Quantizing graphs, one way or two?

Jon Harrison
Baylor University

FernUniversität in Hagen 26/4/23

Outline

(1) Quantum graph operators
(2) Wave propagation
(3) Comparison
(4) Dirac operator model

Graphs

- A graph G : a set of vertices $\mathcal{V}=\{1, \ldots, V\}$ and a set of edges \mathcal{E}.

Graphs

- A graph G : a set of vertices $\mathcal{V}=\{1, \ldots, V\}$ and a set of edges \mathcal{E}.
- An edge $e=(u, v) \in \mathcal{E}$ with $u, v \in\{1, \ldots, V\}$.

Graphs

- A graph G : a set of vertices $\mathcal{V}=\{1, \ldots, V\}$ and a set of edges \mathcal{E}.
- An edge $e=(u, v) \in \mathcal{E}$ with $u, v \in\{1, \ldots, V\}$.
- $|\mathcal{E}|=E$

Graphs

- A graph G : a set of vertices $\mathcal{V}=\{1, \ldots, V\}$ and a set of edges \mathcal{E}.
- An edge $e=(u, v) \in \mathcal{E}$ with $u, v \in\{1, \ldots, V\}$.
- $|\mathcal{E}|=E$
- Degree of v is no. of edges incident with v.

Graphs

- A graph G : a set of vertices $\mathcal{V}=\{1, \ldots, V\}$ and a set of edges \mathcal{E}.
- An edge $e=(u, v) \in \mathcal{E}$ with $u, v \in\{1, \ldots, V\}$.
- $|\mathcal{E}|=E$
- Degree of v is no. of edges incident with v.
- G is simple if it has no loops or multiple edges.

Quantum graphs

Self-adjoint Hamiltonians acting on functions defined on a quasi-one-dimensional network of intervals.

Quantum graphs

Self-adjoint Hamiltonians acting on functions defined on a quasi-one-dimensional network of intervals.

- Free electrons in organic molecules (Pauling '36)
- Superconducting networks
- Photonic crystals
- Nanotechnology
- Quantum chaos
- Anderson localization

Metric graphs

- Metric graph: associate an interval $\left[0, L_{e}\right]$ to each edge e.

Metric graphs

- Metric graph: associate an interval $\left[0, L_{e}\right]$ to each edge e.
- Laplace equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x_{e}^{2}} f_{e}\left(x_{e}\right)=k^{2} f_{e}\left(x_{e}\right) . \tag{1}
\end{equation*}
$$

Metric graphs

- Metric graph: associate an interval $\left[0, L_{e}\right]$ to each edge e.
- Laplace equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x_{e}^{2}} f_{e}\left(x_{e}\right)=k^{2} f_{e}\left(x_{e}\right) . \tag{1}
\end{equation*}
$$

- Hilbert space $\bigoplus_{e \in \mathcal{E}} L^{2}\left(\left[0, L_{e}\right]\right)$.

Domain of Laplace operator

Vertex conditions

$$
\mathbb{A}_{v} \mathbf{F}(v)+\mathbb{B}_{v} \mathbf{F}^{\prime}(v)=\mathbf{0}
$$

$$
\begin{aligned}
\mathbf{F}(v) & \left.=\left(f_{e_{1}}(0), \ldots, f_{e_{l}}(0), f_{e_{l+1}}\left(L_{e_{l+1}}\right), \ldots, f_{e_{d}}\left(L_{e_{d}}\right)\right)\right)^{T} \\
\mathbf{F}^{\prime}(v) & \left.=\left(f_{e_{1}}^{\prime}(0), \ldots, f_{e_{l}}^{\prime}(0),-f_{e_{l+1}}^{\prime}\left(L_{e_{l+1}}\right), \ldots,-f_{e_{d}}^{\prime}\left(L_{e_{d}}\right)\right)\right)^{T}
\end{aligned}
$$

Domain of Laplace operator

Vertex conditions

$$
\begin{gathered}
\mathbb{A}_{v} \mathbf{F}(v)+\mathbb{B}_{v} \mathbf{F}^{\prime}(v)=\mathbf{0} \\
\left.\mathbf{F}(v)=\left(f_{e_{1}}(0), \ldots, f_{e_{e}}(0), f_{e_{l+1}}\left(L_{e_{++1}}\right), \ldots, f_{e_{d}}\left(L_{e_{d}}\right)\right)\right)^{T} \\
\left.\mathbf{F}^{\prime}(v)=\left(f_{e_{1}}^{\prime}(0), \ldots, f_{e_{l}}^{\prime}(0),-f_{e_{e_{+1}}}^{\prime}\left(L_{e_{l+1}}\right), \ldots,-f_{e_{d}}^{\prime}\left(L_{e_{d}}\right)\right)\right)^{T}
\end{gathered}
$$

Domain: subspace of $\bigoplus_{e \in \mathcal{E}} W^{2,2}\left(\left[0, L_{e}\right]\right)$ satisfying vertex conditions.

Theorem 1 (Kostrykin-Schrader '99)

Laplacian self-adjoint iff $\left(\mathbb{A}_{v}, \mathbb{B}_{v}\right)$ maximal rank and

$$
\mathbb{A}_{v} \mathbb{B}_{v}^{\dagger}=\mathbb{B}_{v} \mathbb{A}_{v}^{\dagger} \quad \forall v \in \mathcal{V}
$$

Example

Standard (Neumann like) conditions

f continuous at v and $\sum_{e \sim v} f_{e}^{\prime}(v)=0$.

$$
\mathbb{A}_{v} \mathbf{F}(v)+\mathbb{B}_{v} \mathbf{F}^{\prime}(v)=\mathbf{0}
$$

$$
\mathbb{A}_{v}=\left(\begin{array}{ccccc}
1 & -1 & 0 & \ldots & 0 \\
0 & 1 & -1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 1 & -1 \\
0 & \ldots & 0 & 0 & 0
\end{array}\right) \quad \mathbb{B}_{v}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right)
$$

Wave propagation

Solution of Laplace equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
f_{e}\left(x_{e}\right)=a_{e}^{\mathrm{in}} \mathrm{e}^{-\mathrm{i} k x_{e}}+a_{\bar{e}}^{\mathrm{out}} \mathrm{e}^{\mathrm{i} k x_{e}} \tag{2}
\end{equation*}
$$

Substituting in vertex condition $\vec{a}=\sigma^{(v)}(k) \overleftarrow{a}$.

$$
\begin{equation*}
\sigma^{(v)}(k)=-\left(\mathbb{A}_{v}+i k \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}-i k \mathbb{B}_{v}\right) \tag{3}
\end{equation*}
$$

$\sigma^{(v)}(k)$ unitary vertex scattering matrix.

Wave propagation

Solution of Laplace equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
f_{e}\left(x_{e}\right)=a_{e}^{\mathrm{in}} \mathrm{e}^{-\mathrm{i} k x_{e}}+a_{\bar{e}}^{\mathrm{out}} \mathrm{e}^{\mathrm{i} k x_{e}} \tag{2}
\end{equation*}
$$

Substituting in vertex condition $\vec{a}=\sigma^{(v)}(k) \overleftarrow{a}$.

$$
\begin{equation*}
\sigma^{(v)}(k)=-\left(\mathbb{A}_{v}+i k \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}-i k \mathbb{B}_{v}\right) \tag{3}
\end{equation*}
$$

$\sigma^{(v)}(k)$ unitary vertex scattering matrix.

Example: Standard conditions

$$
\left[\sigma^{(v)}\right]_{i j}=\frac{2}{d_{v}}-\delta_{i j}
$$

Secular equation

Use pairs of directed edges $e=(u, v), \bar{e}=(v, u)$ to label plane-wave coefficients, $o(e)=u$ and $t(e)=v$.

Graph scattering matrix

$$
\Sigma_{e e^{\prime}}(k)=\delta_{t\left(e^{\prime}\right), o(e)} \sigma_{e, e^{\prime}}^{(o(e))}(k)
$$

Secular equation

Use pairs of directed edges $e=(u, v), \bar{e}=(v, u)$ to label plane-wave coefficients, $o(e)=u$ and $t(e)=v$.

Graph scattering matrix

$$
\Sigma_{e e^{\prime}}(k)=\delta_{t\left(e^{\prime}\right), o(e)} \sigma_{e, e^{\prime}}^{(o(e))}(k)
$$

$\mathbf{a}=\left(a_{1}, \ldots a_{E}, a_{\overline{1}}, \ldots, a_{\bar{E}}\right)$ defines an eigenfunction if,

$$
\begin{equation*}
D(k) \Sigma(k) \mathbf{a}=\mathbf{a} \tag{4}
\end{equation*}
$$

where $D(k)=\operatorname{diag}\left\{\mathrm{e}^{\mathrm{i} k L_{1}}, \ldots, \mathrm{e}^{\mathrm{i} k L_{E}}, \mathrm{e}^{\mathrm{i} k L_{1}}, \ldots, \mathrm{e}^{\mathrm{i} k L_{E}}\right\}$.

Secular equation

Use pairs of directed edges $e=(u, v), \bar{e}=(v, u)$ to label plane-wave coefficients, $o(e)=u$ and $t(e)=v$.

Graph scattering matrix

$$
\Sigma_{e e^{\prime}}(k)=\delta_{t\left(e^{\prime}\right), o(e)} \sigma_{e, e^{\prime}}^{(o(e))}(k)
$$

$\mathbf{a}=\left(a_{1}, \ldots a_{E}, a_{\overline{1}}, \ldots, a_{\bar{E}}\right)$ defines an eigenfunction if,

$$
\begin{equation*}
D(k) \Sigma(k) \mathbf{a}=\mathbf{a} \tag{4}
\end{equation*}
$$

where $D(k)=\operatorname{diag}\left\{\mathrm{e}^{\mathrm{i} k L_{1}}, \ldots, \mathrm{e}^{\mathrm{i} k L_{E}}, \mathrm{e}^{\mathrm{i} k L_{1}}, \ldots, \mathrm{e}^{\mathrm{i} k L_{E}}\right\}$.

Secular equation (Kottos-Smilansky '97)

$$
\operatorname{det}(I-D(k) \Sigma(k))=0
$$

Alternative graph quantization

- Wave-scattering quantization

Alternative graph quantization

- Wave-scattering quantization
- Specify unitary vertex scattering matrices $\sigma^{(v)}$.

Alternative graph quantization

- Wave-scattering quantization
- Specify unitary vertex scattering matrices $\sigma^{(v)}$.
- Spectrum corresponds to roots of secular equation

$$
\operatorname{det}(\mathrm{I}-D(k) \Sigma)=0
$$

Alternative graph quantization

- Wave-scattering quantization
- Specify unitary vertex scattering matrices $\sigma^{(v)}$.
- Spectrum corresponds to roots of secular equation

$$
\operatorname{det}(\mathrm{I}-D(k) \Sigma)=0
$$

- Introduced Chalker-Coddington '88, Chalker-Siak '90

Alternative graph quantization

- Wave-scattering quantization
- Specify unitary vertex scattering matrices $\sigma^{(v)}$.
- Spectrum corresponds to roots of secular equation

$$
\operatorname{det}(\mathrm{I}-D(k) \Sigma)=0
$$

- Introduced Chalker-Coddington '88, Chalker-Siak '90
- Spectral properties Tanner '01

Alternative graph quantization

- Wave-scattering quantization
- Specify unitary vertex scattering matrices $\sigma^{(v)}$.
- Spectrum corresponds to roots of secular equation

$$
\operatorname{det}(\mathrm{I}-D(k) \Sigma)=0
$$

- Introduced Chalker-Coddington '88, Chalker-Siak '90
- Spectral properties Tanner '01
- Freedom to choose scattering matrices to simplify analysis.

Examples

- FFT scattering matrices with democratic transition probabilities $\left|\sigma_{i j}^{(v)}\right|^{2}=1 / d$ where d degree of v and $w=\exp (2 \pi \mathrm{i} / d)$.

$$
\sigma^{(v)}=\frac{1}{\sqrt{d}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \tag{5}\\
1 & w & w^{2} & \ldots & w^{d-1} \\
1 & w^{2} & w^{4} & \ldots & w^{2(d-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & w^{d-1} & w^{2(d-1)} & \ldots & w^{(d-1)(d-1)}
\end{array}\right)
$$

Examples

- FFT scattering matrices with democratic transition probabilities $\left|\sigma_{i j}^{(v)}\right|^{2}=1 / d$ where d degree of v and $w=\exp (2 \pi \mathrm{i} / d)$.

$$
\sigma^{(v)}=\frac{1}{\sqrt{d}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \tag{5}\\
1 & w & w^{2} & \ldots & w^{d-1} \\
1 & w^{2} & w^{4} & \ldots & w^{2(d-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & w^{d-1} & w^{2(d-1)} & \ldots & w^{(d-1)(d-1)}
\end{array}\right)
$$

- Equi-transmitting scattering matrices $\left|\sigma_{i i}^{(v)}\right|^{2}=0$ and $\left|\sigma_{i j}^{(v)}\right|^{2}=1 /(d-1)$ for $i \neq j$.
(H-Smilansky-Winn '07, Kurasov-Ogik-Rauf '14)

Energy independence

Theorem 2 (Kostrykin-Potthoff-Schrader '07, Fulling-Kuchment-Wilson '07)
At a vertex v the following are equivalent.
(1) The scattering matrix $\sigma^{(v)}(k)$ is independent of k.
(2) $\mathbb{A}_{v} \mathbb{B}_{v}^{\dagger}=0$.
(3) There exists $k \neq 0$ such that $\left(\sigma^{(v)}(k)\right)^{2}=\mathrm{I}$.
(9) $\left(\sigma^{(v)}(k)\right)^{2}=I$ for all k.

Energy independence

Theorem 2 (Kostrykin-Potthoff-Schrader '07, Fulling-Kuchment-Wilson '07)
At a vertex v the following are equivalent.
(1) The scattering matrix $\sigma^{(v)}(k)$ is independent of k.
(2) $\mathbb{A}_{v} \mathbb{B}_{v}^{\dagger}=0$.
(3) There exists $k \neq 0$ such that $\left(\sigma^{(v)}(k)\right)^{2}=I$.
(9) $\left(\sigma^{(v)}(k)\right)^{2}=I$ for all k.

Example: Standard conditions $\mathbb{A}_{v} \mathbb{B}_{v}^{\dagger}=0$ and $\left[\sigma^{(v)}\right]_{i j}=\frac{2}{d_{v}}-\delta_{i j}$.

$$
\mathbb{A}_{v}=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & \ldots \\
0 & 1 & -1 & 0 & \ldots \\
& & \ddots & \ddots & \\
0 & \ldots & 0 & 1 & -1 \\
0 & \ldots & 0 & 0 & 0
\end{array}\right) \quad \mathbb{B}_{v}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0 \\
1 & \ldots & 1
\end{array}\right)
$$

Consequences for wave-propagation quantization

- Only vertex scattering matrices that square to the identity correspond to scattering matrices of the Laplace (or Schrödinger) operators.
- FFT matrices do not square to the identity.
- Equi-transmitting matrices do not square to the identity.

Consequences for wave-propagation quantization

- Only vertex scattering matrices that square to the identity correspond to scattering matrices of the Laplace (or Schrödinger) operators.
- FFT matrices do not square to the identity.
- Equi-transmitting matrices do not square to the identity.

Consequences for wave-propagation quantization

- Only vertex scattering matrices that square to the identity correspond to scattering matrices of the Laplace (or Schrödinger) operators.
- FFT matrices do not square to the identity.
- Equi-transmitting matrices do not square to the identity.

Approximating vertex scattering matrices

Theorem 3 (Cheon-Exner-Turek '10)

Self-adjoint vertex conditions parametrized by $\mathbb{A}_{v}, \mathbb{B}_{v}$ can be approximated by replacing v with $K_{d_{v}}$, with delta conditions at the vertices of $K_{d_{v}}$ and delta potentials on the edges of $K_{d_{v}}$.

Delta conditions

f continuous at v and $\sum_{e \sim v} f_{e}^{\prime}(v)=\alpha_{v} f(v)$.

Scattering matrix for delta conditions

Delta conditions

f continuous at v and $\sum_{e \sim v} f_{e}^{\prime}(v)=\alpha_{v} f(v)$.

$$
\begin{equation*}
\sigma^{(v)}(k)=\frac{2}{d_{v}-\mathrm{i} \frac{\alpha_{v}}{k}} \mathrm{~J}-\mathrm{I} \tag{6}
\end{equation*}
$$

where J is a matrix of 1 's.
In high energy limit $\sigma^{(v)}(k)$ approaches k-independent scattering matrix of standard conditions $\sigma^{(v)}=\frac{2}{d_{v}} \mathrm{~J}-\mathrm{I}$.

Scattering matrix for delta conditions

Delta conditions

f continuous at v and $\sum_{e \sim v} f_{e}^{\prime}(v)=\alpha_{v} f(v)$.

$$
\begin{equation*}
\sigma^{(v)}(k)=\frac{2}{d_{v}-\mathrm{i} \frac{\alpha_{v}}{k}} \mathrm{~J}-\mathrm{I} \tag{6}
\end{equation*}
$$

where J is a matrix of 1 's.
In high energy limit $\sigma^{(v)}(k)$ approaches k-independent scattering matrix of standard conditions $\sigma^{(v)}=\frac{2}{d_{v}} \mathrm{~J}-\mathrm{I}$.

In high energy limit the scattering matrix of general vertex scattering conditions can be approximated by a larger graph with k-independent scattering matrices.

Dirac equation in 1d

Time independent Dirac equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
-\mathrm{i} \hbar c \alpha \frac{\mathrm{~d}}{\mathrm{~d} x_{e}} \mathbf{f}_{e}\left(x_{e}\right)+m c^{2} \beta \mathbf{f}_{e}\left(x_{e}\right)=k \mathbf{f}_{e}\left(x_{e}\right) . \tag{7}
\end{equation*}
$$

- Dirac algebra $\alpha^{2}=\beta^{2}=\mathrm{I}$ and $\alpha \beta+\beta \alpha=0$.

Dirac equation in 1d

Time independent Dirac equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
-\mathrm{i} \hbar c \alpha \frac{\mathrm{~d}}{\mathrm{~d} x_{e}} \mathbf{f}_{e}\left(x_{e}\right)+m c^{2} \beta \mathbf{f}_{e}\left(x_{e}\right)=k \mathbf{f}_{e}\left(x_{e}\right) . \tag{7}
\end{equation*}
$$

- Dirac algebra $\alpha^{2}=\beta^{2}=\mathrm{I}$ and $\alpha \beta+\beta \alpha=0$.
- Faithful irreducible representation 2×2 matrices.

Dirac equation in 1d

Time independent Dirac equation on $\left[0, L_{e}\right]$,

$$
\begin{equation*}
-\mathrm{i} \hbar c \alpha \frac{\mathrm{~d}}{\mathrm{~d} x_{e}} \mathbf{f}_{e}\left(x_{e}\right)+m c^{2} \beta \mathbf{f}_{e}\left(x_{e}\right)=k \mathbf{f}_{e}\left(x_{e}\right) . \tag{7}
\end{equation*}
$$

- Dirac algebra $\alpha^{2}=\beta^{2}=\mathrm{I}$ and $\alpha \beta+\beta \alpha=0$.
- Faithful irreducible representation 2×2 matrices.
- Physical interpretation of spin: restrict Dirac equation in 3d.
- e.g.

$$
\alpha=\left(\begin{array}{cccc}
0 & 0 & 0 & -\mathrm{i} \\
0 & 0 & \mathrm{i} & 0 \\
0 & -\mathrm{i} & 0 & 0 \\
\mathrm{i} & 0 & 0 & 0
\end{array}\right) \quad \beta=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Domain of Dirac op.

Vertex conditions

$$
\begin{gathered}
\mathbb{A}_{v} \mathbf{F}^{+}(v)+\mathbb{B}_{v} \mathbf{F}^{-}(v)=\mathbf{0} \\
\mathbf{F}^{+}(v)=\left(f_{1}^{e_{1}}(0), f_{2}^{e_{1}}(0), \ldots, f_{1}^{e_{l}}(0), f_{2}^{e_{l}}(0),\right. \\
\left.f_{1}^{e_{l+1}}\left(L_{e_{l+1}}\right), f_{2}^{e_{l+1}}\left(L_{e_{l+1}}\right), \ldots, f_{1}^{e_{d}}\left(L_{e_{d}}\right), f_{2}^{e_{d}}\left(L_{e_{d}}\right)\right)^{T} \\
\mathbf{F}^{-}(v)=\left(-f_{4}^{e_{1}}(0), f_{3}^{e_{1}}(0), \ldots,-f_{4}^{e_{l}}(0), f_{3}^{e_{l}}(0),\right. \\
\left.f_{4}^{e_{l+1}}\left(L_{e_{l+1}}\right),-f_{3}^{e_{l+1}}\left(L_{e_{l+1}}\right), \ldots, f_{4}^{e_{d}}\left(L_{e_{d}}\right),-f_{3}^{e_{, d}}\left(L_{e_{d}}\right)\right)^{T}
\end{gathered}
$$

Domain: subspace of $\bigoplus_{e \in \mathcal{E}} W^{1,2}\left(\left[0, L_{e}\right]\right) \otimes \mathbb{C}^{4}$.

Theorem 4 (Bolte-H. '03)

Dirac op. self-adjoint iff $r k\left(\mathbb{A}_{v}, \mathbb{B}_{v}\right)$ maximal and $\mathbb{A}_{v} \mathbb{B}_{v}^{\dagger}=\mathbb{B}_{v} \mathbb{A}_{v}^{\dagger}$.

Dirac operator model

Wave propagation of spinors

$$
\begin{align*}
& \mathbf{f}_{e}\left(x_{e}\right)=a_{\alpha}^{e}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\mathrm{i} \gamma(k)
\end{array}\right) \mathrm{e}^{\mathrm{i} k x_{e}}+a_{\beta}^{e}\left(\begin{array}{c}
0 \\
1 \\
-\mathrm{i} \gamma(k) \\
0
\end{array}\right) \mathrm{e}^{\mathrm{i} k x_{e}} \\
&+a_{\alpha}^{\bar{e}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-\mathrm{i} \gamma(k)
\end{array}\right) \mathrm{e}^{-\mathrm{i} k x_{e}}+a_{\beta}^{\bar{e}} \tag{8}\\
& \gamma\left(\begin{array}{c}
0 \\
1 \\
\mathrm{i} \gamma(k) \\
0
\end{array}\right) \mathrm{e}^{-\mathrm{i} k x_{e}} \tag{9}\\
& \gamma(k)=\frac{E-m c^{2}}{\hbar c k} \quad E=\sqrt{(\hbar c k)^{2}+m^{2} c^{4}}
\end{align*}
$$

Zero mass $\gamma(k)=1$ and $\gamma(k) \rightarrow 1$ as $k \rightarrow \infty$.

Scattering matrices

$$
\begin{aligned}
& \vec{a}=\left(a_{\alpha}^{e_{1}}, a_{\beta}^{e_{1}}, \ldots, a_{\alpha}^{e_{l}}, a_{\beta}^{e_{l}},\right. \\
& \left.\quad a_{\alpha}^{\bar{e}_{+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{\bar{e}_{l+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{\bar{e}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}, a_{\beta}^{\bar{e}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}\right)^{T} \\
& \overleftarrow{a}=\left(a_{\alpha}^{\bar{e}_{1}}, a_{\beta}^{\bar{e}_{1}}, \ldots, a_{\alpha}^{\bar{e}_{l}}, a_{\beta}^{\bar{e}_{l}}\right. \\
& \left.\quad a_{\alpha}^{e_{l+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{e_{l+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}, a_{\beta}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}\right)^{T}
\end{aligned}
$$

From vertex condition $\vec{a}=\sigma^{(v)} \overleftarrow{a}$

$$
\begin{equation*}
\sigma^{(v)}(k)=-\left(\mathbb{A}_{v}-\mathrm{i} \gamma(k) \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+\mathrm{i} \gamma(k) \mathbb{B}_{v}\right) \tag{10}
\end{equation*}
$$

Scattering matrices

$$
\begin{aligned}
& \vec{a}=\left(a_{\alpha}^{e_{1}}, a_{\beta}^{e_{1}}, \ldots, a_{\alpha}^{e_{l}}, a_{\beta}^{e_{l}},\right. \\
& \left.\quad a_{\alpha}^{\bar{e}_{l+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{\bar{e}_{l+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{\bar{e}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}, a_{\beta}^{\bar{a}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}\right)^{T} \\
& \overleftarrow{a}=\left(a_{\alpha}^{\bar{e}_{1}}, a_{\beta}^{\bar{e}_{1}}, \ldots, a_{\alpha}^{\bar{e}_{I}}, a_{\beta}^{\bar{e}_{l}}\right. \\
& \left.\quad a_{\alpha}^{e_{l+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{e_{l+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}, a_{\beta}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}\right)^{T}
\end{aligned}
$$

From vertex condition $\vec{a}=\sigma^{(v)} \overleftarrow{a}$.

$$
\begin{equation*}
\sigma^{(v)}(k)=-\left(\mathbb{A}_{v}-\mathrm{i} \gamma(k) \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+\mathrm{i} \gamma(k) \mathbb{B}_{v}\right) \tag{10}
\end{equation*}
$$

- Scattering at vertices rotates spin.

Scattering matrices

$$
\begin{aligned}
& \vec{a}=\left(a_{\alpha}^{e_{1}}, a_{\beta}^{e_{1}}, \ldots, a_{\alpha}^{e_{l}}, a_{\beta}^{e_{l}},\right. \\
& \left.\quad a_{\alpha}^{\bar{e}_{+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{\bar{e}_{l+1}} \mathrm{e}^{-\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{\bar{e}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}, a_{\beta}^{\bar{e}_{d}} \mathrm{e}^{-\mathrm{i} k L_{e_{d}}}\right)^{T} \\
& \overleftarrow{a}=\left(a_{\alpha}^{\bar{e}_{1}}, a_{\beta}^{\bar{e}_{1}}, \ldots, a_{\alpha}^{\bar{e}_{l}}, a_{\beta}^{\bar{e}_{l}}\right. \\
& \left.\quad a_{\alpha}^{e_{+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, a_{\beta}^{e_{l+1}} \mathrm{e}^{\mathrm{i} k L_{e_{l+1}}}, \ldots, a_{\alpha}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}, a_{\beta}^{e_{d}} \mathrm{e}^{\mathrm{i} k L_{e_{d}}}\right)^{T}
\end{aligned}
$$

From vertex condition $\vec{a}=\sigma^{(v)} \overleftarrow{a}$.

$$
\begin{equation*}
\sigma^{(v)}(k)=-\left(\mathbb{A}_{v}-\mathrm{i} \gamma(k) \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+\mathrm{i} \gamma(k) \mathbb{B}_{v}\right) \tag{10}
\end{equation*}
$$

- Scattering at vertices rotates spin.
- For zero mass or in high energy limit $\sigma^{(v)} k$-independent.

Dirac op. model

Let U_{v} be a $2 d_{v} \times 2 d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(I-U_{v}\right) \quad \mathbb{B}_{v}=\frac{i}{2}\left(I+U_{v}\right)
$$

Dirac op. model

Let U_{v} be a $2 d_{v} \times 2 d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(I-U_{v}\right) \quad \mathbb{B}_{v}=\frac{i}{2}\left(I+U_{v}\right)
$$

- $\sigma^{(v)}=-\left(\mathbb{A}_{v}-i \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+i \mathbb{B}_{v}\right)=U_{v}$

Dirac op. model

Let U_{v} be a $2 d_{v} \times 2 d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(I-U_{v}\right) \quad \mathbb{B}_{v}=\frac{i}{2}\left(I+U_{v}\right)
$$

- $\sigma^{(v)}=-\left(\mathbb{A}_{v}-i \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+i \mathbb{B}_{v}\right)=U_{v}$
- Produces a chosen k-independent vertex scattering matrix.

Dirac op. model

Let U_{v} be a $2 d_{v} \times 2 d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(I-U_{v}\right) \quad \mathbb{B}_{v}=\frac{i}{2}\left(I+U_{v}\right)
$$

- $\sigma^{(v)}=-\left(\mathbb{A}_{v}-i \mathbb{B}_{v}\right)^{-1}\left(\mathbb{A}_{v}+i \mathbb{B}_{v}\right)=U_{v}$
- Produces a chosen k-independent vertex scattering matrix.
- But 2 incoming and 2 outgoing plane waves on each edge.

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) .
$$

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) .
$$

- $\sigma^{(v)}=\widehat{U}_{v} \otimes I_{2}$

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right)
$$

- $\sigma^{(v)}=\widehat{U}_{v} \otimes I_{2}$
- This form prevents spin rotation during scattering.

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) .
$$

- $\sigma^{(v)}=\widehat{U}_{v} \otimes I_{2}$
- This form prevents spin rotation during scattering.
- Let $\widehat{\Sigma}$ be k-independent bond scattering matrix generated by vertex scattering matrices \widehat{U}_{v}.

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right)
$$

- $\sigma^{(v)}=\widehat{U}_{v} \otimes I_{2}$
- This form prevents spin rotation during scattering.
- Let $\widehat{\Sigma}$ be k-independent bond scattering matrix generated by vertex scattering matrices \widehat{U}_{v}.
- Secular equation $\operatorname{det}\left(\mathrm{I}-(D(k) \widehat{\Sigma}) \otimes \mathrm{I}_{2}\right)=0$.

Dirac op. model

Let \widehat{U}_{v} be a $d_{v} \times d_{v}$ unitary matrix. Consider the zero mass self-adjoint Dirac op. with vertex conditions defined by,

$$
\mathbb{A}_{v}=\frac{1}{2}\left(\mathrm{I}-\widehat{U}_{v} \otimes \mathrm{I}_{2}\right) \quad \mathbb{B}_{v}=\frac{\mathrm{i}}{2}\left(\mathrm{I}+\widehat{U}_{v} \otimes \mathrm{I}_{2}\right)
$$

- $\sigma^{(v)}=\widehat{U}_{v} \otimes I_{2}$
- This form prevents spin rotation during scattering.
- Let $\widehat{\Sigma}$ be k-independent bond scattering matrix generated by vertex scattering matrices \widehat{U}_{v}.
- Secular equation $\operatorname{det}\left(\mathrm{I}-(D(k) \widehat{\Sigma}) \otimes \mathrm{I}_{2}\right)=0$.
- Reduces to $\operatorname{det}(\mathrm{I}-(D(k) \widehat{\Sigma}))=0$.

Observation: Secular equation of Dirac op. with zero mass and no spin rotation matches secular equation of wave propagation obtained by specifying vertex scattering matrices.

Observation: Secular equation of Dirac op. with zero mass and no spin rotation matches secular equation of wave propagation obtained by specifying vertex scattering matrices.

- For massive particles this agreement is obtained in the high energy limit.

Observation: Secular equation of Dirac op. with zero mass and no spin rotation matches secular equation of wave propagation obtained by specifying vertex scattering matrices.

- For massive particles this agreement is obtained in the high energy limit.
- Wave-propagation quantization a subset of quantum graphs described by self-adjoint Hamiltonians.

Observation: Secular equation of Dirac op. with zero mass and no spin rotation matches secular equation of wave propagation obtained by specifying vertex scattering matrices.

- For massive particles this agreement is obtained in the high energy limit.
- Wave-propagation quantization a subset of quantum graphs described by self-adjoint Hamiltonians.
- 2-component spinor construction - Berkolaiko '08.

Conclusions

- Spectra of graphs quantized by specifying vertex scattering matrices can be regarded as spectra of Hamiltonians on metric graphs.
- The correspondence is observed for Dirac operators with vertex conditions that do not rotate spin and zero mass or in the high energy limit.

用 J.M. Harrison, "Quantizing graphs, one way or two?" arXiv:2302.07193
國 J. Bolte and J.M. Harrison, "Spectral statistics for the Dirac operator on graphs," J. Phys. A: Math. Gen. 36 (2003) 2747-2769 arXiv:nlin/0210029

