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Dynamical approach to spectral statistics

’71 Gutzwiller’s trace formula for the density of states in the
semiclassical limit.

’85 Berry - Diagonal approximation to the form factor using
Hannay-Ozorio de Almeida sum rule.

’99 Kottos and Smilansky - trace formula for the density of states
of quantum graphs.

’01 Sieber and Richter - 2nd order contribution to the small
parameter asymptotics of the form factor from figure 8 orbits
with one self-intersection.

’03 Berkolaiko, Schanz and Whitney - 2nd and 3rd order
contributions on quantum graphs.

’04 Müller, Heusler, Braun, Haake and Altland - all higher order
contributions.
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Graphs

A directed graph (graph) G is a set of vertices {0, . . . ,V − 1}
connected by bonds b = (i , j) with i , j ∈ {0, . . . ,V − 1}.

The origin and terminus of b = (i , j) are o(b) = i and
t(b) = j .

b = (i , j) is outgoing at i and incoming at j .

We consider 4-regular graphs with 2 incoming and 2 outgoing
bonds at each vertex.
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Quantizing a graph

Assign length Lb > 0 to each bond b.

Assign unitary vertex scattering matrix σ(v) to each vertex v .

A democratic choice is the discrete Fourier transform matrix,

σ(v) =
1√
2

(
1 1
1 −1

)
. (1)

Bond scattering matrix,

Σb′,b =

{
σ

(v)
b′,b v = t(b) = o(b′)

0 otherwise
, (2)

Quantum evolution op. U(k) = ΣeikL, with L = diag{L1, . . . , LB},
defines a unitary stochastic matrix ensemble - Tanner ’01.
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Characteristic polynomial

Characteristic polynomial of U(k)

det (U (k)− ζI) =
B∑

n=0

an(k)ζB−n

Secular equation det (U (k)− I) = 0.

Riemann-Siegel lookalike formula, an = a∗B−n – Kottos and
Smilansky ’99

Variance of coeffs of characteristic polynomial of binary
graphs in semiclassical limit using a diagonal approximation
– Tanner ’02, Band-Harrison-Sepanski ’19
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Periodic orbits

A periodic orbit γ = (b1, . . . , bm) is the equivalence class of
closed paths under cyclic shifts, t(bj) = o(bj+1).

A primitive periodic orbit is a periodic orbit that is not a
repetition of a shorter orbit.

Topological length of γ is m.

Metric length of γ is Lγ =
∑

bj∈γ Lbj .

Stability amplitude is Aγ = Σb2b1Σb3b2 . . .Σbmbm−1Σb1bm .
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Pseudo orbits

A pseudo orbit γ̄ = {γ1, . . . , γM} is a set of periodic orbits.

mγ̄ = M no. of periodic orbits in γ̄.

Metric length Lγ̄ =
∑M

j=1 Lγj .

Stability amplitude Aγ̄ =
∏M

j=1 Aγj .

A primitive pseudo orbit (PPO) is a set of distinct primitive
periodic orbits.

Pn set of PPO with n bonds.
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Theorem 1 (Band-Harrison-Joyner ’12)

Coefficients of the characteristic polynomial are given by,

an =
∑
γ̄∈Pn

(−1)mγ̄ Aγ̄e
ikLγ̄ .

Idea

Expand det (U (k)− ζI) as a sum over permutations.

A permutation ρ ∈ SB can contribute iff ρ(b) is adjacent to b
for all b in ρ.

Representing ρ as a product of disjoint cycles each cycle is a
primitive periodic orbit.
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Variance of coefficients of the characteristic polynomial

〈an〉 =

{
1 n = 0

0 otherwise

〈|an|2〉k =
∑

γ̄,γ̄′∈Pn

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ lim
K→∞

1

K

∫ K

0
eik(Lγ̄−Lγ̄′ )dk

=
∑

γ̄,γ̄′∈Pn

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ δLγ̄ ,Lγ̄′ (3)

Diagonal contribution

〈|an|2〉diag =
∑
γ̄∈Pn

|Aγ̄ |2 = 2−n |Pn| .
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Theorem 2 (Harrison-Hudgins ’22)

For a 4-regular quantum graph with {Lb} incommensurate,

〈|an|2〉 =
1

2n

(
|Pn

0 |+
n∑

N=1

2N |P̂n
N |
)
,

where Pn
0 ⊂ Pn with no self-intersections and P̂n

N ⊂ Pn with N
self-intersections, all of which are 2-encounters of length zero.
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Self-intersections

v0 v1 vr−1 vr

s1 f1

s2

s ′2
s ′′2

f2
f ′2

f ′′2

encounter

link1

link2

link3

2-encounter: γ̄ = (γ1, . . . , γm) with no self-intersections in
γ2, . . . , γm and γ1 = (1, 2), link 1 followed by link 2.

3-encounter: Define γ̄ similarly but with γ1 = (1, 2, 3).

Encounter length zero if it contains no bonds, v0 = vr .
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Example: Binary de Bruijn graph with B = 24

0

1

4

2 5

3

6

7

1

n |Pn
0 | |P̂n

1 | |P̂n
2 | 〈|an|2〉 Numerics Error

0 1 0 0 1 1.000000 0.000000
1 2 0 0 1 0.999991 0.000009
2 2 0 0 1/2 0.499999 0.000001
3 4 0 0 1/2 0.499999 0.000001
4 8 0 0 1/2 0.499999 0.000001
5 8 8 0 3/4 0.749998 0.000002
6 8 20 0 3/4 0.749986 0.000014
7 16 16 8 5/8 0.624989 0.000011
8 16 16 24 9/16 0.562501 -0.000001
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Figure 1: Variance of coefficients of the characteristic polynomial for the
family of 4-regular binary de Bruijn graphs with 2r vertices.
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Example: Binary graph with B = 3 · 22

0

1 2

3 4

5

1

n |Pn
0 | |P̂n

1 | 〈|an|2〉 Numerics Error

0 1 0 1 1.000000 0.000000
1 2 0 1 1.000000 0.000000
2 3 0 3/4 0.750001 -0.000001
3 6 0 3/4 0.750003 -0.000003
4 10 4 7/8 0.874999 0.000001
5 8 4 1/2 0.499998 0.000002
6 8 8 3/8 0.374999 0.000001
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Figure 2: Variance of coefficients of the characteristic polynomial for the
family of 4-regular binary graphs with 3 · 2r vertices.
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Sketch of a proof of Theorem 2

The sum over PPO can be replaced by a sum over irreducible
pseudo orbits where no bonds are repeated P̂n.

〈|an|2〉 =
∑

γ̄,γ̄′∈P̂n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ δLγ̄ ,Lγ̄′ =
∑
γ̄∈P̂n

Cγ̄ (4)

Cγ̄ =
∑
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ (5)

where Pγ̄ is the set of irreducible PPO length Lγ̄ .

If γ̄ has no self-intersections Pγ̄ = {γ̄} and |Aγ̄ |2 = 2−n

producing the 1st term in Theorem 2.

A PPO with an encounter of positive length is not irreducible.

A PPO with an l-encounter with l ≥ 3 is not irreducible as
there are repeated bonds before and after the encounter.

A PPO with a single 2-encounter length zero if γ̄′ 6= γ̄ then
mγ̄′ = mγ̄ ± 1 and Āγ̄′ = −Aγ̄ , hence Cγ̄ = 2 · 2−n.
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mγ̄′ = mγ̄ ± 1 and Āγ̄′ = −Aγ̄ , hence Cγ̄ = 2 · 2−n.

Jon Harrison Characteristic polynomial of regular graphs



Semiclassical limit

For quantum graphs the semiclassical limit is the limit of a
sequence of graphs with B →∞.

For the variance fix n/B and consider long orbits on large
graphs.

In the semiclassical limit half of PPO with a single
2-encounter have encounter length zero, as the probability to
follow the orbit at the initial encounter vertex is 1/2.

As the graph is mixing the proportion of orbits with
3-encounters is vanishes compared to 2-encounters.

Let Pn
N denote the set of PPO length n with N encounters.

Then |P̂n
N | ≈ 2−N |Pn

N |.

〈|an|2〉 = 2−n

(
|Pn

0 |+
n∑

N=1

2N |P̂n
N |
)
≈ 2−n

n∑
N=0

|Pn
N | = 2−n |Pn|
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Summary

For 4-regular graphs the variance only depends on primitive
pseudo orbits where all self-intersections are 2-encounters of
length zero.

In the semiclassical limit the variance of the n’th coefficient is
determined by the total number of primitive pseudo orbits
with n bonds.

Parity argument shows contribution of partners of a primitive
pseudo orbit with an l-encounter of positive length or with
l ≥ 3 sum to zero.

To extend results to 2k-regular graphs requires averaging over
assignments of the vertex scattering matrices.
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