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Graphs

A graph G : a set of vertices V = {1, . . . ,V } and a set of
edges E .

An edge e = (u, v) ∈ E with u, v ∈ {1, . . . ,V }.
|E| = E

Degree of v is no. of edges incident with v .

G is simple if it has no loops or multiple edges.
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Quantum graphs

Self-adjoint Hamiltonians acting on functions defined on a
quasi-one-dimensional network of intervals.

Free electrons in organic molecules (Pauling ’36)

Superconducting networks

Photonic crystals

Nanotechnology

Quantum chaos

Anderson localization
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Metric graphs

Metric graph: associate an interval [0, Le ] to each edge e.

Laplace equation on [0, Le ],

− d2

dx2
e

fe(xe) = k2fe(xe) . (1)

Hilbert space
⊕

e∈E L
2
(
[0, Le ]

)
.
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Domain of Laplace operator

Vertex conditions

AvF(v) + BvF
′(v) = 0

F(v) = (fe1(0), . . . , fel (0), fel+1
(Lel+1

), . . . , fed (Led )))T

F′(v) = (f ′e1
(0), . . . , f ′el (0),−f ′el+1

(Lel+1
), . . . ,−f ′ed (Led )))T

Domain: subspace of
⊕

e∈EW
2,2([0, Le ]) satisfying vertex

conditions.

Theorem 1 (Kostrykin-Schrader ’99)

Laplacian self-adjoint iff (Av ,Bv ) maximal rank and

AvB†v = BvA†v ∀ v ∈ V.
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Example

Standard (Neumann like) conditions

f continuous at v and
∑

e∼v f
′
e (v) = 0.

AvF(v) + BvF
′(v) = 0

Av =


1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1
0 . . . 0 0 0

 Bv =


0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0
1 1 . . . 1
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Wave propagation

Solution of Laplace equation on [0, Le ],

fe(xe) = aine e
−ikxe + aoutē eikxe . (2)

v

Substituting in vertex condition −→a = σ(v)(k)←−a .

σ(v)(k) = −
(
Av + ikBv

)−1(Av − ikBv

)
(3)

σ(v)(k) unitary vertex scattering matrix.

Example: Standard conditions

[σ(v)]ij =
2

dv
− δij

Jon Harrison Quantizing graphs, one way or two?
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Secular equation

Use pairs of directed edges e = (u, v), ē = (v , u) to label
plane-wave coefficients, o(e) = u and t(e) = v .

Graph scattering matrix

Σe e′(k) = δt(e′),o(e) σ
(o(e))
e,e′ (k)

a = (a1, . . . aE , a1̄, . . . , aĒ ) defines an eigenfunction if,

D(k)Σ(k)a = a , (4)

where D(k) = diag{eikL1 , . . . , eikLE , eikL1 , . . . , eikLE }.

Secular equation (Kottos-Smilansky ’97)

det
(
I− D(k)Σ(k)

)
= 0

Jon Harrison Quantizing graphs, one way or two?
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D(k)Σ(k)a = a , (4)

where D(k) = diag{eikL1 , . . . , eikLE , eikL1 , . . . , eikLE }.

Secular equation (Kottos-Smilansky ’97)

det
(
I− D(k)Σ(k)

)
= 0

Jon Harrison Quantizing graphs, one way or two?



Quantum graph operators
Wave propagation

Comparison
Dirac operator model

Alternative graph quantization

Wave-scattering quantization

Specify unitary vertex scattering matrices σ(v).

Spectrum corresponds to roots of secular equation

det
(
I− D(k)Σ

)
= 0 .

Introduced Chalker-Coddington ’88, Chalker-Siak ’90

Spectral properties Tanner ’01

Freedom to choose scattering matrices to simplify analysis.

Jon Harrison Quantizing graphs, one way or two?
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Examples

FFT scattering matrices with democratic transition

probabilities |σ(v)
ij |2 = 1/d where d degree of v and

w = exp(2πi/d).

σ(v) =
1√
d


1 1 1 . . . 1
1 w w2 . . . wd−1

1 w2 w4 . . . w2(d−1)

...
...

...
...

1 wd−1 w2(d−1) . . . w (d−1)(d−1)

 (5)

Equi-transmitting scattering matrices |σ(v)
ii |2 = 0 and

|σ(v)
ij |2 = 1/(d − 1) for i 6= j .

(H-Smilansky-Winn ’07, Kurasov-Ogik-Rauf ’14)
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Energy independence

Theorem 2 (Kostrykin-Potthoff-Schrader ’07, Fulling-Kuchment-Wilson ’07)

At a vertex v the following are equivalent.

1 The scattering matrix σ(v)(k) is independent of k .

2 AvB†v = 0.

3 There exists k 6= 0 such that
(
σ(v)(k)

)2
= I.

4
(
σ(v)(k)

)2
= I for all k .

Example: Standard conditions AvB†v = 0 and [σ(v)]ij = 2
dv
− δij .

Av =


1 −1 0 0 . . .
0 1 −1 0 . . .

. . .
. . .

0 . . . 0 1 −1
0 . . . 0 0 0

 Bv =


0 . . . 0
...

...
0 . . . 0
1 . . . 1
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Consequences for wave-propagation quantization

Only vertex scattering matrices that square to the identity
correspond to scattering matrices of the Laplace (or
Schrödinger) operators.

FFT matrices do not square to the identity.

Equi-transmitting matrices do not square to the identity.

Jon Harrison Quantizing graphs, one way or two?



Quantum graph operators
Wave propagation

Comparison
Dirac operator model

Consequences for wave-propagation quantization

Only vertex scattering matrices that square to the identity
correspond to scattering matrices of the Laplace (or
Schrödinger) operators.

FFT matrices do not square to the identity.

Equi-transmitting matrices do not square to the identity.

Jon Harrison Quantizing graphs, one way or two?



Quantum graph operators
Wave propagation

Comparison
Dirac operator model

Consequences for wave-propagation quantization

Only vertex scattering matrices that square to the identity
correspond to scattering matrices of the Laplace (or
Schrödinger) operators.

FFT matrices do not square to the identity.

Equi-transmitting matrices do not square to the identity.

Jon Harrison Quantizing graphs, one way or two?



Quantum graph operators
Wave propagation

Comparison
Dirac operator model

Approximating vertex scattering matrices

Theorem 3 (Cheon-Exner-Turek ’10)

Self-adjoint vertex conditions parametrized by Av ,Bv can be
approximated by replacing v with Kdv , with delta conditions at the
vertices of Kdv and delta potentials on the edges of Kdv .

v

Delta conditions

f continuous at v and
∑

e∼v f
′
e (v) = αv f (v).

Jon Harrison Quantizing graphs, one way or two?
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Scattering matrix for delta conditions

Delta conditions

f continuous at v and
∑

e∼v f
′
e (v) = αv f (v).

σ(v)(k) =
2

dv − iαv
k

J− I (6)

where J is a matrix of 1’s.
In high energy limit σ(v)(k) approaches k-independent scattering
matrix of standard conditions σ(v) = 2

dv
J− I.

In high energy limit the scattering matrix of general vertex
scattering conditions can be approximated by a larger graph with
k-independent scattering matrices.

Jon Harrison Quantizing graphs, one way or two?
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Dirac equation in 1d

Time independent Dirac equation on [0, Le ],

− i~cα
d

dxe
fe(xe) + mc2βfe(xe) = kfe(xe) . (7)

Dirac algebra α2 = β2 = I and αβ + βα = 0.

Faithful irreducible representation 2× 2 matrices.

Physical interpretation of spin: restrict Dirac equation in 3d.

e.g.

α =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1
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Domain of Dirac op.

Vertex conditions

AvF
+(v) + BvF

−(v) = 0

F+(v) =
(
f e1
1 (0), f e1

2 (0), . . . , f el1 (0), f el2 (0),

f
el+1

1 (Lel+1
), f

el+1

2 (Lel+1
), . . . , f ed1 (Led ), f ed2 (Led )

)T
F−(v) =

(
− f e1

4 (0), f e1
3 (0), . . . ,−f el4 (0), f el3 (0),

f
el+1

4 (Lel+1
),−f el+1

3 (Lel+1
), . . . , f ed4 (Led ),−f e,d3 (Led )

)T
Domain: subspace of

⊕
e∈EW

1,2([0, Le ])⊗ C4.

Theorem 4 (Bolte-H. ’03)

Dirac op. self-adjoint iff rk(Av ,Bv ) maximal and AvB†v = BvA†v .

Jon Harrison Quantizing graphs, one way or two?
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Wave propagation of spinors

fe(xe) =aeα


1
0
0

iγ(k)

 eikxe + aeβ


0
1

−iγ(k)
0

 eikxe

+ aēα


1
0
0

−iγ(k)

 e−ikxe + aēβ


0
1

iγ(k)
0

 e−ikxe (8)

γ(k) =
E −mc2

~ck
E =

√
(~ck)2 + m2c4 (9)

Zero mass γ(k) = 1 and γ(k)→ 1 as k →∞.

Jon Harrison Quantizing graphs, one way or two?
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Scattering matrices

−→a =
(
ae1
α , a

e1
β , . . . , a

el
α , a

el
β ,

a
ēl+1
α e−ikLel+1 , a

ēl+1

β e−ikLel+1 , . . . , aēdα e−ikLed , aēdβ e−ikLed
)T

←−a =
(
aē1
α , a

ē1
β , . . . , a

ēl
α , a

ēl
β ,

a
el+1
α eikLel+1 , a

el+1

β eikLel+1 , . . . , aedα eikLed , aedβ eikLed
)T

From vertex condition −→a = σ(v)←−a .

σ(v)(k) = −
(
Av − iγ(k)Bv

)−1(Av + iγ(k)Bv

)
(10)

Scattering at vertices rotates spin.

For zero mass or in high energy limit σ(v) k-independent.
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Dirac op. model

Let Uv be a 2dv × 2dv unitary matrix. Consider the zero mass
self-adjoint Dirac op. with vertex conditions defined by,

Av =
1

2
(I− Uv ) Bv =

i

2
(I + Uv ) .

σ(v) = −
(
Av − iBv

)−1(Av + iBv

)
= Uv

Produces a chosen k-independent vertex scattering matrix.

But 2 incoming and 2 outgoing plane waves on each edge.

Jon Harrison Quantizing graphs, one way or two?
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(I + Ûv ⊗ I2) .

σ(v) = Ûv ⊗ I2
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Let Ûv be a dv × dv unitary matrix. Consider the zero mass
self-adjoint Dirac op. with vertex conditions defined by,

Av =
1

2
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Observation: Secular equation of Dirac op. with zero mass and no
spin rotation matches secular equation of wave propagation
obtained by specifying vertex scattering matrices.

For massive particles this agreement is obtained in the high
energy limit.

Wave-propagation quantization a subset of quantum graphs
described by self-adjoint Hamiltonians.

2-component spinor construction - Berkolaiko ’08.
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Conclusions

Spectra of graphs quantized by specifying vertex scattering
matrices can be regarded as spectra of Hamiltonians on
metric graphs.

The correspondence is observed for Dirac operators with
vertex conditions that do not rotate spin and zero mass or in
the high energy limit.
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