}$ then $m_{\bar{\gamma}^{\prime}}=m_{\bar{\gamma}} \pm 1$ and $\bar{A}_{\bar{\gamma}^{\prime}}=-A_{\bar{\gamma}}$, hence $C_{\bar{\gamma}}=2 \cdot 2^{-n}$.
- For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$.
- For the variance fix n / B and consider long orbits on large graphs.
- For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$.
- For the variance fix n / B and consider long orbits on large graphs.
- In the semiclassical limit half of PPO with a single 2-encounter have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is $1 / 2$.
- For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$.
- For the variance fix n / B and consider long orbits on large graphs.
- In the semiclassical limit half of PPO with a single 2-encounter have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is $1 / 2$.
- As the graph is mixing the proportion of orbits with 3-encounters is vanishes compared to 2-encounters.
- For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$.
- For the variance fix n / B and consider long orbits on large graphs.
- In the semiclassical limit half of PPO with a single 2-encounter have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is $1 / 2$.
- As the graph is mixing the proportion of orbits with 3-encounters is vanishes compared to 2 -encounters.
- Let \mathcal{P}_{N}^{n} denote the set of PPO length n with N encounters. Then $\left|\widehat{\mathcal{P}}_{N}^{n}\right| \approx 2^{-N}\left|\mathcal{P}_{N}^{n}\right|$.
- For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$.
- For the variance fix n / B and consider long orbits on large graphs.
- In the semiclassical limit half of PPO with a single 2-encounter have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is $1 / 2$.
- As the graph is mixing the proportion of orbits with 3-encounters is vanishes compared to 2 -encounters.
- Let \mathcal{P}_{N}^{n} denote the set of PPO length n with N encounters. Then $\left|\widehat{\mathcal{P}}_{N}^{n}\right| \approx 2^{-N}\left|\mathcal{P}_{N}^{n}\right|$.

$$
\left.\left.\langle | a_{n}\right|^{2}\right\rangle=2^{-n}\left(\left|\mathcal{P}_{0}^{n}\right|+\sum_{N=1}^{n} 2^{N}\left|\widehat{\mathcal{P}}_{N}^{n}\right|\right) \approx 2^{-n} \sum_{N=0}^{n}\left|\mathcal{P}_{N}^{n}\right|=2^{-n}\left|\mathcal{P}^{n}\right|
$$

- For 4-regular graphs the variance only depends on primitive pseudo orbits where all self-intersections are 2-encounters of length zero.
- For 4-regular graphs the variance only depends on primitive pseudo orbits where all self-intersections are 2-encounters of length zero.
- In the semiclassical limit the variance of the n 'th coefficient is determined by the total number of primitive pseudo orbits with n bonds.
- For 4-regular graphs the variance only depends on primitive pseudo orbits where all self-intersections are 2-encounters of length zero.
- In the semiclassical limit the variance of the n'th coefficient is determined by the total number of primitive pseudo orbits with n bonds.
- Parity argument shows contribution of partners of a primitive pseudo orbit with an l-encounter of positive length or with $l \geq 3$ sum to zero.
- For 4-regular graphs the variance only depends on primitive pseudo orbits where all self-intersections are 2-encounters of length zero.
- In the semiclassical limit the variance of the n'th coefficient is determined by the total number of primitive pseudo orbits with n bonds.
- Parity argument shows contribution of partners of a primitive pseudo orbit with an l-encounter of positive length or with $l \geq 3$ sum to zero.
- To extend results to $2 k$-regular graphs requires averaging over assignments of the vertex scattering matrices.

Bibliography

國 J．M．Harrison and T．Hudgins，＂Complete dynamical evaluation of the characteristic polynomial of binary quantum graphs，＂J．Phys．A 55 （2022） 425202 arXiv：2011． 05213

围 J．M．Harrison and T．Hudgins，＂Periodic－orbit evaluation of a spectral statistic of quantum graphs without the semiclassical limit，＂EPL 138 （2022） 30002 arXiv：2101．00006

氞
R．Band，J．M．Harrison and C．H．Joyner，＂Finite pseudo orbit expansions for spectral quantities of quantum graphs，＂J． Phys．A 45 （2012） 325204 arXiv：1205． 4214

