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Outline

All animals are equal, but some animals are more equal than
others.

– George Orwell, Animal Farm
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Dynamical approach to spectral statistics

’71 Gutzwiller’s trace formula for the density of states in the
semiclassical limit.

’85 Berry - Diagonal approximation to the form factor using
Hannay-Ozorio de Almeida sum rule.

’99 Kottos and Smilansky - trace formula for the density of states
of quantum graphs.

’01 Sieber and Richter - 2nd order contribution to the small
parameter asymptotics of the form factor from figure 8 orbits
with one self-intersection.

’03 Berkolaiko, Schanz and Whitney - 2nd and 3rd order
contributions on quantum graphs.

’04 Müller, Heusler, Braun, Haake and Altland - all higher order
contributions.
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Graphs

A directed graph (graph) G is a set of vertices {0, . . . ,V − 1}
connected by bonds b = (i , j) with i , j ∈ {0, . . . ,V − 1}.
The origin and terminus of b = (i , j) are o(b) = i and
t(b) = j .

b = (i , j) is outgoing at i and incoming at j .

We consider 4-regular graphs with 2 incoming and 2 outgoing
bonds at each vertex.

The degree of vertex v is dv the no. of bonds connected to v .
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Quantum graphs

Quantum graphs model phenomena associated with complex
quantum systems.

Free electrons in organic molecules

Superconducting networks

Photonic crystals

Nanotechnology

Quantum chaos

Anderson localization
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Quantizing a graph

To quantize G ;

Assign length Lb > 0 to each bond b.

Assign a unitary vertex scattering matrix σ(v) to each vertex v .

A democratic choice is the discrete Fourier transform matrix,

σ(v) =
1√
2

(
1 1
1 −1

)
. (1)

Bond scattering matrix,

Σb′,b =

{
σ

(v)
b′,b v = t(b) = o(b′)

0 otherwise
, (2)

Quantum evolution op. U(k) = ΣeikL, with L = diag{L1, . . . , LB},
defines a unitary stochastic matrix ensemble.
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Graph spectrum

Neumann like (or standard) vertex conditions

Wavefunction continuous and outgoing derivatives sum to zero at
vertices.

[σ(v)]ij =
2

dv
− δij

Eigenfunction defined by vector of coefficients of plane waves on
the bonds −→c invariant under quantum evolution op.

U(k)−→c = −→c
(U (k)− I)−→c = 0

det (U (k)− I) = 0 (3)

So if k > 0 is a root of the secular equation (3) then k2 is an
eigenvalue of the quantum graph.
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Classical dynamics

Probability of transition from b to b′ is |σ(v)
b′,b|2.

4-regular graphs |σ(v)
b′,b|2 = 1/2.

Define classical evolution op. M where Mb′,b = |Σb′,b|2.

M is doubly stochastic
∑

b′ Mb′,b =
∑

b Mb′,b = 1.

Evolution is a Markov process.

Evolution is ergodic, for
−→
f ,−→g ∈ RB ,

lim
N→∞

1

N + 1

N∑
j=0

−→
f ·Mj −→g =

∑
b

−→
f b

B
. (4)

For almost all graphs the evolution is mixing,

lim
j→∞

M j −→g =
1

B
(1, . . . , 1)T . (5)
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Periodic orbits

A periodic orbit γ = (b1, . . . , bm) is the equivalence class of
closed paths under cyclic shifts, t(bj) = o(bj+1).

A primitive periodic orbit is a periodic orbit that is not a
repetition of a shorter orbit.

Repetition number rγ the number of times a primitive periodic
orbit is repeated to produce γ.

Topological length of γ is m.

Metric length of γ is Lγ =
∑

bj∈γ Lbj .

Stability amplitude is Aγ = Σb2b1Σb3b2 . . .Σbmbm−1Σb1bm .
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Trace formulas

’83 Trace of the heat kernel – Roth.

’99 Trace formula for spectral density of Laplacian – Kottos and
Smilansky.

’07 Heat kernel with general vertex conditions – Kostrykin,
Potthoff and Schrader.

’09 Trace formula for general test functions – Bolte and Endres.

Trace formula for density of states

∞∑
j=1

δ(k − kj) =
tr L

2π
+

1

π
Re
∑
γ

Lγ
rγ

Aγe
ikLγ
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Characteristic polynomial

Characteristic polynomial of U(k)

det (U (k)− ζI) =
B∑

n=0

an(k)ζB−n

Secular equation det (U (k)− I) = 0.

Riemann-Siegel lookalike formula, an = a∗B−n – Kottos and
Smilansky ’99.
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Pseudo orbits

A pseudo orbit γ̄ = {γ1, . . . , γM} is a set of periodic orbits.

A primitive pseudo orbit (PPO) is a set of distinct primitive
periodic orbits.

mγ̄ = M no. of periodic orbits in γ̄.

Pn set of PPO with n bonds.

Metric length Lγ̄ =
∑M

j=1 Lγj .

Stability amplitude Aγ̄ =
∏M

j=1 Aγj .
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Theorem 1 (Band-Harrison-Joyner ’12)

Coefficients of the characteristic polynomial are given by,

an =
∑

γ̄|Bγ̄=n

(−1)mγ̄ Aγ̄e
ikLγ̄ ,

where the sum is over all primitive pseudo orbits of topological
length n.

Idea

Expand det (U (k)− ζI) as a sum over permutations.

A permutation ρ ∈ SB can contribute iff ρ(b) is adjacent to b
for all b in ρ.

Representing ρ as a product of disjoint cycles each cycle is a
primitive periodic orbit.
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Variance of coefficients of the characteristic polynomial

〈an〉 =

{
1 n = 0

0 otherwise

〈|an|2〉k =
∑

γ̄,γ̄′|Bγ̄=Bγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ lim
K→∞

1

K

∫ K

0
eik(Lγ̄−Lγ̄′ )dk

=
∑

γ̄,γ̄′|Bγ̄=Bγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ δLγ̄ ,Lγ̄′ (6)

Diagonal contribution

〈|an|2〉diag =
∑

γ̄|Bγ̄=n

|Aγ̄ |2 = 2−n |Pn| (7)

where Pn is the set of primitive pseudo orbits of n bonds.
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Variance results

’99 Variance of coeffs of characteristic polynomial of quantum
graphs – Kottos and Smilansky

’02 Variance of coeffs of characteristic polynomial of binary
graphs in semiclassical limit – Tanner

’12 Pseudo orbit formula for the coefficients – Band, Harrison and
Joyner

’19 Diagonal contribution for q-narry graphs – Band, Harrison
and Sepanski
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Proposition 2 (Harrison-Hudgins ’22)

For a 4-regular quantum graph with {Lb} incommensurate,

〈|an|2〉 =
1

2n

(
|Pn

0 |+
n∑

N=1

2N |P̂n
N |
)
, (8)

where Pn
0 is the set of PPO length n with no self-intersections and

P̂n
N is the set of PPO length n with N self-intersections, all of

which are 2-encounters of length zero.
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Example: Binary de Bruijn graph with B = 24

0

1

4

2 5

3

6

7

1

n |Pn
0 | |P̂n

1 | |P̂n
2 | 〈|an|2〉 Numerics Error

0 1 0 0 1 1.000000 0.000000
1 2 0 0 1 0.999991 0.000009
2 2 0 0 1/2 0.499999 0.000001
3 4 0 0 1/2 0.499999 0.000001
4 8 0 0 1/2 0.499999 0.000001
5 8 8 0 3/4 0.749998 0.000002
6 8 20 0 3/4 0.749986 0.000014
7 16 16 8 5/8 0.624989 0.000011
8 16 16 24 9/16 0.562501 -0.000001
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1

n/B

〈|a
n
|2 〉

B = 16
B = 32
B = 64
B = 128

1/2

1

Figure 1: Variance of coefficients of the characteristic polynomial for the
family of 4-regular binary de Bruijn graphs with 2r vertices.
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Example: Binary graph with B = 3 · 22

0

1 2

3 4

5

1

n |Pn
0 | |P̂n

1 | 〈|an|2〉 Numerics Error

0 1 0 1 1.000000 0.000000
1 2 0 1 1.000000 0.000000
2 3 0 3/4 0.750001 -0.000001
3 6 0 3/4 0.750003 -0.000003
4 10 4 7/8 0.874999 0.000001
5 8 4 1/2 0.499998 0.000002
6 8 8 3/8 0.374999 0.000001
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0.35

0.45

0.55

0.65
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0.85

0.95
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n/B

〈|a
n
|2 〉

k

B = 12
B = 24
B = 48
B = 96
B = 192

5/8

1

Figure 2: Variance of coefficients of the characteristic polynomial for the
family of 4-regular binary graphs with 3 · 2r vertices.
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Self-intersections

A self-intersection is a section of a pseudo orbit that is
repeated one or more times in the pseudo orbit.

The maximally repeated section is the encounter
enc = (v0, . . . , vr ).

The length of the encounter is r and an encounter has length
zero when the encounter contains no bonds.

If the encounter is repeated l times we refer to an l -encounter.

The encounter can be repeated in a single periodic orbit or
across multiple orbits in the pseudo orbit.

An l-encounter with l ≥ 3 has bonds preceding/following the
encounter repeated 2 or more times as there are only 2
incoming/outgoing bonds at each vertex.
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Examples of pseudo orbits with self-intersections

v0 v1 vr−1 vr

s1 f1

s2

s ′2
s ′′2

f2
f ′2

f ′′2

encounter

link1

link2

link3

2-encounter: γ̄ = (γ1, . . . , γm) with no self-intersections in
γ2, . . . , γm and

γ1 = (f1 . . . , s1, enc, f2, f
′

2 . . . , s
′
2, s2, enc, f1)

abbreviated γ1 = (1, 2) for link 1 followed by link 2.
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Examples of pseudo orbits with self-intersections

v0 v1 vr−1 vr

s1 f1

s2

s ′2
s ′′2

f2
f ′2

f ′′2

encounter

link1

link2

link3

3-encounter: Define γ̄ similarly but with γ1 = (1, 2, 3).

Bonds (s2, v0) and (vr , f2) preceding and following the encounter
are repeated twice.
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Semiclassical limit

For quantum graphs the semiclassical limit is the limit of a
sequence of graphs with B →∞. To take the semiclassical limit of
the variance we fix n/B and consider long orbits on large graphs.

In the semiclassical limit half of PPO with a single
2-encounter have encounter length zero, as the probability to
follow the orbit at the initial encounter vertex is 1/2.

As the graph is mixing the proportion of orbits with
3-encounters is vanishingly small compared to 2-encounters.

Let Pn
N denote the set of PPO length n with N encounters.

Then |P̂n
N | ≈ 2−N |Pn

N |.

〈|an|2〉 = 2−n

(
|Pn

0 |+
n∑

N=1

2N |P̂n
N |
)
≈ 2−n

n∑
N=0

|Pn
N | = 2−n |Pn|
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Sketch of a proof of theorem 2

The sum over PPO can be replaced by a sum over irreducible
pseudo orbits length n where no bonds are repeated P̂n – BHJ ’12.

〈|an|2〉 =
∑

γ̄,γ̄′∈P̂n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ δLγ̄ ,Lγ̄′ =
∑
γ̄∈P̂n

Cγ̄ (9)

Cγ̄ =
∑
γ̄′∈Pγ̄

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ (10)

where Pγ̄ is the set of PPO length Lγ̄ .

If γ̄ has no self-intersections Pγ̄ = {γ̄} and |Aγ̄ |2 = 2−n

producing the 1st term in theorem 2.

A PPO with an encounter of positive length is not irreducible.

A PPO with an l-encounter with l ≥ 3 is not irreducible as
there are repeated bonds before and after the encounter.

A PPO with a single 2-encounter length zero if γ̄′ 6= γ̄ then
mγ̄′ = mγ̄ ± 1 and Āγ̄′ = −Aγ̄ , hence Cγ̄ = 2 · 2−n.
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Binary graphs

Introduced by Tanner ’00, ’01, ’02.

V = p · 2r and B = p · 2r+1 with p odd.

Adjacency matrix,

[AV ]i ,j =

{
δ2i , j + δ2i+1, j 0 ≤ i < V /2

δ2i−V , j + δ2i+1−V , j V /2 ≤ i < V
(11)

Example: Binary graph with V = 22 and B = 23,

A =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 00 11

01

10

000

001

010

011

100

101

110

111

1
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Pseudo orbits on binary graphs

Proposition 3 (Harrison-Hudgins)

For a binary graph with V = p · 2r vertices the number of PPO of
length n > p is

|P̂n| = Cp · 2n−1 ,

where Cp is evaluated from the cycle decomposition of a
generalized p × p permutation matrix, 1 ≤ Cp ≤ 3

2 (p − 1) for
p > 1. Note C1 = 1 and C3 = 5/4.

Corollary 4

For the family of binary graphs with V = p · 2r vertices,

lim
r→∞
〈|an|2〉k = 2−n |Pn| =

Cp

2
.
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Parity argument

Proposition 5 (Harrison-Hudgins)

If γ̄ has an l-encounter of positive length or with l ≥ 3 then
Cγ̄ = 0.

Sketch of proof: assume γ̄ has single l-encounter of positive length
and no repeated links.

Cγ̄ =
∑

γ̄′∈Pγ̄
(−1)mγ̄+mγ̄′Aγ̄Āγ̄′

As the encounter has positive length Aγ̄′ = Aγ̄ .

Cγ̄ = (−1)mγ̄2−n
∑

γ̄′∈Pγ̄
(−1)mγ̄′

γ̄ has l-links and elements of Pγ̄ correspond to ργ̄′ ∈ Sl .

mγ̄′ is no. of cycles in ργ̄′ (plus no. of periodic orbits with no
self-intersections).

As there are equal numbers of permutations with even/odd
cycle decompositions Cγ̄ = 0.
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Conclusions

All pseudo orbits are equal – in the semiclassical limit the
variance is determined by the total number of primitive
pseudo orbits.

Some pseudo orbits are more equal than others – the variance
only depends on primitive pseudo orbits where all the
self-intersections are 2-encounters of length zero.

Parity argument shows Cγ̄ = 0 when γ̄ has an l-encounter of
positive length or with l ≥ 3.

Results use exact dynamical formulas for graphs and model
where dynamical quantities can be evaluated.

To extend results to q-narry graphs requires averaging over
ways to assign the FFT scattering matrix at a vertex.

For q-nary graphs variance depends on primitive pseudo orbits
where all self-intersections are l-encounters of length zero
with l ≤ q.
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