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Quantum statistics

Quantum statistics

Single particle space X.
Two particle statistics - alternative approaches:

o Quantize X*2 and restrict Hilbert space to the symmetric or
anti-symmetric subspace.

w(xla X2) = iw()@a Xl)

Bose-Einstein/Fermi-Dirac statistics.
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Quantum statistics

Quantum statistics

Single particle space X.
Two particle statistics - alternative approaches:

o Quantize X*2 and restrict Hilbert space to the symmetric or
anti-symmetric subspace.

w(xla X2) = iw()@a Xl)

Bose-Einstein/Fermi-Dirac statistics.

o (Leinaas and Myrheim ‘77)
Treat particles as indistinguishable, 1(x1, x2) = ¥(x2, x1).
Quantize two particle configuration space.
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Quantum statistics

Aharonov-Bohm effect
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Quantum statistics

Aharonov-Bohm effect

Turn on magnetic field B in region inaccessible to particle.
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Quantum statistics

Aharonov-Bohm effect

Path integral formulation.
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Quantum statistics

Aharonov-Bohm effect

Path integral formulation.

—

B=VxA.
Contribution from paths enclosing B acquires a phase €l where
6 = ¢ A.ds, as A cannot be zero everywhere on path enclosing B.
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Quantum statistics

Bose-Einstein and Fermi-Dirac statistics

Two indistinguishable particles in R3. At constant separation
relative coordinate lies on projective plane.

Exchanging particles corresponds to rotating relative coordinate
around closed loop p.

p is not contractible but p? is contractible.

A phase factor ¢! associated to p requires (e?)? = 1.
Quantizing configuration space with § = 7 corresponds to
Fermi-Dirac statistics and § = 0 to Bose-Einstein statistics.
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Quantum statistics

Anyon statistics

Pair of indistinguishable particles in R?.
o Particles not coincident.
@ Relative position coordinate in R? \ 0.

@ Exchange paths are closed loops about 0 in relative
coordinate.

@ As in the Aharonov-Bohm effect any phase factor ¢! can be
associated with a primitive path enclosing 0.
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Quantum statistics

Braid group

For n indistinguishable particles on R?, o; exchanges adjacent

particles j=1,...,n— 1.

Relations 00 110; = 0j410j0j41 for j=1,...,n—2.
AN k 3

Generates B, braid group on n strands.
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Quantum statistics

A potted history of anyons

(77) Leinaas and Myrheim - quantum mechanics on configuration

spaces.
(82) Wilczek - anyons on surfaces.

(82) Tsui and Stromer - fractional quantum Hall effect.

(83) Laughlin wavefunction.

(05) Sarma, Freedman and Nayek - topologically protected gbits.
(08) Kitaev - network models of topological quantum computation.
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Quantum statistics

Definition

Configuration space of n indistinguishable particles in X,
Co(X) = (X*" = A,)/Sh

where A, = {x1,...,Xxp|x; = x; for some i # j}.
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Quantum statistics

Definition
Configuration space of n indistinguishable particles in X,

Ca(X) = (X" = An)/Sn

where A, = {x1,...,Xxp|x; = x; for some i # j}.

1st homology groups of C,(R%):
o Hi(Co(RY)) = Zjy for d > 3.
2 abelian irreps. corresponding to Bose-Einstein &
Fermi-Dirac statistics.
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Quantum statistics

Definition
Configuration space of n indistinguishable particles in X,

Ca(X) = (X" = An)/Sn

where A, = {x1,...,Xxp|x; = x; for some i # j}.

1st homology groups of C,(R%):

o Hi(Co(RY)) = Zjy for d > 3.
2 abelian irreps. corresponding to Bose-Einstein &
Fermi-Dirac statistics.

o (G(R) =Z  (m(Cy(RY) = By)
Abelian irreps. generated by e — anyon statistics.
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Quantum statistics

Definition

Configuration space of n indistinguishable particles in X,
Ca(X) = (X7 — D)/ Sn

where A, = {x1,...,Xxp|x; = x; for some i # j}.

1st homology groups of C,(R%):

o Hi(Co(RY)) = Zjy for d > 3.
2 abelian irreps. corresponding to Bose-Einstein &
Fermi-Dirac statistics.

o Mi(G(E))=Z  (m(Gy(R) = By)
Abelian irreps. generated by e — anyon statistics.
o Hi(Ch(R)) =1
particles cannot be exchanged.
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Quantum statistics

What happens on a network where the
underlying space has arbitrarily complex
topology?
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Quantum statistics

Quantum graphs

N\
N

Quantum graphs model phenomena associated with complex
quantum systems.

Free electrons in organic molecules
Superconducting networks

Photonic crystals

°
o

@ Nanotechnology
@ Quantum chaos
o

Anderson localization
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Anyons on graphs

Exchanging indistinguishable particles on a Y
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Anyons on graphs

Exchanging indistinguishable particles on a Y
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Anyons on graphs

Exchanging indistinguishable particles on a Y
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Anyons on graphs

Graph connectivity

@ Given a connected graph I a k-cut is a set of k vertices whose
removal makes I disconnected.

o [ is k-connected if the minimal cut is size k.

e Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:
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Anyons on graphs

Graph connectivity

@ Given a connected graph " a k-cut is a set of k vertices whose
removal makes I' disconnected.

@ [ is k-connected if the minimal cut is size k.

@ Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

Two cut

Jon Harrison Anyons on networks



Anyons on graphs

Graph connectivity

@ Given a connected graph I a k-cut is a set of k vertices whose
removal makes I' disconnected.

@ [ is k-connected if the minimal cut is size k.

e Theorem (Menger) For a k-connected graph there exist at
least k independent paths between every pair of vertices.

Example:

Two independent paths joining u and v.
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Anyons on graphs

Features of anyon statistics on networks

3-connected graphs: statistics only depend on whether the graph
is planar (Anyons) or non-planar (Bosons/Fermions).
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Anyons on graphs

Features of anyon statistics on networks

3-connected graphs: statistics only depend on whether the graph
is planar (Anyons) or non-planar (Bosons/Fermions).

A planar lattice with a small section that is non-planar is locally
planar but has Bose/Fermi statistics.
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Anyons on graphs

Features of anyon statistics on networks

2-connected graphs: statistics complex but independent of the
number of particles.
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Anyons on graphs

Features of anyon statistics on networks

2-connected graphs: statistics complex but independent of the
number of particles.

For example, one could construct a chain of 3-connected
non-planar components where particles behave with alternating
Bose/Fermi statistics.
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Anyons on graphs

Features of anyon statistics on networks

1-connected graphs: statistics depend on no. of particles n.
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Anyons on graphs

Features of anyon statistics on networks

1-connected graphs: statistics depend on no. of particles n.
Example, star with E edges.

no. of anyon phases

(”Zf;z) (E—2)—(n-£_li-;2)+1.
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Anyons on graphs

Basic cases

r C(T)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢co.

2 (12) (23)

4
Exchange of 2 particles
(12) (34)  at Y-junction; one free
phase ¢y.
(24)
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Anyons on graphs

Basic cases

r ()

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢o.

4 (13) (23)
Y Q Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
(14) (24)
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Anyons on graphs

Basic cases

r ()
3 (13) Exchange of 2 particles
i i i i around loop c; one free
phase ¢¢o.
1 2 (12) (23)
4 (13) (23)
Y Q Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
(14) (24)
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Anyons on graphs

Basic cases
r G()
3 (13)

Exchange of 2 particles

around loop c; one free
phase ¢co.
4
Exchange of 2 particles
(12) (34)  at Y-junction; one free
phase ¢y.
(24)
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Anyons on graphs

Basic cases

r ()

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢o.

4 (13) (23)
Y Q Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
(14) (24)
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Anyons on graphs

Basic cases

r (1)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢».
(23)
3 4 (13) (23)
Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
1 (14) (24)
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Anyons on graphs

Basic cases

r (1)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢».
(23)
3 4 (13) (23)
Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
1 (14) (24)
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Anyons on graphs

Basic cases

r C(T)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢co.

2 (12) (23)

4 (23)
Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢y.
(24)
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Anyons on graphs

Basic cases

r C(T)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢co.

2 (12) (23)

4
Exchange of 2 particles
(12) (34)  at Y-junction; one free
phase ¢y.
(24)
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Anyons on graphs

Basic cases

r (1)

1
(13) Exchange of 2 particles

i i i i around loop c; one free
phase ¢¢».
(23)
4
Y Q Exchange of 2 particles
(12) (34)  at Y-junction; one free
phase ¢vy.

(24)
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Anyons on graphs

Basic cases

r (1)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢».
(23)
3 4 (13) (23)
Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
1 (14) (24)
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Anyons on graphs

Basic cases

r (1)

1
(13) Exchange of 2 particles

around loop c; one free
phase ¢¢».
(23)
3 4 (13) (23)
Exchange of 2 particles
2 (12) (34)  at Y-junction; one free
phase ¢vy.
1 (14) (24)
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Anyons on graphs

Lasso graph

3 4 (13) (23)
2 (12) (34)
1 (14) (24)

Identify three 2-particle cycles:
(i) Rotate both particles around loop c; phase ¢ .
(ii) Exchange particles on Y-subgraph; phase ¢vy.
(iii) Rotate one particle around loop ¢ other particle at vertex 1;
(1,2) = (1,3) = (1,4) — (1,2), phase ¢. ;.

Relation from contactable 2-cell ¢.» = ¢(1:’1 + oy.
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Anyons on graphs

Lasso graph

2 (12)

Identify three 2-particle cycles:
(i) Rotate both particles around loop c; phase ¢ .
(ii) Exchange particles on Y-subgraph; phase ¢vy.
(iii) Rotate one particle around loop ¢ other particle at vertex 1;
(1,2) = (1,3) = (1,4) — (1,2), phase ¢. ;.

Relation from contactable 2-cell ¢.» = ¢(1:’1 + oy.
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Anyons on graphs

Let ¢ be a loop. What is the relation between ¢/ ; and ¢¢,7?

(a) (b)
Yi Y

(a) v and v joined by path disjoint from c.
®¢1 = ¢¢ as exchange cycles homotopy equivalent.

(b) v and v only joined by paths through c.
Two lasso graphs so ¢co = ¢l 1+ dvy & @2 = &1 + v,
Hence ¢y — 01 = dv, — dvy.

Jon Harrison Anyons on networks



Anyons on graphs

Let ¢ be a loop. What is the relation between ¢/ ; and ¢¢,7?

(a) (b)
Yi Y

(a) v and v joined by path disjoint from c.
®¢1 = ¢¢ as exchange cycles homotopy equivalent.

(b) v and v only joined by paths through c.
Two lasso graphs so ¢co = ¢l 1+ dvy & @2 = &1 + v,
Hence ¢y — 01 = dv, — dvy.

@ Relations between phases involving ¢ encoded in phases ¢y .
H1(Co(T)) = 27 @ A, where A determined by Y-cycles.
@ In (a) we have a B subgraph & using (b) also ¢y, = ¢v,.
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3-connected graphs

3-connected graphs

The prototypical 3-connected graph is a wheel W*.

W5

Theorem (Wheel theorem)

Let I be a simple 3-connected graph different from a wheel. Then
for some edge e € T either '\ e or I'/e is simple and 3-connected.

e '\ eis [ with the edge e removed.
e ['/eis I with e contracted to identify its vertices.
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For 3-connected simple graphs all phases ¢y are equal up to a sign. I

Sketch proof. The lemma holds on K (minimal wheel). By wheel
theorem we need to show that adding an edge or expanding a
vertex any new phases ¢y are the same as an original phase.
Adding an edge: T U e

Y | e
/
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For 3-connected simple graphs all phases ¢y are equal up to a sign. l

Sketch proof. The lemma holds on K (minimal wheel). By wheel
theorem we need to show that adding an edge or expanding a
vertex any new phases ¢y are the same as an original phase.
Adding an edge: T U e

Using 3-connectedness identify independent paths in [ to make B.
Then gby = ¢y.
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For 3-connected simple graphs all phases ¢y are equal up to a sign. l

Sketch proof. The lemma holds on K; (minimal wheel). By wheel
theorem we need to show that adding an edge or expanding a
vertex any new phases ¢y are the same as an original phase.
Vertex expansion: Split vertex of degree > 3 into two vertices u
and v joined by a new edge e.

|
\I/ e
:e
oo u

r

Jon Harrison Anyons on networks



For 3-connected simple graphs all phases ¢y are equal up to a sign. I

Sketch proof. The lemma holds on K; (minimal wheel). By wheel
theorem we need to show that adding an edge or expanding a
vertex any new phases ¢y are the same as an original phase.
Vertex expansion: Split vertex of degree > 3 into two vertices u
and v joined by a new edge e.

-

/’.\
v
Y‘./ I
: e
--e—|eou

r

Using 3-connectedness identify independent paths in [ to make B.
Then (by = ¢y.
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3-connected graphs

For a 3-connected simple graph, Hi(Co(T)) = Z°\(D) @ A, where
A = Zy for non-planar graphs and A = 7 for planar graphs.
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3-connected graphs

For a 3-connected simple graph, Hi(Co(T)) = Z°\(D) @ A, where
A = Zy for non-planar graphs and A = 7 for planar graphs.

Proof.

@ For Ks and K33 every phase ¢y = 0 or m. By Kuratowski's
theorem a non-planar graph contains a subgraph which is
isomorphic to Ks or K3 3.
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3-connected graphs

For a 3-connected simple graph, Hi(Co(T)) = ZP1(") @ A, where
A = Zy for non-planar graphs and A = 7 for planar graphs.

Proof.

@ For Ks and K33 every phase ¢y = 0 or m. By Kuratowski's
theorem a non-planar graph contains a subgraph which is
isomorphic to Ks or K3 3.

@ For planar graphs the anyon phase can be introduced by
drawing the graph in the plane and integrating the anyon
vector potential 7-2 x ﬁ; along the edges of the
two-particle graph.
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3-connected graphs

Examples

Ks: 6 A-B phases, 1 discrete phase of 0 or 7.

K33: 4 A-B phases, 1 discrete phase of 0 or 7.

Ky: 3 A-B phases, 1 anyon phase.
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3-connected graphs

Figure: Configuration space graph C>(K33), edges shown as solid lines
are in a spanning subtree with root (1,2). Open edges are joined left to
right and top to bottom.
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3-connected graphs

Classification of graph statistics

Ko & Park (2011)

Hy(Co(T)) = ZMD+N(DFN(D+8:(T) gy 7750

N1(T) sum over one cuts j of N(n,T,j).

wo.rd) = (" Tt -2 - (T T - 1)

j # components of I\ j.
@ N>(I') sum over two connected components of .
@ N5(I") # 3-connected planar components of T

o N5(I') # 3-connected non-planar components of I
e [1(I) # of loops of T.
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3-connected graphs

Summary

o Classification of abelian quantum statistics on graphs via
graph theoretic argument.

@ Physical insight into dependence of statistics on graph
connectivity.

o Identified new features of anyon statistics.

@ Are there phenomena associated with new forms of anyon
behavior - e.g. fractional quantum Hall experiment on
network?

@ JH, JP Keating, JM Robbins and A Sawicki, “n-particle
quantum statistics on graphs,” Commun. Math. Phys. (2014)
330 1293-1326 arXiv:1304.5781

@ JH, JP Keating and JM Robbins, “"Quantum statistics on
graphs,” Proc. R. Soc. A (2010) doi:10.1098/rspa.2010.0254
arXiv:1101.1535
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