Periodic-orbit evaluation of a spectral statistic of quantum graphs without the semiclassical limit

Jon Harrison ${ }^{1}$ and Tori Hudgins ${ }^{2}$

${ }^{1}$ Baylor University, ${ }^{2}$ University Dallas
June 2022

Supported by Simons Foundation collaboration grant 354583.

All animals are equal, but some animals are more equal than others.

\author{

- George Orwell, Animal Farm
}
- Introduction to quantum graphs
- Dynamical formulas
- Coefficients of the characteristic polynomial
- Semiclassical limit

Dynamical approach to spectral statistics

'71 Gutzwiller's trace formula for the density of states in the semiclassical limit.
'85 Berry - Diagonal approximation to the form factor using Hannay-Ozorio de Almeida sum rule.
'99 Kottos and Smilansky - trace formula for the density of states of quantum graphs.
'01 Sieber and Richter - 2nd order contribution to the small parameter asymptotics of the form factor from figure 8 orbits with one self-intersection.
'03 Berkolaiko, Schanz and Whitney - 2nd and 3rd order contributions on quantum graphs.
'04 Müller, Heusler, Braun, Haake and Altland - all higher order contributions.

Graphs

- A directed graph (graph) G is a set of vertices $\{0, \ldots, V-1\}$ connected by bonds $b=(i, j)$ with $i, j \in\{0, \ldots, V-1\}$.
- The origin and terminus of $b=(i, j)$ are $o(b)=i$ and $t(b)=j$.
- $b=(i, j)$ is outgoing at i and incoming at j.
- We consider 4 -regular graphs with 2 incoming and 2 outgoing bonds at each vertex.
- The degree of vertex v is d_{v} the no. of bonds connected to v.

Quantum graphs

Quantum graphs model phenomena associated with complex quantum systems.

- Free electrons in organic molecules
- Superconducting networks
- Photonic crystals
- Nanotechnology
- Quantum chaos
- Anderson localization

Quantizing a graph

To quantize G;

- Assign length $L_{b}>0$ to each bond b.
- Assign a unitary vertex scattering matrix $\sigma^{(v)}$ to each vertex v.

A democratic choice is the discrete Fourier transform matrix,

$$
\boldsymbol{\sigma}^{(v)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right)
$$

Bond scattering matrix,

$$
\boldsymbol{\Sigma}_{b^{\prime}, b}= \begin{cases}\boldsymbol{\sigma}_{b^{\prime}, b}^{(v)} & v=t(b)=o\left(b^{\prime}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Quantum evolution op. $\mathbf{U}(k)=\boldsymbol{\Sigma} \mathrm{e}^{\mathrm{i} \mathbf{k} \mathbf{L}}$, with $\mathbf{L}=\operatorname{diag}\left\{L_{1}, \ldots, L_{B}\right\}$, defines a unitary stochastic matrix ensemble.

Graph spectrum

Neumann like (or standard) vertex conditions

Wavefunction continuous and outgoing derivatives sum to zero at vertices.

$$
\left[\boldsymbol{\sigma}^{(v)}\right]_{i j}=\frac{2}{d_{v}}-\delta_{i j}
$$

Eigenfunction defined by vector of coefficients of plane waves on the bonds \vec{c} invariant under quantum evolution op.

$$
\begin{align*}
\mathbf{U}(k) \vec{c} & =\vec{c} \\
(\mathbf{U}(k)-\mathbf{I}) \vec{c} & =0 \\
\operatorname{det}(\mathbf{U}(k)-\mathbf{I}) & =0 \tag{3}
\end{align*}
$$

So if $k>0$ is a root of the secular equation (3) then k^{2} is an eigenvalue of the quantum graph.

Classical dynamics

- Probability of transition from b to b^{\prime} is $\left|\sigma_{b^{\prime}, b}^{(v)}\right|^{2}$.
- 4-regular graphs $\left|\sigma_{b^{\prime}, b}^{(v)}\right|^{2}=1 / 2$.
- Define classical evolution op. \mathbf{M} where $\mathbf{M}_{b^{\prime}, b}=\left|\boldsymbol{\Sigma}_{b^{\prime}, b}\right|^{2}$.
- \mathbf{M} is doubly stochastic $\sum_{b^{\prime}} \mathbf{M}_{b^{\prime}, b}=\sum_{b} \mathbf{M}_{b^{\prime}, b}=1$.
- Evolution is a Markov process.
- Evolution is ergodic, for $\vec{f}, \vec{g} \in \mathbb{R}^{B}$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{j=0}^{N} \vec{f} \cdot \mathbf{M}^{j} \vec{g}=\sum_{b} \frac{\vec{f}_{b}}{B} \tag{4}
\end{equation*}
$$

- For almost all graphs the evolution is mixing,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} M^{j} \vec{g}=\frac{1}{B}(1, \ldots, 1)^{T} \tag{5}
\end{equation*}
$$

- A periodic orbit $\gamma=\left(b_{1}, \ldots, b_{m}\right)$ is the equivalence class of closed paths under cyclic shifts, $t\left(b_{j}\right)=o\left(b_{j+1}\right)$.
- A primitive periodic orbit is a periodic orbit that is not a repetition of a shorter orbit.
- Repetition number r_{γ} the number of times a primitive periodic orbit is repeated to produce γ.
- Topological length of γ is m.
- Metric length of γ is $L_{\gamma}=\sum_{b_{j} \in \gamma} L_{b_{j}}$.
- Stability amplitude is $A_{\gamma}=\Sigma_{b_{2} b_{1}} \Sigma_{b_{3} b_{2}} \ldots \Sigma_{b_{m} b_{m-1}} \Sigma_{b_{1} b_{m}}$.
'83 Trace of the heat kernel - Roth.
'99 Trace formula for spectral density of Laplacian - Kottos and Smilansky.
'07 Heat kernel with general vertex conditions - Kostrykin, Potthoff and Schrader.
'09 Trace formula for general test functions - Bolte and Endres.
Trace formula for density of states

$$
\sum_{j=1}^{\infty} \delta\left(k-k_{j}\right)=\frac{\operatorname{tr} \mathbf{L}}{2 \pi}+\frac{1}{\pi} \operatorname{Re} \sum_{\gamma} \frac{L_{\gamma}}{r_{\gamma}} A_{\gamma} \mathrm{e}^{\mathrm{i} k L_{\gamma}}
$$

Characteristic polynomial

Characteristic polynomial of $\mathbf{U}(k)$

$$
\operatorname{det}(\mathbf{U}(k)-\zeta \mathbf{I})=\sum_{n=0}^{B} a_{n}(k) \zeta^{B-n}
$$

- Secular equation $\operatorname{det}(\mathbf{U}(k)-\mathbf{I})=0$.
- Riemann-Siegel lookalike formula, $a_{n}=a_{B-n}^{*}$ - Kottos and Smilansky '99.

- A pseudo orbit $\bar{\gamma}=\left\{\gamma_{1}, \ldots, \gamma_{M}\right\}$ is a set of periodic orbits.
- A primitive pseudo orbit (PPO) is a set of distinct primitive periodic orbits.
- $m_{\bar{\gamma}}=M$ no. of periodic orbits in $\bar{\gamma}$.
- \mathcal{P}^{n} set of PPO with n bonds.
- Metric length $L_{\bar{\gamma}}=\sum_{j=1}^{M} L_{\gamma_{j}}$.
- Stability amplitude $A_{\bar{\gamma}}=\prod_{j=1}^{M} A_{\gamma_{j}}$.

Theorem 1 (Band-Harrison-Joyner '12)

Coefficients of the characteristic polynomial are given by,

$$
a_{n}=\sum_{\bar{\gamma} \mid B_{\bar{\gamma}}=n}(-1)^{m_{\bar{\gamma}}} A_{\bar{\gamma}} e^{i k L_{\bar{\gamma}}},
$$

where the sum is over all primitive pseudo orbits of topological length n.

Idea

- Expand $\operatorname{det}(\mathbf{U}(k)-\zeta \mathbf{I})$ as a sum over permutations.
- A permutation $\rho \in S_{B}$ can contribute iff $\rho(b)$ is adjacent to b for all b in ρ.
- Representing ρ as a product of disjoint cycles each cycle is a primitive periodic orbit.

Variance of coefficients of the characteristic polynomial

$$
\begin{gather*}
\left\langle a_{n}\right\rangle= \begin{cases}1 & n=0 \\
0 & \text { otherwise }\end{cases} \\
\left.\left.\langle | a_{n}\right|^{2}\right\rangle_{k}=\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \mid B_{\bar{\gamma}}=B_{\bar{\gamma}^{\prime}}=n}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \lim _{K \rightarrow \infty} \frac{1}{K} \int_{0}^{K} \mathrm{e}^{\mathrm{i} k\left(L_{\bar{\gamma}}-L_{\bar{\gamma}^{\prime}}\right)} \mathrm{d} k \\
=\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \mid B_{\bar{\gamma}}=B_{\bar{\gamma}^{\prime}}=n}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}} \tag{6}
\end{gather*}
$$

Diagonal contribution

$$
\begin{equation*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle_{\text {diag }}=\sum_{\bar{\gamma} \mid B_{\bar{\gamma}}=n}\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}\left|\mathcal{P}^{n}\right| \tag{7}
\end{equation*}
$$

where \mathcal{P}^{n} is the set of primitive pseudo orbits of n bonds.

Variance results

'99 Variance of coeffs of characteristic polynomial of quantum graphs - Kottos and Smilansky
'02 Variance of coeffs of characteristic polynomial of binary graphs in semiclassical limit - Tanner
'12 Pseudo orbit formula for the coefficients - Band, Harrison and Joyner
'19 Diagonal contribution for q-narry graphs - Band, Harrison and Sepanski

Proposition 2 (Harrison-Hudgins '22)

For a 4-regular quantum graph with $\left\{L_{b}\right\}$ incommensurate,

$$
\begin{equation*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle=\frac{1}{2^{n}}\left(\left|\mathcal{P}_{0}^{n}\right|+\sum_{N=1}^{n} 2^{N}\left|\widehat{\mathcal{P}}_{N}^{n}\right|\right), \tag{8}
\end{equation*}
$$

where \mathcal{P}_{0}^{n} is the set of PPO length n with no self-intersections and $\widehat{\mathcal{P}}_{N}^{n}$ is the set of PPO length n with N self-intersections, all of which are 2-encounters of length zero.

Example: Binary de Bruijn graph with $B=2^{4}$

n	$\left\|\mathcal{P}_{0}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{1}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{2}^{n}\right\|$	$\left.\left.\langle \| a_{n}\right\|^{2}\right\rangle$	Numerics	Error
0	1	0	0	1	1.000000	0.000000
1	2	0	0	1	0.999991	0.000009
2	2	0	0	$1 / 2$	0.499999	0.000001
3	4	0	0	$1 / 2$	0.499999	0.000001
4	8	0	0	$1 / 2$	0.499999	0.000001
5	8	8	0	$3 / 4$	0.749998	0.000002
6	8	20	0	$3 / 4$	0.749986	0.000014
7	16	16	8	$5 / 8$	0.624989	0.000011
8	16	16	24	$9 / 16$	0.562501	-0.000001

Figure 1: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary de Bruijn graphs with 2^{r} vertices.

Example: Binary graph with $B=3 \cdot 2^{2}$

n	$\left\|\mathcal{P}_{0}^{n}\right\|$	$\left\|\widehat{\mathcal{P}}_{1}^{n}\right\|$	$\left.\left.\langle \| a_{n}\right\|^{2}\right\rangle$	Numerics	Error
0	1	0	1	1.000000	0.000000
1	2	0	1	1.000000	0.000000
2	3	0	$3 / 4$	0.750001	-0.000001
3	6	0	$3 / 4$	0.750003	-0.000003
4	10	4	$7 / 8$	0.874999	0.000001
5	8	4	$1 / 2$	0.499998	0.000002
6	8	8	$3 / 8$	0.374999	0.000001

Figure 2: Variance of coefficients of the characteristic polynomial for the family of 4-regular binary graphs with $3 \cdot 2^{r}$ vertices.

- A self-intersection is a section of a pseudo orbit that is repeated one or more times in the pseudo orbit.
- The maximally repeated section is the encounter enc $=\left(v_{0}, \ldots, v_{r}\right)$.
- The length of the encounter is r and an encounter has length zero when the encounter contains no bonds.
- If the encounter is repeated / times we refer to an I-encounter.
- The encounter can be repeated in a single periodic orbit or across multiple orbits in the pseudo orbit.
- An l-encounter with $I \geq 3$ has bonds preceding/following the encounter repeated 2 or more times as there are only 2 incoming/outgoing bonds at each vertex.

Examples of pseudo orbits with self-intersections

2-encounter: $\bar{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ with no self-intersections in $\gamma_{2}, \ldots, \gamma_{m}$ and

$$
\gamma_{1}=\left(f_{1} \ldots, s_{1}, \text { enc }, f_{2}, f_{2}^{\prime} \ldots, s_{2}^{\prime}, s_{2}, \text { enc }, f_{1}\right)
$$

abbreviated $\gamma_{1}=(1,2)$ for link 1 followed by link 2.

Examples of pseudo orbits with self-intersections

3-encounter: Define $\bar{\gamma}$ similarly but with $\gamma_{1}=(1,2,3)$.
Bonds $\left(s_{2}, v_{0}\right)$ and (v_{r}, f_{2}) preceding and following the encounter are repeated twice.

For quantum graphs the semiclassical limit is the limit of a sequence of graphs with $B \rightarrow \infty$. To take the semiclassical limit of the variance we fix n / B and consider long orbits on large graphs.

- In the semiclassical limit half of PPO with a single 2-encounter have encounter length zero, as the probability to follow the orbit at the initial encounter vertex is $1 / 2$.
- As the graph is mixing the proportion of orbits with 3 -encounters is vanishingly small compared to 2-encounters.
- Let \mathcal{P}_{N}^{n} denote the set of PPO length n with N encounters. Then $\left|\widehat{\mathcal{P}}_{N}^{n}\right| \approx 2^{-N}\left|\mathcal{P}_{N}^{n}\right|$.

$$
\left.\left.\langle | a_{n}\right|^{2}\right\rangle=2^{-n}\left(\left|\mathcal{P}_{0}^{n}\right|+\sum_{N=1}^{n} 2^{N}\left|\widehat{\mathcal{P}}_{N}^{n}\right|\right) \approx 2^{-n} \sum_{N=0}^{n}\left|\mathcal{P}_{N}^{n}\right|=2^{-n}\left|\mathcal{P}^{n}\right|
$$

Sketch of a proof of theorem 2

The sum over PPO can be replaced by a sum over irreducible pseudo orbits length n where no bonds are repeated $\widehat{\mathcal{P}}^{n}-\mathrm{BHJ}$ ' 12 .

$$
\begin{align*}
\left.\left.\langle | a_{n}\right|^{2}\right\rangle & =\sum_{\bar{\gamma}, \bar{\gamma}^{\prime} \in \widehat{\mathcal{P}}^{n}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \delta_{L_{\bar{\gamma}}, L_{\bar{\gamma}^{\prime}}}=\sum_{\bar{\gamma} \in \widehat{\mathcal{P}}^{n}} C_{\bar{\gamma}} \tag{9}\\
C_{\bar{\gamma}} & =\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}} \tag{10}
\end{align*}
$$

where $\mathcal{P}_{\bar{\gamma}}$ is the set of PPO length $L_{\bar{\gamma}}$.

- If $\bar{\gamma}$ has no self-intersections $\mathcal{P}_{\bar{\gamma}}=\{\bar{\gamma}\}$ and $\left|A_{\bar{\gamma}}\right|^{2}=2^{-n}$ producing the 1st term in theorem 2.
- A PPO with an encounter of positive length is not irreducible.
- A PPO with an l-encounter with $I \geq 3$ is not irreducible as there are repeated bonds before and after the encounter.
- A PPO with a single 2-encounter length zero if $\bar{\gamma}^{\prime} \neq \bar{\gamma}$ then $m_{\bar{\gamma}^{\prime}}=m_{\bar{\gamma}} \pm 1$ and $\bar{A}_{\bar{\gamma}^{\prime}}=-A_{\bar{\gamma}}$, hence $C_{\bar{\gamma}}=2 \cdot 2^{-n}$.

Binary graphs

- Introduced by Tanner '00, '01, '02.
- $V=p \cdot 2^{r}$ and $B=p \cdot 2^{r+1}$ with p odd.
- Adjacency matrix,

$$
\left[\mathbf{A}_{V}\right]_{i, j}= \begin{cases}\delta_{2 i, j}+\delta_{2 i+1, j} & 0 \leq i<V / 2 \tag{11}\\ \delta_{2 i-V, j}+\delta_{2 i+1-V, j} & V / 2 \leq i<V\end{cases}
$$

Example: Binary graph with $V=2^{2}$ and $B=2^{3}$,

$$
\mathbf{A}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Pseudo orbits on binary graphs

Proposition 3 (Harrison-Hudgins)

For a binary graph with $V=p \cdot 2^{r}$ vertices the number of $P P O$ of length $n>p$ is

$$
\left|\widehat{\mathcal{P}}^{n}\right|=C_{p} \cdot 2^{n-1}
$$

where C_{p} is evaluated from the cycle decomposition of a generalized $p \times p$ permutation matrix, $1 \leq C_{p} \leq \frac{3}{2}(p-1)$ for $p>1$. Note $C_{1}=1$ and $C_{3}=5 / 4$.

Corollary 4

For the family of binary graphs with $V=p \cdot 2^{r}$ vertices,

$$
\left.\left.\lim _{r \rightarrow \infty}\langle | a_{n}\right|^{2}\right\rangle_{k}=2^{-n}\left|\mathcal{P}^{n}\right|=\frac{C_{p}}{2}
$$

Proposition 5 (Harrison-Hudgins)

If $\bar{\gamma}$ has an I-encounter of positive length or with $I \geq 3$ then $C_{\bar{\gamma}}=0$.

Sketch of proof: assume $\bar{\gamma}$ has single l-encounter of positive length and no repeated links.

- $C_{\bar{\gamma}}=\sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}}+m_{\bar{\gamma}^{\prime}}} A_{\bar{\gamma}} \bar{A}_{\bar{\gamma}^{\prime}}$
- As the encounter has positive length $A_{\bar{\gamma}^{\prime}}=A_{\bar{\gamma}}$.
- $C_{\bar{\gamma}}=(-1)^{m_{\bar{\gamma}}} 2^{-n} \sum_{\bar{\gamma}^{\prime} \in \mathcal{P}_{\bar{\gamma}}}(-1)^{m_{\bar{\gamma}^{\prime}}}$
- $\bar{\gamma}$ has I-links and elements of $\mathcal{P}_{\bar{\gamma}}$ correspond to $\rho_{\bar{\gamma}^{\prime}} \in S_{I}$.
- $m_{\bar{\gamma}^{\prime}}$ is no. of cycles in $\rho_{\bar{\gamma}^{\prime}}$ (plus no. of periodic orbits with no self-intersections).
- As there are equal numbers of permutations with even/odd cycle decompositions $C_{\bar{\gamma}}=0$.
- All pseudo orbits are equal - in the semiclassical limit the variance is determined by the total number of primitive pseudo orbits.
- Some pseudo orbits are more equal than others - the variance only depends on primitive pseudo orbits where all the self-intersections are 2-encounters of length zero.
- Parity argument shows $C_{\bar{\gamma}}=0$ when $\bar{\gamma}$ has an l-encounter of positive length or with $I \geq 3$.
- Results use exact dynamical formulas for graphs and model where dynamical quantities can be evaluated.
- To extend results to q-narry graphs requires averaging over ways to assign the FFT scattering matrix at a vertex.
- For q-nary graphs variance depends on primitive pseudo orbits where all self-intersections are l-encounters of length zero with $I \leq q$.

Bibliography

圊 J．M．Harrison and T．Hudgins，＂Periodic－orbit evaluation of a spectral statistic of quantum graphs without the semiclassical limit，＂EPL 138 （2022） 30002 arXiv：2101．00006
Tive J．M．Harrison and T．Hudgins，＂Complete dynamical evaluation of the characteristic polynomial of binary quantum graphs，＂arXiv：2011．05213
圊 R．Band，J．M．Harrison and M．Sepanski，＂Lyndon word decompositions and pseudo orbits on q－nary graphs，＂J．Math． Anal．Appl． 470 （2019）135－144 arXiv：1610：03808
围 R．Band，J．M．Harrison and C．H．Joyner，＂Finite pseudo orbit expansions for spectral quantities of quantum graphs，＂J． Phys．A：Math．Theor． 45 （2012） 325204 arXiv：1205． 4214
Supported by Simons Foundation colaboration grant 354583.

