Anyons on networks

Jon Harrison ${ }^{1}$, J.P. Keating ${ }^{2}$, J.M. Robbins ${ }^{3}$ and A. Sawicki ${ }^{4}$
${ }^{1}$ Baylor University, ${ }^{2}$ University of Oxford, ${ }^{3}$ University of Bristol, ${ }^{4}$ Center for Theoretical Physics, Polish Academy of Sciences

Baylor - 2/26/20

Supported by Simons Foundation collaboration grant 354583.

Outline

(1) Quantum statistics
(2) Anyons on graphs
(3) 3-connected graphs

Quantum statistics

Single particle space X.
Two particle statistics - alternative approaches:

- Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$
\psi\left(x_{1}, x_{2}\right)= \pm \psi\left(x_{2}, x_{1}\right)
$$

Bose-Einstein/Fermi-Dirac statistics.

Quantum statistics

Single particle space X.
Two particle statistics - alternative approaches:

- Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$
\psi\left(x_{1}, x_{2}\right)= \pm \psi\left(x_{2}, x_{1}\right)
$$

Bose-Einstein/Fermi-Dirac statistics.

- (Leinaas and Myrheim '77)

Treat particles as indistinguishable, $\psi\left(x_{1}, x_{2}\right) \equiv \psi\left(x_{2}, x_{1}\right)$.
Quantize two particle configuration space.

Aharonov-Bohm effect

Aharonov-Bohm effect

Turn on magnetic field B in region inaccessible to particle.

Aharonov-Bohm effect

Path integral formulation.

Aharonov-Bohm effect

Path integral formulation.

$\mathbf{B}=\nabla \times \mathbf{A}$.
Contribution from paths enclosing B acquires a phase $e^{\mathrm{i} \theta}$ where $\theta=\oint \mathbf{A}$. ds, as \mathbf{A} cannot be zero everywhere on path enclosing \mathbf{B}.

Bose-Einstein and Fermi-Dirac statistics

Two indistinguishable particles in \mathbb{R}^{3}. At constant separation relative coordinate lies on projective plane.

Exchanging particles corresponds to rotating relative coordinate around closed loop p.
p is not contractible but p^{2} is contractible. A phase factor $\mathrm{e}^{\mathrm{i} \theta}$ associated to p requires $\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{2}=1$.
Quantizing configuration space with $\theta=\pi$ corresponds to Fermi-Dirac statistics and $\theta=0$ to Bose-Einstein statistics.

Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^{2}.

- Particles not coincident.
- Relative position coordinate in $\mathbb{R}^{2} \backslash \mathbf{0}$.
- Exchange paths are closed loops about $\mathbf{0}$ in relative coordinate.
- As in the Aharonov-Bohm effect any phase factor $\mathrm{e}^{\mathrm{i} \theta}$ can be associated with a primitive path enclosing $\mathbf{0}$.

Braid group

For n indistinguishable particles on $\mathbb{R}^{2}, \sigma_{j}$ exchanges adjacent particles $j=1, \ldots, n-1$.

Relations $\sigma_{j} \sigma_{j+1} \sigma_{j}=\sigma_{j+1} \sigma_{j} \sigma_{j+1}$ for $j=1, \ldots, n-2$.

Generates B_{n} braid group on n strands.

A potted history of anyons

(77) Leinaas and Myrheim - quantum mechanics on configuration spaces.
(82) Wilczek - anyons on surfaces.
(82) Tsui and Strömer - fractional quantum Hall effect.
(83) Laughlin wavefunction.
(05) Sarma, Freedman and Nayek - topologically protected qbits.
(08) Kitaev - network models of topological quantum computation.

Definition

Configuration space of n indistinguishable particles in X,

$$
C_{n}(X)=\left(X^{\times n}-\Delta_{n}\right) / S_{n}
$$

where $\Delta_{n}=\left\{x_{1}, \ldots, x_{n} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$.

Definition

Configuration space of n indistinguishable particles in X,

$$
C_{n}(X)=\left(X^{\times n}-\Delta_{n}\right) / S_{n}
$$

where $\Delta_{n}=\left\{x_{1}, \ldots, x_{n} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$.
1st homology groups of $C_{n}\left(\mathbb{R}^{d}\right)$:

- $H_{1}\left(C_{n}\left(\mathbb{R}^{d}\right)\right)=\mathbb{Z}_{2}$ for $d \geq 3$.

2 abelian irreps. corresponding to Bose-Einstein \& Fermi-Dirac statistics.

Definition

Configuration space of n indistinguishable particles in X,

$$
C_{n}(X)=\left(X^{\times n}-\Delta_{n}\right) / S_{n}
$$

where $\Delta_{n}=\left\{x_{1}, \ldots, x_{n} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$.
1st homology groups of $C_{n}\left(\mathbb{R}^{d}\right)$:

- $H_{1}\left(C_{n}\left(\mathbb{R}^{d}\right)\right)=\mathbb{Z}_{2}$ for $d \geq 3$.

2 abelian irreps. corresponding to Bose-Einstein \& Fermi-Dirac statistics.

- $H_{1}\left(C_{n}\left(\mathbb{R}^{2}\right)\right)=\mathbb{Z} \quad\left(\pi_{1}\left(C_{n}\left(\mathbb{R}^{2}\right)\right)=B_{n}\right)$

Abelian irreps. generated by $\mathrm{e}^{\mathrm{i} \theta}-$ anyon statistics.

Definition

Configuration space of n indistinguishable particles in X,

$$
C_{n}(X)=\left(X^{\times n}-\Delta_{n}\right) / S_{n}
$$

where $\Delta_{n}=\left\{x_{1}, \ldots, x_{n} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$.
1st homology groups of $C_{n}\left(\mathbb{R}^{d}\right)$:

- $H_{1}\left(C_{n}\left(\mathbb{R}^{d}\right)\right)=\mathbb{Z}_{2}$ for $d \geq 3$.

2 abelian irreps. corresponding to Bose-Einstein \& Fermi-Dirac statistics.

- $H_{1}\left(C_{n}\left(\mathbb{R}^{2}\right)\right)=\mathbb{Z} \quad\left(\pi_{1}\left(C_{n}\left(\mathbb{R}^{2}\right)\right)=B_{n}\right)$

Abelian irreps. generated by $\mathrm{e}^{\mathrm{i} \theta}$ - anyon statistics.

- $H_{1}\left(C_{n}(\mathbb{R})\right)=1$
particles cannot be exchanged.

What happens on a network where the underlying space has arbitrarily complex topology?

Quantum graphs

Quantum graphs model phenomena associated with complex quantum systems.

- Free electrons in organic molecules
- Superconducting networks
- Photonic crystals
- Nanotechnology
- Quantum chaos
- Anderson localization

Exchanging indistinguishable particles on a Y

Exchanging indistinguishable particles on a Y

4 \square 〉句

Exchanging indistinguishable particles on a Y

Graph connectivity

- Given a connected graph 「 a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is k-connected if the minimal cut is size k.
- Theorem (Menger) For a k-connected graph there exist at least k independent paths between every pair of vertices.
Example:

Graph connectivity

- Given a connected graph 「 a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is k-connected if the minimal cut is size k.
- Theorem (Menger) For a k-connected graph there exist at least k independent paths between every pair of vertices.

Example:

Two cut

Graph connectivity

- Given a connected graph 「 a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is k-connected if the minimal cut is size k.
- Theorem (Menger) For a k-connected graph there exist at least k independent paths between every pair of vertices.
Example:

Two independent paths joining u and v.

Features of anyon statistics on networks

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

Features of anyon statistics on networks

3-connected graphs: statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

A planar lattice with a small section that is non-planar is locally planar but has Bose/Fermi statistics.

Features of anyon statistics on networks

2-connected graphs: statistics complex but independent of the number of particles.

Features of anyon statistics on networks

2-connected graphs: statistics complex but independent of the number of particles.

For example, one could construct a chain of 3-connected non-planar components where particles behave with alternating Bose/Fermi statistics.

Features of anyon statistics on networks

1-connected graphs: statistics depend on no. of particles n.

Features of anyon statistics on networks

1-connected graphs: statistics depend on no. of particles n. Example, star with E edges.

no. of anyon phases

$$
\binom{n+E-2}{E-1}(E-2)-\binom{n+E-2}{E-2}+1
$$

Basic cases

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Basic cases

Basic cases

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Basic cases

Exchange of 2 particles around loop c; one free phase $\phi_{c 2}$.

Exchange of 2 particles at Y -junction; one free phase ϕ_{Y}.

Lasso graph

Identify three 2-particle cycles:
(i) Rotate both particles around loop c; phase $\phi_{c, 2}$.
(ii) Exchange particles on Y-subgraph; phase ϕ_{Y}.
(iii) Rotate one particle around loop c other particle at vertex 1 ; $(1,2) \rightarrow(1,3) \rightarrow(1,4) \rightarrow(1,2)$, phase $\phi_{c, 1}^{1}$.
Relation from contactable 2-cell $\phi_{c, 2}=\phi_{c, 1}^{1}+\phi_{Y}$.

Lasso graph

Identify three 2-particle cycles:
(i) Rotate both particles around loop c; phase $\phi_{c, 2}$.
(ii) Exchange particles on Y-subgraph; phase ϕ_{Y}.
(iii) Rotate one particle around loop c other particle at vertex 1 ; $(1,2) \rightarrow(1,3) \rightarrow(1,4) \rightarrow(1,2)$, phase $\phi_{c, 1}^{1}$.
Relation from contactable 2-cell $\phi_{c, 2}=\phi_{c, 1}^{1}+\phi_{Y}$.

Let c be a loop. What is the relation between $\phi_{c, 1}^{u}$ and $\phi_{c, 1}^{v}$?

(b)

(a) u and v joined by path disjoint from c.
$\phi_{c, 1}^{u}=\phi_{c, 1}^{v}$ as exchange cycles homotopy equivalent.
(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c, 2}=\phi_{c, 1}^{u}+\phi_{Y_{1}} \& \phi_{c, 2}=\phi_{c, 1}^{v}+\phi_{Y_{2}}$. Hence $\phi_{c, 1}^{u}-\phi_{c, 1}^{v}=\phi_{Y_{2}}-\phi_{Y_{1}}$.

Let c be a loop. What is the relation between $\phi_{c, 1}^{u}$ and $\phi_{c, 1}^{v}$?

(b)

(a) u and v joined by path disjoint from c.
$\phi_{c, 1}^{u}=\phi_{c, 1}^{v}$ as exchange cycles homotopy equivalent.
(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c, 2}=\phi_{c, 1}^{u}+\phi_{Y_{1}} \& \phi_{c, 2}=\phi_{c, 1}^{v}+\phi_{Y_{2}}$. Hence $\phi_{c, 1}^{u}-\phi_{c, 1}^{v}=\phi_{Y_{2}}-\phi_{Y_{1}}$.

- Relations between phases involving c encoded in phases ϕ_{Y}. $H_{1}\left(C_{2}(\Gamma)\right)=\mathbb{Z}^{\beta_{1}(\Gamma)} \oplus A$, where A determined by Y -cycles.
- In (a) we have a \mathcal{B} subgraph \& using (b) also $\phi_{Y_{1}}=\phi_{Y_{\underline{2}}}$.

3-connected graphs

The prototypical 3-connected graph is a wheel W^{k}.

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then for some edge $e \in \Gamma$ either $\Gamma \backslash e$ or Γ / e is simple and 3-connected.

- $\Gamma \backslash e$ is Γ with the edge e removed.
- Γ / e is Γ with e contracted to identify its vertices.

Lemma

For 3-connected simple graphs all phases ϕ_{Y} are equal up to a sign.
Sketch proof. The lemma holds on K_{4} (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_{Y} are the same as an original phase. Adding an edge: $\Gamma \cup e$

Lemma

For 3-connected simple graphs all phases ϕ_{Y} are equal up to a sign.
Sketch proof. The lemma holds on K_{4} (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_{Y} are the same as an original phase. Adding an edge: $\Gamma \cup e$

Using 3-connectedness identify independent paths in 「 to make \mathcal{B}. Then $\phi_{Y}=\phi_{Y}$.

Lemma

For 3-connected simple graphs all phases ϕ_{Y} are equal up to a sign.
Sketch proof. The lemma holds on K_{4} (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_{Y} are the same as an original phase. Vertex expansion: Split vertex of degree >3 into two vertices u and v joined by a new edge e.

Lemma

For 3-connected simple graphs all phases ϕ_{Y} are equal up to a sign.
Sketch proof. The lemma holds on K_{4} (minimal wheel). By wheel theorem we need to show that adding an edge or expanding a vertex any new phases ϕ_{Y} are the same as an original phase. Vertex expansion: Split vertex of degree >3 into two vertices u and v joined by a new edge e.

Using 3-connectedness identify independent paths in Γ to make \mathcal{B}. Then $\phi_{Y}=\phi_{Y}$.

Theorem

For a 3-connected simple graph, $H_{1}\left(C_{2}(\Gamma)\right)=\mathbb{Z}^{\beta_{1}(\Gamma)} \oplus A$, where $A=\mathbb{Z}_{2}$ for non-planar graphs and $A=\mathbb{Z}$ for planar graphs.

Theorem

For a 3-connected simple graph, $H_{1}\left(C_{2}(\Gamma)\right)=\mathbb{Z}^{\beta_{1}(\Gamma)} \oplus A$, where $A=\mathbb{Z}_{2}$ for non-planar graphs and $A=\mathbb{Z}$ for planar graphs.

Proof.

- For K_{5} and $K_{3,3}$ every phase $\phi_{Y}=0$ or π. By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_{5} or $K_{3,3}$.

Theorem

For a 3-connected simple graph, $H_{1}\left(C_{2}(\Gamma)\right)=\mathbb{Z}^{\beta_{1}(\Gamma)} \oplus A$, where $A=\mathbb{Z}_{2}$ for non-planar graphs and $A=\mathbb{Z}$ for planar graphs.

Proof.

- For K_{5} and $K_{3,3}$ every phase $\phi_{Y}=0$ or π. By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_{5} or $K_{3,3}$.
- For planar graphs the anyon phase can be introduced by drawing the graph in the plane and integrating the anyon vector potential $\frac{\alpha}{2 \pi} \hat{z} \times \frac{r_{1}-r_{2}}{\left|r_{1}-r_{2}\right|^{2}}$ along the edges of the two-particle graph.

Examples

K_{5} : 6 A-B phases, 1 discrete phase of 0 or π.
$K_{3,3}: 4$ A-B phases, 1 discrete phase of 0 or π.
K_{4} : 3 A-B phases, 1 anyon phase.

Figure: Configuration space graph $C_{2}\left(K_{3,3}\right)$, edges shown as solid lines are in a spanning subtree with root (1,2). Open edges are joined left to right and top to bottom.

Classification of graph statistics

Ko \& Park (2011)

$$
H_{1}\left(C_{n}(\Gamma)\right)=\mathbb{Z}^{N_{1}(\Gamma)+N_{2}(\Gamma)+N_{3}(\Gamma)+\beta_{1}(\Gamma)} \oplus \mathbb{Z}_{2}^{N_{3}^{\prime}(\Gamma)}
$$

- $N_{1}(\Gamma)$ sum over one cuts j of $N(n, \Gamma, j)$.

$$
N(n, \Gamma, j)=\binom{n+\mu_{j}-2}{n-1}(\mu(j)-2)-\binom{n+\mu_{j}-2}{n}-\left(v_{j}-\mu_{j}-1\right)
$$

$\mu_{j} \#$ components of $\Gamma \backslash j$.

- $N_{2}(\Gamma)$ sum over two connected components of Γ.
- $N_{3}(\Gamma) \# 3$-connected planar components of Γ.
- $N_{3}^{\prime}(\Gamma)$ \# 3-connected non-planar components of Γ.
- $\beta_{1}(\Gamma) \#$ of loops of Γ.

Summary

- Classification of abelian quantum statistics on graphs via graph theoretic argument.
- Physical insight into dependence of statistics on graph connectivity.
- Identified new features of anyon statistics.
- Are there phenomena associated with new forms of anyon behavior - e.g. fractional quantum Hall experiment on network?

國 JH, JP Keating, JM Robbins and A Sawicki, " n-particle quantum statistics on graphs," Commun. Math. Phys. (2014) 330 1293-1326 arXiv:1304.5781
目 JH, JP Keating and JM Robbins, "Quantum statistics on graphs," Proc. R. Soc. A (2010) doi:10.1098/rspa.2010.0254 arXiv:1101.1535

