Anyons on networks

Jon Harrison¹, J.P. Keating², J.M. Robbins³ and A. Sawicki⁴

¹Baylor University, ²University of Oxford, ³University of Bristol, ⁴Center for Theoretical Physics, Polish Academy of Sciences

Baylor - 2/26/20

Supported by Simons Foundation collaboration grant 354583.

Outline

- Quantum statistics
- 2 Anyons on graphs
- 3 3-connected graphs

Quantum statistics

Single particle space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1,x_2)=\pm\psi(x_2,x_1)$$

Bose-Einstein/Fermi-Dirac statistics.

Quantum statistics

Single particle space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1,x_2)=\pm\psi(x_2,x_1)$$

Bose-Einstein/Fermi-Dirac statistics.

• (Leinaas and Myrheim '77) Treat particles as indistinguishable, $\psi(x_1, x_2) \equiv \psi(x_2, x_1)$. Quantize two particle configuration space.

Turn on magnetic field B in region inaccessible to particle.

Path integral formulation.

Path integral formulation.

$$\mathbf{B} = \nabla \times \mathbf{A}$$
.

Contribution from paths enclosing **B** acquires a phase $e^{i\theta}$ where $\theta = \oint \mathbf{A} \cdot ds$, as **A** cannot be zero everywhere on path enclosing **B**.

Bose-Einstein and Fermi-Dirac statistics

Two indistinguishable particles in \mathbb{R}^3 . At constant separation relative coordinate lies on projective plane.

Exchanging particles corresponds to rotating relative coordinate around closed loop p.

p is not contractible but p^2 is contractible.

A phase factor $e^{i\theta}$ associated to p requires $(e^{i\theta})^2 = 1$.

Quantizing configuration space with $\theta = \pi$ corresponds to Fermi-Dirac statistics and $\theta = 0$ to Bose-Einstein statistics.

Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2 .

- Particles not coincident.
- Relative position coordinate in $\mathbb{R}^2 \setminus \mathbf{0}$.
- Exchange paths are closed loops about 0 in relative coordinate.
- As in the Aharonov-Bohm effect any phase factor $e^{i\theta}$ can be associated with a primitive path enclosing $\bf 0$.

Braid group

For n indistinguishable particles on \mathbb{R}^2 , σ_j exchanges adjacent particles $j=1,\ldots,n-1$.

Relations $\sigma_j \sigma_{j+1} \sigma_j = \sigma_{j+1} \sigma_j \sigma_{j+1}$ for $j = 1, \dots, n-2$.

Generates B_n braid group on n strands.

A potted history of anyons

- (77) Leinaas and Myrheim quantum mechanics on configuration spaces.
- (82) Wilczek anyons on surfaces.
- (82) Tsui and Strömer fractional quantum Hall effect.
- (83) Laughlin wavefunction.
- (05) Sarma, Freedman and Nayek topologically protected qbits.
- (08) Kitaev network models of topological quantum computation.

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \dots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \dots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \dots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$ $(\pi_1(C_n(\mathbb{R}^2)) = B_n)$ Abelian irreps. generated by $e^{i\theta}$ – anyon statistics.

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \dots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$ $(\pi_1(C_n(\mathbb{R}^2)) = B_n)$ Abelian irreps. generated by $e^{i\theta}$ – anyon statistics.
- $H_1(C_n(\mathbb{R})) = 1$ particles cannot be exchanged.

What happens on a network where the underlying space has arbitrarily complex topology?

Quantum graphs

Quantum graphs model phenomena associated with complex quantum systems.

- Free electrons in organic molecules
- Superconducting networks
- Photonic crystals
- Nanotechnology
- Quantum chaos
- Anderson localization

Exchanging indistinguishable particles on a Y

Exchanging indistinguishable particles on a Y

Exchanging indistinguishable particles on a Y

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k-connected* if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Two independent paths joining u and v.

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

A planar lattice with a small section that is non-planar is locally planar but has Bose/Fermi statistics.

2-connected graphs: statistics complex but independent of the number of particles.

2-connected graphs: statistics complex but independent of the number of particles.

For example, one could construct a chain of 3-connected non-planar components where particles behave with alternating Bose/Fermi statistics.

1-connected graphs: statistics depend on no. of particles *n*.

1-connected graphs: statistics depend on no. of particles n. Example, star with E edges.

no. of anyon phases

$$\binom{\textbf{n}+E-2}{E-1}\left(E-2\right)-\binom{\textbf{n}+E-2}{E-2}+1\ .$$

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2)$, phase $\phi^1_{c,1}$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$.

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2)$, phase $\phi^1_{c,1}$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$.

Let c be a loop. What is the relation between $\phi_{c,1}^u$ and $\phi_{c,1}^v$?

- (a) u and v joined by path disjoint from c. $\phi_{c,1}^u = \phi_{c,1}^v$ as exchange cycles homotopy equivalent.
- (b) u and v only joined by paths through c. Two lasso graphs so $\phi_{c,2}=\phi^u_{c,1}+\phi_{Y_1}\ \&\ \phi_{c,2}=\phi^v_{c,1}+\phi_{Y_2}$. Hence $\phi^u_{c,1}-\phi^v_{c,1}=\phi_{Y_2}-\phi_{Y_1}$.

Let c be a loop. What is the relation between $\phi_{c,1}^u$ and $\phi_{c,1}^v$?

- (a) u and v joined by path disjoint from c. $\phi^u_{c,1} = \phi^v_{c,1}$ as exchange cycles homotopy equivalent.
- (b) u and v only joined by paths through c. Two lasso graphs so $\phi_{c,2} = \phi^u_{c,1} + \phi_{Y_1} \& \phi_{c,2} = \phi^v_{c,1} + \phi_{Y_2}$. Hence $\phi^u_{c,1} - \phi^v_{c,1} = \phi_{Y_2} - \phi_{Y_1}$.
 - Relations between phases involving c encoded in phases ϕ_Y . $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where A determined by Y-cycles.
 - In (a) we have a \mathcal{B} subgraph & using (b) also $\phi_{Y_1} = \phi_{Y_2}$.

3-connected graphs

The prototypical 3-connected graph is a wheel W^k .

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then for some edge $e \in \Gamma$ either $\Gamma \setminus e$ or Γ / e is simple and 3-connected.

- $\Gamma \setminus e$ is Γ with the edge e removed.
- Γ/e is Γ with e contracted to identify its vertices.

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. Adding an edge: $\Gamma \cup e$

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase.

Adding an edge: $\Gamma \cup e$

Using 3-connectedness identify independent paths in Γ to make \mathcal{B} . Then $\phi_{\mathbf{Y}} = \phi_{\mathbf{Y}}$.

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as an original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

Using 3-connectedness identify independent paths in Γ to make \mathcal{B} . Then $\phi_{\mathbf{Y}} = \phi_{\mathbf{Y}}$.

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

• For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

- For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.
- For planar graphs the anyon phase can be introduced by drawing the graph in the plane and integrating the anyon vector potential $\frac{\alpha}{2\pi}\hat{z} \times \frac{r_1-r_2}{|r_1-r_2|^2}$ along the edges of the two-particle graph.

Examples

 K_5 : 6 A-B phases, 1 discrete phase of 0 or π .

 $K_{3,3}$: 4 A-B phases, 1 discrete phase of 0 or π .

 K_4 : 3 A-B phases, 1 anyon phase.

Figure: Configuration space graph $C_2(K_{3,3})$, edges shown as solid lines are in a spanning subtree with root (1,2). Open edges are joined left to right and top to bottom.

Classification of graph statistics

Ko & Park (2011)

$$H_1(C_n(\Gamma)) = \mathbb{Z}^{N_1(\Gamma) + N_2(\Gamma) + N_3(\Gamma) + \beta_1(\Gamma)} \oplus \mathbb{Z}_2^{N_3'(\Gamma)}$$

• $N_1(\Gamma)$ sum over one cuts j of $N(n, \Gamma, j)$.

$$N(n,\Gamma,j) = \binom{n+\mu_j-2}{n-1}(\mu(j)-2) - \binom{n+\mu_j-2}{n} - (v_j-\mu_j-1)$$

 $\mu_j \# \text{ components of } \Gamma \setminus j$.

- $N_2(\Gamma)$ sum over two connected components of Γ .
- $N_3(\Gamma)$ # 3-connected planar components of Γ .
- $N_3'(\Gamma) \# 3$ -connected non-planar components of Γ .
- $\beta_1(\Gamma)$ # of loops of Γ .

Summary

- Classification of abelian quantum statistics on graphs via graph theoretic argument.
- Physical insight into dependence of statistics on graph connectivity.
- Identified new features of anyon statistics.
- Are there phenomena associated with new forms of anyon behavior - e.g. fractional quantum Hall experiment on network?
- JH, JP Keating, JM Robbins and A Sawicki, "n-particle quantum statistics on graphs," Commun. Math. Phys. (2014) **330** 1293–1326 arXiv:1304.5781
- JH, JP Keating and JM Robbins, "Quantum statistics on graphs," *Proc. R. Soc. A* (2010) doi:10.1098/rspa.2010.0254 arXiv:1101.1535