
Internet Appendix: Supplemental Proofs
Notes on the Proof of Lemma 2. Division managers determine

�
q̂dd ; q̂

d
d0
�
in (17). We will focus on two cases: we

start with the case where d � 0, and then we consider the case d < 0. Consider ~qdd = qd + �, for � > 0. Switching

to ~qd�d = qd � � lowers ûd by 2�dad� while leaving the constraint unchanged. Therefore, it must be that q̂
d
d � qd.

Similarly, switching from ~qdd0 = qd0 + �, for � > 0 to ~qd�d0 = qd0 � � lowers ûd by 2dad0�, leaving the constraint

unchanged. Therefore, it must also be that q̂dd0 � qd0 . Thus, we can express the Lagrangian as

L � �ûd � �
h
gc � �d

i
� �d

�
q̂dd � qd

�
� �d0

�
q̂dd0 � qd0

�
(B1)

where gc � ln qd
q̂d
d

+ ln
qd0
q̂d
d0
. Because problem (17) admits corner solutions, we characterize its solution by use of the

full Kuhn-Tucker conditions:

@L
@q̂dd

= �@ûd
@q̂dd

� �
@gc
@q̂dd

� �d = ��dad +
�

q̂dd
� �d = 0; (B2)

@L
@q̂dd0

= � @ûd
@q̂dd0

� �
@gc
@q̂dd0

� �d0 = �dad0 +
�

q̂dd0
� �d0 = 0;

�
�
gc � �d

�
+ �d

�
q̂dd � qd

�
+ �d0

�
q̂dd0 � qd0

�
= 0;

� � 0; �d0 � 0; �d � 0; �d � gc � 0; qd � q̂dd � 0; qd0 � q̂dd0 � 0:

From the de�nition of gc, to satisfy the constraint �d � gc � 0 it must be q̂dd > 0 and q̂d0 > 0, which implies that
@L
@q̂d

d

= @L
@q̂d

d0
= 0. Also, �dad > 0 implies � > 0; and thus that gc � �d = 0. In addition, it cannot be that both �d > 0

and �d0 > 0 because, if so, then q̂
d
d = qd and q̂dd0 = qd0 , which would imply that gc = 0 < �d, which contradicts � > 0.

This leaves us with three types of solutions: �d = �d0 = 0, �d > 0 = �d0 , and �d = 0 < �d0 .

If �d = �d0 = 0, then we have the case in the main appendix: @L
@q̂d

d

= @L
@q̂d

d0
= 0 together imply that � = �dadq̂

d
d

and � = dad0 q̂
d
d0 , giving �dadq̂

d
d = dad0 q̂

d
d0 . Because gc = �d implies that q̂dd q̂

d
d0 = e��

d

qdqd0 , after substitution

this implies that �dad
dad0

�
q̂dd
�2
= e��

d

qdqd0 , or equivalently, q̂
d
d =

h
e��

d

Hd
i 1
2
qd, where Hd =

dad0qd0
�dadqd

. Similarly,

q̂dd0 =
h
e��

d 1
Hd

i 1
2
qd0 . In order for this to be feasible, however, it must be that q̂

d
d � qd, or equivalently, Hd � e�

d

,

and q̂dd0 � qd0 , or equivalently, Hd � e��
d

, giving case (ii) when d > 0. If �d > 0 = �d0 , then q̂
d
d = qd and, from

gc = �d, also q̂dd0 = e��
d

qd0 . Note that @L
@q̂d

d0
= 0 implies that � = dad0e

��dqd0 and, from @L
@q̂d

d

= 0, we have that

�d = ��dad +
dad0e

��dqd0

qd
= �dad

�
Hde

��d � 1
�
> 0; (B3)

which requires Hd > e�
d

, giving case (i) when d > 0. Finally, if �d = 0 < �d0 , then q̂
d
d0 = qd0 and, from gc = �d, also

q̂dd = e��
d

qd. Note that now @L
@q̂d

d

= 0 implies that � = �dade
��dqd, and, from @L

@q̂d
d0
= 0, we have that

�d0 = �dad0 +
�dade

��dqd
qd0

= dad0
�
H�1
d e��

d

� 1
�
� 0; (B4)

which requires 0 � Hd < e��
d

, giving case (iii) when d � 0.
The case with d < 0 proceeds similarly, noting that q̂

d
d � qd but q̂dd0 � qd0 . Thus, we can express the Lagrangian

as

L � �ûd � �
h
gc � �d

i
� �d

�
q̂dd � qd

�
� �d0

�
qd0 � q̂dd0

�
(B5)
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where gc � ln qd
q̂d
d

+ ln
qd0

2qd0�q̂
d
d0
. Again, the full Kuhn-Tucker conditions are

@L
@q̂dd

= �@ûd
@q̂dd

� �
@gc
@q̂dd

� �d = ��dad +
�

q̂dd
� �d = 0; (B6)

@L
@q̂dd0

= � @ûd
@q̂dd0

� �
@gc
@q̂dd0

+ �d0 = �dad0 +
�

2qd0 � q̂dd0
+ �d0 = 0;

�
�
gc � �d

�
+ �d

�
q̂dd � qd

�
+ �d0

�
qd0 � q̂dd0

�
= 0;

� � 0; �d0 � 0; �d � 0; �d � gc � 0; qd � q̂dd � 0; qd0 � q̂dd0 � 0:

From the de�nition of gc, to satisfy the constraint �d � gc � 0 it must be q̂dd > 0 and q̂d0 > 0, which implies that
@L
@q̂d

d

= @L
@q̂d

d0
= 0. Also, �dad > 0 implies � > 0; and thus that gc � �d = 0. In addition, it cannot be that both �d > 0

and �d0 > 0 because, if so, then q̂
d
d = qd and q̂dd0 = qd0 , which would imply that gc = 0 < �d, which contradicts � > 0.

This leaves us with three types of solutions: �d = �d0 = 0, �d > 0 = �d0 , and �d = 0 < �d0 .

If �d = �d0 = 0, @L
@q̂d

d

= @L
@q̂d

d0
= 0 together imply that � = �dadq̂

d
d and � = jdj ad0

�
2qd0 � q̂dd0

�
, giving

�dadq̂
d
d = jdj ad0

�
2qd0 � q̂dd0

�
. Because gc = �d implies that q̂dd

�
2qd0 � q̂dd0

�
= e��

d

qdqd0 , after substitution this

implies that �dad
jdjad0

�
q̂dd
�2

= e��
d

qdqd0 , or equivalently, q̂
d
d =

h
e��

d

Hd
i 1
2
qd, where Hd =

jdjad0qd0
�dadqd

. Similarly,

q̂dd0 =

�
2�

�
e��

d 1
Hd

� 1
2

�
qd0 . In order for this to be feasible, however, it must be that q̂

d
d � qd, or equivalently,

Hd � e�
d

, and q̂dd0 � qd0 , or equivalently, Hd � e��
d

, giving case (ii) when d < 0. Alternatively, if �d > 0 = �d0 ,

then q̂dd = qd and, from gc = �d, also q̂dd0 =
�
2� e��

d
�
qd0 . Note that @L

@q̂d
d0
= 0 implies that � = jdj ad0e��

d

qd0 and,

from @L
@q̂d

d

= 0, we have that

�d = ��dad +
jdj ad0
qd

e��
d

qd0 = �dad
h
Hde

��d � 1
i
> 0; (B7)

which requires Hd > e�
d

, giving case (i) when d < 0. Finally, if �d = 0 < �d0 , then q̂
d
d0 = qd0 and, from gc = �d, also

q̂dd = e��
d

qd. Note that now @L
@q̂d

d

= 0 implies that � = �dade
��dqd, and, from @L

@q̂d
d0
= 0, we have that

�d0 = �dad0 +
�dade

��dqd
qd0

= jdj ad0
�
1

Hd
e��

d

� 1
�
� 0; (B8)

which requires 0 < Hd � e��
d

, giving case (iii) when d < 0.

Proof of Lemma 3. The lemma is shown in two steps. First, we obtain division managers�best response functions,

ad = �d�dq̂
d
d . Second, we characterize the Nash equilibrium in terms of log (ad) and we apply the contraction mapping

theorem, proving uniqueness.

Division manager d 2 fA;Bg chooses e¤ort level ad to solve (19) by setting

d

dad
ûd(a; q̂

d
d(a;w)) =

@ûd
@ad

+
@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
=
@ûd
@ad

= 0; (B9)

where the second equality holds by the envelope theorem, as follows. For case (ii) of Lemma 2, we have that
@ûd
@q̂d

d

= � @g
@q̂d

and @ûd
@q̂d

d0
= � @g

@q̂d0
, giving

@ûd
@q̂dd

@q̂dd
@ad

+
@ûd
@q̂dd0

@q̂dd0

@ad
= �

�
@g

@q̂d

@q̂dd
@ad

+
@g

@q̂d0

@q̂dd0

@ad

�
= �

dg

dad
= 0 (B10)

because g = e��
d

. In cases (i) & (iii), q̂dd and q̂
d
d0 do not depend on ad,

@q̂dd
@ad

=
@q̂d

d0
@ad

= 0, so dûd
dad

= @ûd
@ad

= �dq̂
d
d� ad

�d
= 0.

Thus, the best response functions are ad = �d�dq̂
d
d , where beliefs q̂

d
d are from Lemma 2. If d = 0, we have that

Hd = 0, giving ad = �d�de
��dqd. If d 6= 0, the best response depends on the e¤ort by the other division manager,

ad0 . If the other division manager, d
0 6= d, exerts low e¤ort ad0 < aLd0 �

�d�
2
de

�2�dq2d
jdjqd0

, we have that Hd < e��
d

and

division manager d holds pessimistic belief as in case (i) of Lemma 2, q̂dd = e��
d

qd, giving ad = a1�d � �d�de
��dqd.

If division manager d0 exerts moderate level of e¤ort, aLd0 � ad0 < aHd0 �
�d�

2
de

�dq2d
jdjqd0

, division manager d hold beliefs
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as in case (ii) of Lemma 2; thus Hd 2
h
e��

d

; e�
d
i
and ad =

h
�2d jdj ad0�de��

d

qd0qd
i 1
3
. Finally, if division manager d0

exerts a high level of e¤ort, ad0 > aHd0 , division manager d hold beliefs as in case (iii) of Lemma 2; thus jHdj > e�
d

and ad = �d�dqd. The best response function for DM d is therefore given by

a�d (ad0) =

8>><>>:
a1�d � �d�de

��dqd

~a�d (ad0) �
h
�2d jdj ad0�de��

d

qd0qd
i 1
3

a2�d � �d�dqd

ad0 < aLd0

aLd0 � ad0 � aHd0

ad0 > aHd0

: (B11)

A Nash equilibrium is a pair faA; aBg such that ad = a�d (ad0), d 2 fA;Bg, d 6= d0. Note that a�d (ad0) is a positive,

continuous, and increasing function of ad0 . Expressing the best response in logs, we obtain

ln a�d (ln ad0) =

8>><>>:
ln �d�de

��dqd

ln
h
�2d jdj�de��

d

qd0qd
i 1
3
+ 1

3
ln (ad0)

ln �d�dqd

ln ad0 < ln a
L
d0

ln aLd0 � ln ad0 � ln aHd0
ln ad0 > ln a

H
d0

: (B12)

Further, note d ln a�d
d ln ad0

= 0 for ad0 < aLd0 and ad0 > aHd0 , while
d ln a�d
d ln ad0

= 1
3
for aLd0 < ad0 < aHd0 . De�ne F : R2 ! R2

so that F � (ln a�A (ln aB) ; ln a
�
B (ln aA))

0, and let d (x; y) be the Euclidean distance. For x; y 2 R2, de�ne ~xd �
max

�
ln aLd ;min

�
xd; ln a

H
d

		
and ~yd � max

�
ln aLd ;min

�
yd; ln a

H
d

		
, we have

d (F (x) ; F (y)) =

q
(ln a�A (xB)� ln a�A (yB))

2 + (ln a�B (xA)� ln a�B (yA))
2 (B13)

=

q
(ln a�A (~xB)� ln a�A (~yB))

2 + (ln a�B (~xA)� ln a�B (~yA))
2

=

s�
1

3
(~xB � ~yB)

�2
+

�
1

3
(~xA � ~yA)

�2
=
1

3
d (~x; ~y) � 1

3
d (x; y) ;

which implies that 0 � d (F (x) ; F (y)) � 1
3
d (x; y) for all x; y 2 R2. Thus, F is a contraction mapping and the Nash

Equilibrium exists and is unique.

Because the best-response function is constant if d0 exerts low e¤ort, ad0 < aLd0 , and if d
0 exerts high e¤ort,

ad0 > aHd0 , the Nash Equilibrium is fully determined. All that remains to be determined is the Nash Equilibrium

e¤ort for d when aLd0 � ad0 � aHd0 . There are three possible cases:

(1) If ad0 = a1�d0 > aLd0 , so that Hd0 � e��
d0
, then

ad = ~a
�
d

�
a1�d0
�
=

�
�2d�d0e

�(�d+�d
0
) jdj�d0�dq

2
d0qd

� 1
3

; (B14)

(2) If ad0 = a2�d0 < aHd0 , so that Hd0 � e�
d0
, then

ad = ~a
�
d

�
a2�d0
�
=
h
�2d�d0e

��d jdj�d0�dq
2
d0qd

i 1
3
; (B15)

(3) if a1�d0 < ad0 < a2�d0 , so that Hd0 2
�
e��

d0
; e�

d0
�
, then setting ad = ~a�d (ad0) and ad0 = ~a

�
d0 (ad), after solving we

obtain

ad = �ad �
h
e��

d

�2d�d jdj
i 3
8

�
e��

d0

�2d0�d0 jd0 j
� 1
8

[qdqd0 ]
1
2 : (B16)

Comparative statics follow by di¤erentiation.

Notes on the Proof of Theorem 1. The proof in the body found the optimal contract when d > 0. We will

show here that the objective is symmetric around zero, completing the proof. Note that, from Lemma 2, q̂dd depends

on d only through its absolute value, jdj. Thus, from Lemma 3, equilibrium action ad = �d�dq̂
d
d also depends on

jdj only. This implies the �rst term of the uncertainty discount, �dad
�
qd � q̂dd

�
, depends only on jdj. We next show

that, if d < 0, the second term of the uncertainty discount, dad0
�
qd0 � q̂dd0

�
, is unchanged by o¤ering cross pay,

jdj, rather than relative performance evaluation, d < 0. From Lemma 2, let q̂d+d0 be the belief held by the DM when

receiving jdj instead of d < 0. We will show dad0
�
qd0 � q̂dd0

�
= jdj ad0

�
qd0 � q̂d+d0

�
. Consider in turn cases (i), (ii)

and (iii) in Lemma 2.

3



First, in case (i), if Hd < e��
d

, then q̂d+d0 = q̂dd0 = qd0 , so

jdj ad0
�
qd0 � q̂d+d0

�
= dad0

�
qd0 � q̂dd0

�
= 0: (B17)

In case (ii), if Hd 2
�
e��

d

; e�
d
�
, then q̂dd0 =

�
2�

h
e��

d �dadqd
jdjad0qd0

i 1
2

�
qd0 , giving

dad0
�
qd0 � q̂dd0

�
= dad

0@"e��d�dadqd
jdj ad0qd0

# 1
2

� 1

1A qd0 = jdj ad0

0@1� "e��d�dadqdjdj ad0qd0

# 1
2

1A qd0 : (B18)

This implies that replacing d with jdj, beliefs will remain in case (ii), with q̂d+d0 =
h
e��

d �dadqd
jdjad0qd0

i 1
2
qd0 . Thus, we

obtain

jdj ad0
�
qd0 � q̂d+d0

�
= dad0

�
qd0 � q̂dd0

�
: (B19)

Finally, in case (iii) with Hd > e�
d

and q̂dd0 =
�
2� e��

d
�
qd0 , if HQ replaces d with jdj, beliefs will be q̂d+d0 = e��

d

qd0

we obtain

jdj ad0
�
qd0 � q̂d+d0

�
= jdj ad0

�
1� e��

d
�
qd0 = dad0

�
e��

d

� 1
�
qd0 = dad0

�
qd0 � q̂dd0

�
: (B20)

Therefore, �̂(d) = �̂(jdj) and �̂ is symmetric in d around zero.
Proof of Corollary 1. Because the participation constraint (8) binds, HQ payo¤, �̂, now is equal toX

d;d02fA;Bg
d0 6=d

"
(1� �d � d0) qdad + �dadq̂

d
d + dad0 q̂

d
d0 �

a2d
2�d

�
r�2

�
�2d + 2�dd�+ 2d

�
2

#
(B21)

where faA; aBg are the Nash equilibrium e¤ort levels of Lemma 3.

Di¤erent from the case of Theorem 1, because of the presence of the last term, HQ objective function �̂ admits

multiple strict local maxima. The proof therefore proceeds in two steps. First, we consider candidate optimal contracts

that induce division managers to hold one of four possible con�gurations of beliefs (implied by Lemma 2). Speci�cally,

we consider contracts as follows. Case (A): a small exposure to the other division leading to Hd < e��
d

, case (i) of

Lemma 2; Case (B): a moderate positive exposure to the other division, d > 0 and Hd 2
�
e��

d

; e�
d
�
, within case

(ii) of Lemma 2; Case (B�): a moderate negative exposure to the other division, d < 0 and Hd 2
�
e��

d

; e�
d
�
, also

within case (ii) of Lemma 2; Cases (C) and (C�): a large (negative or positive) exposure to the other division, leading

to Hd > e�
d

case (iii) of Lemma 2. Second, we compare payo¤s to HQ from optimal contracts in these regions and

we determine the globally optimal contract.

Case (A): If Hd < e��
d

, have q̂dd = e��
d

qd and q̂dd0 = qd0 , which do not depend on d. Similarly, by Lemma 3,

ad = �d�de
��dqd, which does not depend on d as well. Therefore, setting

@�̂

@d
= �r�2 (��d + d) = 0 (B22)

gives d = ���d and d is set to hedge risk with no e¤ect on incentives. Substituting in �̂ and di¤erentiating we
obtain

@�̂

@�d
= (1� 2�d) �dqq̂

d
d + �d�d

�
q̂dd

�2
� r�2�d

�
1� �2

�
(B23)

Therefore

�1d �
1

1 +
�
1� q̂dd=q

�
+ r�2 (1� �2) =(�qq̂dd)

: (B24)

After substitution, this gives HQ payo¤ under condition (S)

�̂1 �
�
e���q2

�2
(2� e��) e���q2 + r�2 (1� �2)

: (B25)

Case (B): If d > 0 and Hd 2
�
e��; e�

�
, we can express the payo¤ to HQ as

�̂ = (1� �A � B) aAqA + (1� �B � A) aBqB + ûA(aA; q̂
A(aA; wA)) + ûB(aB ; q̂

B(aB ; wB)); (B26)
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where ûd(ad; q̂d(ad; wd)) = minq̂d2Kq̂
d
ûd, with

ûd(ad; q̂
d(ad; wd)) = �dadq̂

d
d + dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��dd + 2d

�
� a2d
2�d

= 0; (B27)

and where �ad is the Nash equilibrium given by (B16). Because ûd is strictly concave and the minimum operator is

concave, ûd(ad; q̂d(ad; wd)) is strictly concave. Therefore, �̂ is strictly concave as well. Thus, �rst-order conditions of

optimality are su¢ cient for a local optimum. Similar to the proof of Theorem 1, we have

d�̂

d�d
= �qd�ad + (1� �d � d0) qd

@�ad
@�d

+ (1� �d0 � d) qd0
@�ad0

@�d
(B28)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

In this region, from (B16), we have @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

. Because @ûd
@�ad0

= dq̂
d
d0 and

@ûd
@�d

= adq̂
d
d �

r�2 (�d + �d), by applying the envelope theorem to ûd(�ad; q̂d):

dûd(�ad; q̂
d(�ad; wd))

d�d
= adq̂

d
d � r�2 (�d + �d) + dq̂

d
d0
�ad0

8�d
: (B29)

Similarly, because @ûd0
@�d

= 0 and @ûd0
@�ad

= d0 q̂
d0
d , we obtain

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � d0) qd

3�ad
8�d

+ (1� �d0 � d) qd0
�ad0

8�d
(B30)

�r�2 (�d + �d) + dq̂
d
d0
�ad0

8�d
+ d0 q̂

d0
d
3�ad
8�d

:

Consider now d. We have that

d�̂

dd
= �qd0�ad0 + (1� �d � d0) qd

@�ad
@d

+ (1� �d0 � d) qd0
@�ad0

@d
(B31)

+
dûd(�ad; q̂

d(�ad; wd))

dd
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
:

Because @ûd
@d

= �ad0 q̂
d
d0 � r�2 (d + ��d),

@ûd
@�ad0

= dq̂
d
d0 , and

@�ad0
@d

=
�ad0
8d
, applying the envelope theorem to ûd(�ad; q̂d),

dûd(�ad; q̂
d(ad; wd))

dd
= ad0 q̂

d
d0 � r�2 (d + ��d) + dq̂

d
d0
�ad0

8d
: (B32)

Similarly, because @ûd0
@d

= 0, @ûd0
@�ad

= d0 q̂
d0
d , and

@�ad
@d

= 3�ad
8d
, we obtain

d�̂

dd
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � d0) qd

3�ad
8d

+ (1� �d0 � d) qd0
�ad0

8d
(B33)

�r�2 (d + ��d) + dq̂
d
d0
�ad0

8d
+ d0 q̂

d0
d
3�ad
8d

:

Thus, from (B30) and (B33), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �d) +

�d
�d

= 0; (B34)

d�̂

dd
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (d + ��d) +

�d
d

= 0;

where �d � (1� �d � d0) qd
3�ad
8
+ (1� �d0 � d) qd0

�ad0
8
+ dq̂

d
d0
�ad0
8
+ d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �d�d

�
= d�ad0

�
qd0 � q̂dd0

�
+ r�2

�
2d + ��dd

�
: (B35)

By Lemma 2, we have that �d�adq̂
d
d = d�ad0 q̂

d
d0 , which implies that

�d�adqd + r�2�2d = d�ad0qd0 + r�22d (B36)

We will guess and verify that, due to the symmetry condition (S), it is optimal to implement symmetric e¤ort,

�ad = �ad0 = �a, and that qd = q, �d = �, and �d = �. De�ne f (x) � x�aq + r�2x2. Note f 0 (x) = �aq + 2r�2x > 0 for
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x > 0, so that f is monotonic over positive numbers and f (d) = f (�d) if and only if d = �d. Thus, q̂
d
d = q̂dd0 = e�

�
2 q

and �ad = e�
�
2 ��

3
4
d �

1
4
d0q. In order to optimally implement the same e¤ort, it must be that �d = �d0 , so �a = e�

�
2 ��q.

Thus, we obtain the �rst-order condition

d�̂

d�d
= ���dq̂

d
d

�
q � q̂dd

�
+ (1� 2�d) qq̂

d
d
�

2
� r�2�d (1 + �) +

��d
�
q̂dd
�2

2
= 0: (B37)

Therefore

�2d �
1

1 + 3
�
1� q̂dd=q

�
+ 2r�2 (1 + �) =(�qq̂dd)

: (B38)

After substitution, this gives HQ payo¤

�̂2 � �2e��q4

�e�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1 + �)

: (B39)

Because �d is the same for both divisions, this veri�es that a is symmetric. Because HQ objective �̂ is strictly concave

on this region, there is only one solution on this region, so the symmetric solution is the unique solution.

Case (B�): Consider d < 0 and Hd 2
�
e��; e�

�
. Following the same process as in case (B) above, we have

d�̂

d�d
= �qd�ad + (1� �d � d0) qd

@�ad
@�d

+ (1� �d0 � d) qd0
@�ad0

@�d
(B40)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, we obtain that

d�̂

d�d
= �ad

�
qd � q̂dd

�
+ (1� �d � d0) qd

3�ad
8�d

+ (1� �d0 � d) qd0
�ad0

8�d
(B41)

�r�2 (�d + �d) + dq̂
d
d0
�ad0

8�d
+ d0 q̂

d0
d
3�ad
8�d

:

Consider now d. We have that

d�̂

dd
= �qd0�ad0 + (1� �d � d0) qd

@�ad
@d

+ (1� �d0 � d) qd0
@�ad0

@d
(B42)

+
dûd(�ad; q̂

d(�ad; wd))

dd
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
:

Because @�ad
@d

= 3�ad
8d
, @�ad0
@d

=
�ad0
8d

and @ûd
@�ad0

= dq̂
d
d0 , by applying the envelope theorem on ûd0(�ad0 ; q̂

d0), we obtain that

dûd(�ad; q̂
d(ad; wd))

dd
= ad0 q̂

d
d0 � r�2 (d + ��d) + q̂dd0

�ad0

8
: (B43)

Similarly, because @ûd0
@d

= 0, @ûd0
@�ad

= d0 q̂
d0
d , and

@�ad
@d

= 3�ad
8d
, by applying the envelope theorem on ûd0(�ad0 ; q̂

d0), we

obtain that
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
= d0 q̂

d0
d
3�ad
8d

: (B44)

Together (B43) and (B44) give that

d�̂

dd
= ��ad0

�
qd0 � q̂dd0

�
+ (1� �d � d0) qd

3�ad
8d

+ (1� �d0 � d) qd0
�ad0

8d
(B45)

�r�2 (d + ��d) + q̂dd0
�ad0

8
+ d0 q̂

d0
d
3�ad
8d

:

Thus, from (B41) and (B45), we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
qd � q̂dd

�
� r�2 (�d + �d) +

�d
�d

= 0; (B46)

d�̂

dd
= ��ad0

�
qd0 � q̂dd0

�
� r�2 (d + ��d) +

�d
d

= 0;

6



where �d � (1� �d � d0) qd
3�ad
8
+ (1� �d0 � d) qd0

�ad0
8
+ dq̂

d
d0
�ad0
8
+ d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
qd � q̂dd

�
+ r�2

�
�2d + �d�d

�
= d�ad0

�
qd0 � q̂dd0

�
+ r�2

�
2d + ��dd

�
: (B47)

Again, in this region, q̂dd =
h
e��

d

Hd
i 1
2
qd; and q̂dd0 =

�
2�

h
e��

d

H�1
d

i 1
2

�
qd0 , where Hd =

jdjad0qd0
�dadqd

. Thus,

d�ad0
�
qd0 � q̂dd0

�
= d�ad0qd0

�
e�

�d

2 H
� 1
2

d � 1
�
= �d�ad0qd0 � e�

�d

2 (�dadqd jdj ad0qd0)
1
2 : (B48)

Similarly,

�d�adq̂
d
d = e�

�d

2 (�d�adqd jdj �ad0qd0)
1
2 (B49)

Therefore, after substitution, we obtain that (B47) becomes

�d�adqd + r�2�2d = jdj �ad0qd0 + r�22d: (B50)

We guess again that HQ optimally implement the same e¤ort from both divisions, �ad = �ad0 , which implies that

f (jdj) = f (�d), where again f (x) � x�aq + r�2x2. This implies that jdj = �d, or equivalently, that d = ��d, so
that Hd = 1. Thus, q̂dd = e�

�
2 q; and q̂dd0 =

�
2� e�

�
2

�
q. To be consistent with this guess, it must be that �d0 = �d,

so that �ad = �ad0 = e�
�
2 ��dq. Substituting in �̂ and di¤erentiating we obtain

d�̂

d�d
= ���dq̂

d
d

�
qd � q̂dd

�
� r�2� (1 + �) +

1

2
(1� 2�d) �qq̂

d
d +

1

2
�d�

�
q̂dd

�2
(B51)

�3d �
1

1 + 3(1� 3q̂dd=q) + 2r�2 (1� �) =(�qq̂dd)
: (B52)

After substitution, this gives HQ payo¤

�̂3 � �2e��q4

�e�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1� �)

; (B53)

which veri�es the guess that HQ optimally implements symmetric e¤ort. Comparing �̂2 and �̂3, observe that they

di¤er only for the �nal term in the denominator. Thus, �̂3 R �̂2 as � R 0, and

max
�
�̂2; �̂3

	
=

�2e��q4

�e�
�
2 q2

�
4� 3e�

�
2

�
+ 2r�2 (1� j�j)

: (B54)

Case (C): If d > e��d, we have that q̂
d
d = qd and q̂dd0 = e��qd0 , so

@�̂

@d
= �ad0qd0

�
1� e��

�
� r�2 (��d + d) < 0; (B55)

and setting d > e��d is not optimal. Similarly, if d < �e��d, we have that q̂dd = qd and q̂dd0 =
�
2� e��

�
q

@�̂

@d
= ad0qd0

�
1� e��

�
+ r�2 (jdj � ��d) > 0 (B56)

and setting d < �e��d is not optimal. Thus, Hd � e�.

The second and �nal step is to compare max
�
�̂2; �̂3

	
and �̂1. Let

f (�) � 2
�
1� e�

�
2

�2
�q2 + r�2 (1� j�j) [e� (1 + j�j)� 2] ; (B57)

so that max
�
�̂2; �̂3

	
> �̂1 if and only if f > 0. Note f (0) = �r�2 (1� j�j)2 < 0,

f 0 (�) = 2
�
1� e�

�
2

�
e�

�
2 �q2 + r�2e�

�
1� �2

�
> 0 (B58)

and lim�!1 f (�) = +1, which implies there is a unique �� such that max
�
�̂2; �̂3

	
> �̂1 if and only if � > ��. Thus,

for � � �� the optimal contract is in Case (A), with �d = �1d and d = ���d. For � > �� the optimal contract is in

Case (B) for � < 0, with �d = �2d and jdj = �d, but in Case (B�) for � > 0, with �d = �3d and jdj = �d.

Finally, note that the �rst term of f , 2
�
1� e�

�
2

�2
�q2, is strictly positive. Because f (��) = 0, it must be that
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r�2 (1� j�j)
�
e�� (1 + j�j)� 2

�
< 0. This implies that @f

@r
= �2 (1� j�j) [e� (1 + j�j)� 2] < 0 in a neighborhood of ��.

By the implicit function theorem, we obtain that d��
dr
= �

@f
@r
f 0(�) > 0, and �� is increasing in r. Finally, for � 6= 0, de�ne

�� � � ln (j�j) and note that

f
�
��
�
= 2

�
1�

p
j�j
�2
�q2 + r�2

(1� j�j)2

j�j > 0 (B59)

which implies that �� < ��.

Proof of Theorem 3. We guess and verify that HQ has positive exposure to both divisions, �d = 1��d� d > 0,
and that beliefs are as in case (ii) of Lemma 4, HHQ

d 2
�
e��

HQ

; e�
HQ
�
. Because (8) binds and r = 0, HQ payo¤ �̂

is equal to X
d;d02fA;Bg

d 6=d0

h
adqd � (1� �d � d0) ad

�
qd � q̂HQd

�
� �dad

�
qd � q̂dd

�
� dad0

�
qd0 � q̂dd0

�i
; (B60)

where q̂d = (q̂dd ; q̂
d
d0) are division manager beliefs from Lemma 2, ad are the Nash equilibrium e¤ort levels from Lemma

3, and q̂HQ = (q̂HQd ; q̂HQd0 ) are HQ beliefs from Lemma 4. The proof is in two steps and is similar to the proof of

Theorem 1. First, we show that d < 0 is suboptimal; then we �nd the optimal contract for d � 0.
Similar to Theorem 1, switching from d to jdj does not a¤ect q̂dd , and thus does not a¤ect ad and �dad

�
qd � q̂dd0

�
.

Letting again q̂d+d0 be the belief held by a division manager when receiving jdj instead of d < 0, we have that

dad0
�
qd0 � q̂dd0

�
= jdj ad0

�
qd0 � q̂d+d0

�
for all d < 0. This implies that

(1� �d0 � jdj) ad0
�
qd0 � q̂HQd0

�
< (1� �d0 � d) ad0

�
qd0 � q̂HQd0

�
(B61)

for d < 0 because q̂
HQ
d0 < qd0 , and thus that setting d < 0 is dominated by o¤ering its absolute value, jdj.

Because HQ strictly prefers o¤ering jdj > 0 to all d < 0, it is su¢ cient to consider d � 0. If HQ sets

0 � d < e�� �dadqd
ad0qd0

, division managers beliefs are in case (i) of Lemma 2, with q̂dd = e��qd and q̂dd0 = qd, giving

ad = �d�de
��qd. Further, @�̂

@d
= ad0

�
q̂dd0 � q̂HQd0

�
> 0 because q̂HQd0 2

�
e��

HQ

qd; qd
�
, so setting d < e�� �dadqd

ad0qd0
is

not optimal. Alternatively, if HQ sets d > e� �dadqd
ad0qd0

, division manager beliefs are in case (iii) of Lemma 2, with

q̂dd = qd and q̂dd0 = e��qd0 , giving ad = �d�dqd. Thus,
@�̂
@d

= �ad0
�
q̂HQd0 � q̂dd0

�
< 0 because q̂HQd0 2

�
e��

HQ

qd; qd
�

and �HQ < �, so setting d > e� �dadqd
ad0qd0

is not optimal. Thus, HQ sets e�� �dadqd
ad0qd0

� d � e� �dadqd
ad0qd0

and induce beliefs

that are in case (ii) of Lemma 2, with Hd 2
�
e��; e�

�
.

Similar to the proof of Theorem 1, we can express HQ�s objective as

�̂ = �A�aAq̂
HQ
A + �B�aB q̂

HQ
B + ûA(aA; q̂

A(aA; wA)) + ûB(aB ; q̂
B(aB ; wB)); (B62)

where �d = 1 � �d � d0 , ûd(�ad; q̂
d) = min

q̂d2Kq̂
d
ûd, with ûd = �d�adq̂

d
d + d�ad0 q̂

d
d0 �

�a2d
2�d

= 0; and �ad is the Nash

equilibrium of division managers given by (B16) in the proof of Lemma 3. Consider �rst

d�̂

d�d
= �q̂HQd �ad + �d�ad

@q̂HQd
@�d

+ �d0�ad0
@q̂HQd0

@�d
+ �dq̂

HQ
d

@�ad
@�d

+ �d0 q̂
HQ
d0

@�ad0

@�d
(B63)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because q̂HQ solves (22), from the envelope theorem �d�ad
@q̂

HQ
d
@�d

+ �d0�ad0
@q̂

HQ

d0
@�d

= 0, which, together with

dûd(�ad;q̂
d(�ad;wd))
d�d

= adq̂
d
d + dq̂

d
d0

�ad0
8�d

and dûd0 (�ad0 ;q̂
d0 (�ad0 ;wd0 ))
d�d

= d0 q̂
d0
d
3�ad
8�d

from the proof of Theorem 1, gives

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+ �dq̂

HQ
d

3ad
8�d

+ �d0 q̂
HQ
d0

ad0

8�d
+ dq̂

d
d0
�ad0

8�d
+ d0 q̂

d0
d
3�ad
8�d

: (B64)
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Consider now d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we obtain

d�̂

dd
= �q̂HQd0 �ad0 + �dq̂

HQ
d

@�ad
@d

+ �d0 q̂
HQ
d0

@�ad0

@d
(B65)

+
dûd(�ad; q̂

d(�ad; wd))

dd
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
:

Substituting dûd(�ad;q̂
d(ad;wd))
dd

= ad0 q̂
d
d0 + q̂dd0

�ad0
8
and dûd0 (�ad0 ;q̂

d0 (�ad0 ;wd0 ))
dd

= d0 q̂
d0
d
3�ad
8d

from the proof of Theorem 1,

d�̂

dd
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ �dq̂

HQ
d

3�ad
8d

+ �d0 q̂
HQ
d0

�ad0

8d
+ dq̂

d
d0
�ad0

8d
+ d0 q̂

d0
d
3�ad
8d

: (B66)

Thus, from (B64) and (B66) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
+
�d
�d

= 0;
d�̂

dd
= ��ad0

�
q̂HQd0 � q̂dd0

�
+
�d
d

= 0; (B67)

where �d � �dq̂
HQ
d

3�ad
8
+ �d0 q̂

HQ
d0

�ad0
8
+ dq̂

d
d0
�ad0
8
+ d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
q̂HQd � q̂dd

�
= d0�ad0

�
q̂HQd0 � q̂dd0

�
: (B68)

Because, from Lemma 2, �d�adq̂
d
d = d�ad0 q̂

d
d0 , we have that (B68) implies �d�adq̂

HQ
d = d�ad0 q̂

HQ
d0 . Because H

HQ
d 2�

e��
HQ

; e�
HQ
�
, from Lemma 4, �dadq̂

HQ
d = �d0ad0 q̂

HQ
d0 . Thus,

ad0 q̂
HQ

d0

adq̂
HQ
d

= �d
d
= �d

�d0
. De�ne md such that �d = md�d,

so d = md�d0 , which implies �d = 1��d�d0 = 1
1+md+md0

, and thus �d = d =
md

1+md+md0
. Substituting in d = �d

into �a from Lemma 3, we have �ad =
�
�3d�d0

� 1
4 e�

�
2 (�3d�d0)

1
4 (qdqd0)

1
2 . Substituting into HQ objective, we obtain

�̂ = (�A�B)
1
2 qAqB(�A�B)

1
2

�
2e�

�HQ

2 e�
�
2 (1� �A � �B) +

3

2
e��(�A + �B)

�
: (B69)

Di¤erentiating, we obtain the �rst-order condition

d�̂

d�d
= (�A�B)

1
2 qdqd0(�

�1
d �d0)

1
2

�
e�

�HQ

2 (1� 3�d � �d0) e
� �
2 +

3

4
e��(3�d + �d0)

�
= 0; (B70)

giving

e
1
2 (���

HQ) + 3

�
3

4
� e

1
2 (���

HQ)
�
�d +

�
3

4
� e

1
2 (���

HQ)
�
�d0 = 0: (B71)

Because this holds for both divisions, after solving we obtain

�A = �B =
1

4� 3e 12 (�HQ��)
=

1

1 + 3(1� q̂dd=q̂
HQ
d )

= d; (B72)

giving (25). Note � < 1
2
because � > �HQ + 2 ln 3

2
and HHQ

d = Ĥd 2
�
e��

HQ

; e�
HQ
�
. This implies that

�ad =
(�3d�d0)

1
4 e

� �
2 (qdqd0 )

1
2

4�3e
1
2 (�HQ��)

, and thus that q̂dd = e�
�
2 qdĤ

1
2
d and q̂HQd = e�

�HQ

2 qdĤ
1
2
d .

Proof of Theorem 4. Because the participation constraint (8) binds, we can express HQ�s payo¤ as

�̂ = �AaAq̂
HQ
A + �BaB q̂

HQ
B + ûA(aA; q̂

A(aA; wA)) + ûB(aB ; q̂
B(aB ; wB)); (B73)

where �d = 1� �d � d0 and ûd(ad; q̂
d(ad; wd)) = minq̂d2Kq̂

d
ûd, with

ûd(ad; q̂
d(ad; wd)) = �dadq̂

d
d + dad0 q̂

d
d0 �

r�2

2

�
�2d + 2��dd + 2d

�
� a2d
2�d

= 0; (B74)

where q̂d is from Lemma 2, ad is from Lemma 3, and q̂HQ is from Lemma 4. Di¤erent from Theorem 3, and similar to

Theorem 2, because of division manager risk aversion, HQ objective function � admits again multiple local maxima.

The proof proceeds again in two steps. First, we consider candidate optimal contracts that induce division managers

to hold one of four possible con�gurations of beliefs (implied by Lemma 2) in the same four cases examined in the

proof of Corollary 1, Cases (A), (B), (B�), (C), and (C�). Second, we compare payo¤s to HQ from optimal contracts

in these regions and we determine the globally optimal contract.

Case (A): If Hd < e��, have q̂dd = e��qd and q̂dd0 = qd0 , which do not depend on d. Similarly, by Lemma 3,

9



ad = �d�de
��qd, which implies that both ad and ad0 do not depend on d. Therefore,

d�̂

dd
= �q̂HQd0 ad0 + �dad

@q̂HQd
@d

+ �d0ad0
@q̂HQd0

@d
+ �dq̂

HQ
d

@ad
@d

+ �d0 q̂
HQ
d0

@ad0

@d
(B75)

+
dûd(ad; q̂

d(ad; wd))

dd
+
dûd0(ad0 ; q̂

d0(ad0 ; wd0))

dd
;

where, by the envelope theorem on �̂, we have �dad
@q̂

HQ
d
@d

+ �d0ad0
@q̂

HQ

d0
@d

= 0. In addition, on this region, @ad
@d

=

@ad0
@d

= 0, which implies that dûd(ad;q̂
d(ad;wd))
dd

= @û
@d

= ad0 q̂
d
d0 � r�2 (��d + d) and

dûd0 (ad0 ;q̂
d0 (ad0 ;wd0 ))
dd

= 0. Thus,

@�̂

@d
= ad0

�
qd0 � q̂HQd0

�
� r�2 (��d + d) : (B76)

Because HQ has long exposure to the symmetric divisions, q̂HQd = q̂HQd0 = e�
�HQ

2 q. Thus, @�̂
@d

= 0 if and only if

 = �M�, where M � �� �� and �� � �q̂dd
r�2

�
qd0 � q̂HQd0

�
= e���q2

r�2

�
1� e�

�HQ

2

�
. Similarly,

d�̂

d�d
= q̂dd q̂

HQ
d � (1� 2�d)�M�d

�
qd0 � q̂HQd0

�
q̂dd� + �d�

�
q̂dd

�2
� r�2�d (1� �M) : (B77)

Note 1 � �M = 1 � �2 + ��� and 1 � 2�M +M2 = 1 � �2 + ��2, so 1 � �M = 1 � 2�M +M2 + �� (�� ��). Also,
r�2�� (�� ��) = �

�
qd0 � q̂HQd0

�
q̂dd (�� ��). Thus, we obtain the �rst-order condition

d�̂

d�d
= q̂dd q̂

HQ
d � (1� 2�d) + �d�

�
q̂dd

�2
(B78)

�2M�d

�
qd0 � q̂HQd0

�
q̂dd� � r�2�d

�
1� 2�M +M2� = 0;

which implies

�4d �
1

1 + 2(�� ��)
�

q̂d
d0

q̂
HQ

d0
� 1

�
+

�
1� q̂d

d

q̂
HQ
d

�
+

r�2(1��2+��2)
�q̂
HQ
d

q̂d
d

: (B79)

After substitution, this gives HQ payo¤

�̂4 � e�(�
HQ+2�)�2q4�

2M + 2 (1�M) e�
�HQ

2 � e��
�
e���q2 + r�2 (1� 2�M +M2)

: (B80)

Case (B): If d > 0 and Hd 2
�
e��; e�

�
, as in the proof of Theorem 3, applying the envelope theorem on �̂

�
q̂HQ

�
,

we have

d�̂

d�d
= �q̂HQd �ad + (1� �d � d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � d) q̂
HQ
d0

@�ad0

@�d
(B81)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because in this region @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, we have

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � d) q̂
HQ
d0

�ad0

8�d

�r�2 (�d + �d) + dq̂
d
d0
�ad0

8�d
+ d0 q̂

d0
d
3�ad
8�d

: (B82)

Consider now d. Applying again the envelope theorem on �̂
�
q̂HQ

�
, we have

d�̂

dd
= �q̂HQd0 �ad0 + (1� �d � d0) q̂

HQ
d

@�ad
@d

+ (1� �d0 � d) q̂
HQ
d0

@�ad0

@d
(B83)

+
dûd(�ad; q̂

d(�ad; wd))

dd
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
:
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Because in this region @�ad
@d

= 3�ad
8d

and @�ad0
@d

=
�ad0
8d
, we have that

d�̂

dd
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ (1� �d � d0) q̂

HQ
d

3�ad
8d

+ (1� �d0 � d) q̂
HQ
d0

�ad0

8d

�r�2 (d + ��d) + dq̂
d
d0
�ad0

8d
+ d0 q̂

d0
d
3�ad
8d

: (B84)

Thus, from (B82) and (B84) we obtain the �rst-order conditions

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �d) +

�d
�d

= 0 (B85)

d�̂

dd
= �ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (��d + d) +

�d
d

= 0;

where �d = �dq̂
HQ
d

3ad
8
+ �d0 q̂

HQ
d0

ad0
8
+ dq̂

d
d0
ad0
8
+ d0 q̂

d0
d
3ad
8
, giving

�dad
�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �d�d

�
= dad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�
�d�d + 2d

�
(B86)

From Lemma 2, we have �dadq̂
d
d = dad0 q̂

d
d0 . Also, because �d > 0 and HQ has beliefs as in case (ii) of Lemma 4,

with �dadq̂
HQ
d = �d0ad0 q̂

HQ
d0 , we have

�dadq̂
HQ
d + r�2�2d = d

�d
�d0

adq̂
HQ
d + r�22d: (B87)

We now show that �A = �B . Suppose to the contrary that �A > �B . Because (B87) holds for both divisions, �A > A
but �B < B . This would imply, however, that �A = 1 � �A � B < 1 � �B � A = �B , which is a contradiction.

Similarly, �A < �B would also imply a contradiction. Thus, �A = �B . Further, this implies�
adq̂

HQ
d + r�2 (�d + d)

�
(�d � d) = 0: (B88)

Since the �rst term is strictly positive, �d = d. Further, because the divisions are symmetric, the �rst-order

conditions are symmetric, which implies the existence of a symmetric solution, �A = �B . Because the problem is

strictly concave on this region, this must be the unique solution. Thus, aA = aB = e�
�
2 ��q. Also, q̂HQd = q̂HQd0 =

e�
�HQ

2 q and q̂dd = q̂dd0 = e�
�
2 q, so �d = (1� 2�) e�

�HQ

2 q e
� �
2 ��q
2

+�e�
�
2 q e

� �
2 ��q
2

, which gives the �rst-order condition

d�̂

d�d
=
1

2
�q̂dd q̂

HQ
d � 2��q̂dd q̂HQd +

3

2
��
�
q̂dd

�2
� r�2� (1 + �) = 0: (B89)

and thus

�5d �
1

1 + 3
�
1� q̂dd=q̂

HQ
d

�
+ 2r�2(1+�)

�q̂
HQ
d

q̂d
d

= �̂: (B90)

After substitution, this gives HQ payo¤

�̂5 � �2q4e�(�
HQ+�)

�q2
�
4e�

(�HQ+�)
2 � 3e��

�
+ 2r�2 (1 + �)

: (B91)

Theorem 3 showed that d > 0 is optimal when r = 0. Similarly, d > 0 when � = 0. Further, for � < 0, granting

d < 0 results in a larger risk premium, r�
2

2

�
�2d + 2��d + 2d

�
, than setting d > 0. Thus, d = �d dominates all

d < 0 with Hd 2
�
e��; e�

�
for all � � 0. Note that �̂5 � �̂4 if and only if gL � 0, where

gL �
�
2M + 2 (1�M) e�

�HQ

2 + 2e�� � 4e�
(�HQ+�)

2

�
e���q2 (B92)

+r�2
�
1� 2�M +M2 � 2e�� (1 + �)

�
:

and note that gLj�=�HQ=0 = �r�2 (1 + �)2 < 0, which implies that �̂4 > �̂5 for � = �HQ = 0. Note also that

@gL
@M

= 2

�
1� e�

�HQ

2

�
e���q2+2r�2 (M � �) = 0, because M � �� �� and �� � e���q2

r�2

�
1� e�

�HQ

2

�
, and thus that

@gL
@�

= �gL + 2
�
e�

(�HQ+�)
2 � e��

�
e���q2 + r�2

�
1� 2�M +M2

�
> 0 for all gL < 0. This implies that, for a given
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�HQ, there is a unique �̂ so that gL
�
�̂; �HQ

�
= 0, and for all � > �̂, it is gL > 0 and thus �̂5 > �̂4.

Consider now �HQ. Note �rst that @gL
@�HQ =

�
2e�

�
2 � (1�M)

�
e�

�HQ

2 e���q2 > 0 for � < �0 � �2 ln 1
2
(1�M).

Substituting �0 in gL, we obtain

gLj�=�0 �
(1 +M)2 (1�M)2

8
�q2 + r�2

�
1� 2�M +M2 � (1�M)2

4
(1 + �)

�
> 0; (B93)

where the inequality is obtained by noting that h (�) � 1�2�M +M2� (1�M)2

4
(1 + �) is linear in � for any given M ,

thus achieving its minimum at an endpoint. Because h (1) = 1
2
(1�M)2 > 0 and h (�1) = (1 +M)2 > 0, h (�) > 0

for all � 2 [�1; 1], so gLj�=�0 > 0. Thus, in the neighborhood of gL = 0, � < �0, so @gL
@�HQ > 0. Thus, there is a unique

�̂HQ (allowing for the possibility that �̂HQ = 0) such that �̂5 > �̂4 for �HQ > �̂HQ.

Case (B�): Consider d < 0 with Hd 2
�
e��; e�

�
.

d�̂

d�d
= �q̂HQd �ad + (1� �d � d0) q̂

HQ
d

@�ad
@�d

+ (1� �d0 � d) q̂
HQ
d0

@�ad0

@�d
(B94)

+
dûd(�ad; q̂

d(�ad; wd))

d�d
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

d�d
:

Because @�ad
@�d

= 3�ad
8�d

and @�ad0
@�d

=
�ad0
8�d

, we have that

d�̂

d�d
= �ad

�
q̂HQd � q̂dd

�
+ (1� �d � d0) q̂

HQ
d

3�ad
8�d

+ (1� �d0 � d) q̂
HQ
d0

�ad0

8�d
(B95)

�r�2 (�d + �d) + dq̂
d
d0
�ad0

8�d
+ d0 q̂

d0
d
3�ad
8�d

:

Consider now d. We have that

d�̂

dd
= �q̂HQd0 �ad0 + (1� �d � d0) q̂

HQ
d

@�ad
@d

+ (1� �d0 � d) q̂
HQ
d0

@�ad0

@d
(B96)

+
dûd(�ad; q̂

d(�ad; wd))

dd
+
dûd0(�ad0 ; q̂

d0(�ad0 ; wd0))

dd
:

Because @�ad
@d

= 3�ad
8d
, @�ad0
@d

=
�ad0
8d
, we obtain

d�̂

dd
= ��ad0

�
q̂HQd0 � q̂dd0

�
+ (1� �d � d0) q̂

HQ
d

3�ad
8d

+ (1� �d0 � d) q̂
HQ
d0

�ad0

8d
(B97)

�r�2 (d + ��d) + q̂dd0
�ad0

8
+ d0 q̂

d0
d
3�ad
8d

:

From (B95) and (B97) we obtain the �rst-order conditions

d�̂

d�d
= ��ad

�
q̂HQd � q̂dd

�
� r�2 (�d + �d) +

�d
�d

= 0; (B98)

d�̂

dd
= ��ad0

�
q̂HQd0 � q̂dd0

�
� r�2 (d + ��d) +

�d
d

= 0;

where �d � �dq̂
HQ
d

3�ad
8
+ �d0 q̂

HQ
d0

�ad0
8
+ dq̂

d
d0
�ad0
8
+ d0 q̂

d0
d
3�ad
8
, giving

�d�ad
�
q̂HQd � q̂dd

�
+ r�2

�
�2d + �d�d

�
= d�ad0

�
q̂HQd0 � q̂dd0

�
+ r�2

�
2d + ��dd

�
: (B99)

Because the �rst-order conditions are symmetric, there exists a symmetric solution: �A = �B = � and A = B = .

Thus, ad = a = e�
�
2 ��

1
2 jj

1
2 q. This also implies that �A = �B , so q̂

HQ
d = e�

�HQ

2 q. Also, Hd =
jj
�
, so q̂dd = e�

�
2
jj

1
2

�
1
2
q

and q̂dd0 = (2� e�
�
2
�
1
2

jj
1
2
)q. Thus, �aq̂dd = e�

�
2 �

1
2 jj

1
2 aq and

a
�
q̂HQd0 � q̂dd0

�
= ae�

�HQ

2 q � 2aq � e�
�
2 �

1
2 jj

1
2 aq; (B100)

which implies that

�ae�
�HQ

2 q + r�2�2 = jj
�
2� e�

�HQ

2

�
aq + r�22 (B101)
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Because 
�
2
�
�e�;�e��

�
, there exists �̂ 2

�
e��; e�

�
such that  = ��̂�. Substituting in a = e�

�
2 ���̂

1
2 q, (B101) is

equivalent to f
�
�̂
�
= 0, where

f
�
�̂
�
�
��
2e

�HQ

2 � 1
�
�̂ � 1

�
e�

�HQ

2 e�
�
2 �̂

1
2 �q2 + r�2

�
�̂
2 � 1

�
= 0: (B102)

Note f
�
e��

�
< 0 < f (1) = 2

�
e
�HQ

2 � 1
�
e�

�HQ+�
2 �q2 and f 0 > 0, so �̂ 2

�
e��; 1

�
for �HQ > 0, but �̂ = 1 if �HQ = 0.

Comparative statics on �̂ follow because max
n
@f
@r
; @f
@�2

; @f
@�

o
< 0 < min

n
@f
@�
; @f
@q
; @f
@�HQ

o
. Further, @�̂

@�
= 0 i¤

� =
1

1 +

�
q̂d
d0

q̂
HQ

d0
� 1

�
�̂ + 2(1� q̂d

d

q̂
HQ
d

) +
2r�2(1���̂)
�q̂
HQ
d

q̂d
d

;  = ��̂� < 0: (B103)

After substitution in �̂, we have

�̂6 � e�(�
HQ+�)�̂�2q4

2e�
�HQ

2

�
1 +

�
2e

�HQ

2 � 1
�
�̂

�
e�

�
2 �̂

1
2 �q2 � 3e�� �̂q2� + r�2

�
1� 2��̂ + �̂

2
� : (B104)

Note �̂6 � �̂4 if and only if gS � 0, where

gS �
�
2M + 2 (1�M) e�

�HQ

2 + 2e��
�
�q2 + e�r�2

�
1� 2�M +M2� (B105)

�2e�
�HQ

2

�
1 +

�
2e

�HQ

2 � 1
�
�̂

�
e�

�
2 �̂

� 1
2 �q2 � r�2

�
1� 2��̂ + �̂

2
�

�̂
;

with
@gS
@�

= e�r�2
�
1� �2 + (��M)2

�
+ fe�

�HQ

2 e�
�
2

�
1 +

�
2e

�HQ

2 � 1
�
�̂

�
�̂
� 1
2 � 2e��g�q2: (B106)

Note that
�
1 +

�
2e

�HQ

2 � 1
�
�̂

�
�̂
� 1
2 is increasing and larger than 2 for �̂ 2

�
e��; 1

�
, so @gS

@�
> 0. Also, @g

@�HQ =

� (1�M) e�
�HQ

2 �q2+
�
1� �̂

�
e�

�HQ

2 e�
�
2 �̂

� 1
2 �q2. Because M < e�� < �̂, we have that @g

@�HQ < 0. De�ning �̂, �̂HQ1

so that gS
�
�̂; �̂HQ1

�
= 0, part (ii)(b) of Theorem 4 is proven.

Case (C): If d > e��d,
@ad
@d

= 0, so @ad0
@d

= 0, and thus @�̂
@d

= �ad0
�
q̂HQd0 � q̂dd0

�
� r�2 (�� + ) < 0, so  � e��.

Similarly, for Case (C�), if d < �e��d,
@ad
@d

=
@ad0
@d

= 0, so d�̂
dd

= �ad0
�
q̂HQd0 � q̂dd0

�
� r�2 (��d + d) : Because

�d0 > 0 > d, q̂
HQ
d0 < qd0 < q̂dd0 . Also, � 2 (�1; 1). Thus, d�̂

dd
> 0 for d < �e��d, so it must be that d � �e��d.

Therefore, Cases (C) and (C�) are suboptimal.

All that remains to be shown is part (ii)(b) of Theorem 4, by showing that �̂5 � �̂6 when �HQ is large enough.

Note �̂5 � �̂6 if and only if gE � 0, where

gE � 2e�
�HQ

2

�
1 +

�
2e

�HQ

2 � 1
�
�̂

�
e�

�
2 �̂

� 1
2 �q2 + r�2

�
1� 2��̂ + �̂

2
�
=�̂

�4e�
(�HQ+�)

2 �q2 � 2r�2 (1 + �) : (B107)

Note @gE
@�̂

=
f(�̂)
�̂
2 = 0. Note that

@gE
@�HQ

=

�
�
�
1� �̂

�
�̂
� 1
2 + 2

�
e�

(�HQ+�)
2 �q2 � 0 (B108)

if and only if �̂ � 3� 2
p
2: Recall �̂ is strictly decreasing in �HQ. This implies that gE an inverse U-shaped function

of �HQ and that there is a unique ~�HQ, de�ned by �̂(~�HQ) = 3 � 2
p
2, such that @gE

@�HQ > 0 for �HQ < ~�HQ and
@gE
@�HQ < 0 for �HQ > ~�HQ. Next, we will show that gE > 0 for all �HQ � ~�HQ and, thus, for all �̂ � 3� 2

p
2. Note
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that, from (B102), we can express (B107) as

gE = 4e
� �HQ

2 e�
�
2

�
�̂
� 1
2 � 1

�
�q2 +

f
�
�̂
�

�̂
+ 2r�2

�
1

�̂
� 2�� 1

�
: (B109)

The �rst term is positive because �̂ < 1, the second term is zero, and the third term is positive for all 1
�̂
> 3, which

is satis�ed for �̂ � 3� 2
p
2 < 1

3
. This implies that gE(�HQ) > 0 for all �HQ � ~�HQ. Thus, if gE (0) � 0, gE > 0 for

all �HQ > 0, and thus de�ne �̂HQ2 � 0; otherwise, if gE (0) < 0, there is a unique �̂HQ2 such that gE(�̂
HQ
2 ) = 0, with

�̂HQ2 < ~�HQ, completing the proof of Theorem 4.

Proof of Lemma 5. First, the division manager is indi¤erent between contracts (�; 0;  ) and (�; 0;� ), so we
restrict attention to  � 0 (if  < 0, the proof follows by substituting in j j for  ). Next, the division manager is
indi¤erent between contracts (�; 0;  ) and (�;  ; 0). Note granting (�; 0;  ) gives HQ � = minqHQ2KHQ �, where

� = (1� �) aAq
HQ
A + �qHQB �  �qHQC � s (B110)

Conversely, granting (�;  ; 0) gives HQ � = minqHQ2KHQ �, where

� = (1� �) aAq
HQ
A + (1�  )�qHQB � s (B111)

Note that the s and aA will be the same with both contracts. Thus, it is better to grant (�;  ; 0) than (�; 0;  ) i¤

min
qHQ2KHQ

(1� �) aAq
HQ
A + (1�  )�qHQB � min

qHQ2KHQ
(1� �) aAq

HQ
A + �qHQB �  �qHQC (B112)

Let the solution to the left-hand side be q̂HQ and the solution to the right-hand side be ~qHQ. Because  > 0, we

know that q̂HQC � qC . First, suppose that  � 1. This implies that, by the de�nition of the minimum,

(1� �) aA~q
HQ
A + �~qHQB �  �~qHQC � (1� �) aAq̂

HQ
A + �q̂HQB �  �qC (B113)

� (1� �) aAq̂
HQ
A + �q̂HQB �  �q̂HQB

= min
qHQ2KHQ

(1� �) aAq
HQ
A + (1�  )�qHQB

Because (1�  ) � 0, q̂HQB � qB , so the second line follows by monotonicity. Therefore, for  < 1, it is better to

pay with B than with C. If  > 1, by symmetry of the set, because
�
q̂HQA ; q̂HQB ; qC

�
2 KHQ and qB = qC , then�

q̂HQA ; qB ; q̂
HQ
B

�
2 KHQ. Thus,

(1� �) aA~q
HQ
A + �~qHQB �  �~qHQC � (1� �) aAq̂

HQ
A + �qB �  �q̂HQB (B114)

� (1� �) aAq̂
HQ
A + �B q̂

HQ
B �  �B q̂

HQ
B

= min
qHQ2KHQ

(1� �) aAq
HQ
A + (1�  )�Bq

HQ
B

The second line holds by monotonicity, because  > 1, so HQ has a negative exposure to B, and thus q̂HQB � qB .

Proof of Theorem 5. Note that the participation constraint binds, so we can express the objective as

� = (1� �) aAq̂
HQ
A + (1� )�q̂HQB �  �q̂HQC + Û (B115)

where q̂HQ solves minqHQ2KHQ � and û = �aAq
A
A + �q

A
B + �q

A
C � r�2

2

�
�2 + 2 +  2

�
� a2A

2�A
and Û = minqA2KA û.

Applying the envelope theorem.
d�

d�
= �aAq̂HQA +

@Û

@�
+

@�

@aA

@aA
@�

(B116)

Because @U
@�
= aAq̂

A
A � r�2�, we can express this as

d�

d�
= �aA

�
q̂HQA � q̂AA

�
� r�2� +

@�

@aA

@aA
@�

(B117)

Similarly, because @U
@
= �q̂AB � r�2 and @U

@ 
= �q̂AC � r�2 we can express

d�

d
= ��

�
q̂HQB � q̂AB

�
� r�2 +

@�

@aA

@aA
@

(B118)
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and
d�

d 
= ��

�
q̂HQC � q̂AC

�
� r�2 +

@�

@aA

@aA
@ 

Next, note that HQ will set  6= 0 only if @aA
@ 

> 0. Suppose to the contrary that @aA
@ 

= 0, or equivalently, that

either q̂AC = qC or q̂AC = e��
A

qC . For  > 0, HQ is negative exposed to the source of risk but the DM is positively

exposed, q̂HQC � qC � q̂AC , so
d�
d 

< 0 for such  > 0. Similarly, for  < 0, q̂HQC � qC � q̂AC , so
d�
d 

> 0 for such

 < 0. Thus, either DM will have interior beliefs toward the external risk, so that @aA
@ 

> 0, or HQ will grant him no

exposure,  = 0.

Thus, we have shown that there are three possible regions. First, it could be possible for HQ to grant only

division-based pay. Second, it could be possible for HQ to grant only division-based pay and the internal risk, but

not the external risk. By Lemma 5, we can exclude the corresponding region of granting only division-based pay and

the external risk for all �HQ > 0, and it is WLOG optimal to grant the internal risk rather than the external even

when �HQ = 0 (the visionary HQ is indi¤erent). Finally, we can consider when HQ grants division-based pay, the

internal risk, and the external risk. As we showed in the previous paragraph, it must grant su¢ ciently of this to induce

interior beliefs, so that daA
d 

> 0. Note that, similar to Lemma 2, on this region, interior beliefs satisfy � = �aAq̂
A
A =

�B q̂
A
B =  �C q̂

A
C which implies � = e�

�A

3 [�aAqA�BqB �CqC ]
1
3 , so q̂AA = e�

�A

3 �
� 2
3

A a
� 2
3

A [qA�BqB �CqC ]
1
3 , q̂AB =

e�
�A

3 �
2
3 �

� 2
3

B [�aAqAqB �CqC ]
1
3 , and q̂AC = e�

�A

3  �
2
3 �

� 2
3

C [�aAqA�BqBqC ]
1
3 . Substituting into aA = �A�Aq̂

A
A ,

this implies aA = e�
�A

5 �
3
5
A�

1
5 q

1
5
A

1
5 �

1
5
Bq

1
5
B 

1
5 �

1
5
Cq

1
5
C , so

@aA
@�

= aA
5�
, @aA
@

= aA
5
, and @aA

@ 
= aA

5 
.

Suppose to the contrary that HQ used all three, setting � > 0,  > 0, and  > 0. Substituting in for @aA
@�
, @aA
@
,

and @aA
@ 
, the FOCs simplify to

�aA
�
q̂HQA � q̂AA

�
+ r�2�2 =

@�

@aA

aA
5

(B119)

�
�
q̂HQB � q̂AB

�
+ r�22 =

@�

@aA

aA
5

(B120)

 �
�
q̂HQC � q̂AC

�
+ r�2 2 =

@�

@aA

aA
5

(B121)

This would imply that

�aA
�
q̂HQA � q̂AA

�
+ r�2�2 = �

�
q̂HQB � q̂AB

�
+ r�22 (B122)

=  �
�
q̂HQC � q̂AC

�
+ r�2 2

Also, because the DM has interior beliefs, �aAq̂AA = �q̂AB =  �q̂AC , so this impli�es to

�aAq̂
HQ
A + r�2�2 = �q̂HQB + r�22 =  �q̂HQC + r�2 2 (B123)

When �HQ is big enough, the HQ will have interior beliefs toward asset A and B, unless � = 1 and  = 1. This

implies that (1� �) aAq̂
HQ
A = (1� )�q̂HQB , so �q̂HQB = 1��

1� aAq̂
HQ
A . Similarly to the proof of Corollary 1, � = .

Suppose that it is optimal to set  > 0 (symmetric arguments for  < 0 will hold). For this to be optimal, it

must be that q̂AC < qC , or equivalently,  �qC > �q̂AB . Note q̂
A
B > e��

A

qB = e��
A

qC because qB = qC . Thus, for the

DM to have interior beliefs, it must be that  > �e��
A

. Back to HQ�s FOC, this implies that

 �q̂HQC + r�2 2 > �e��
A

�q̂HQC + r�2
�
�e��

A
�2
� �e��

A

�qB + r�2
�
�e��

A
�2

(B124)

The second inequality holds because HQ has a negative exposure to the external risk, so q̂HQC � qC and qC = qB .

If HQ has interior beliefs toward all three sources of risk, q̂HQB = e�
�HQ

3 (1� )�
2
3 �

� 2
3

B [(1� �) aAqAqB �CqC ]
1
3 ,

which is decreasing in �HQ. Thus, 9��HQ such that for all �HQ > ��HQ

�e��
A

�qB + e��
A

r�2�2 > ��q̂HQB + r�2�2 (B125)

Thus, when �HQ is large enough, d�
d 

< 0 for all  > �e��
A

, so it is optimal to set  = 0.

Proof of Theorem 7. Because there are synergies, the output of each division is increasing in the e¤ort of both

division managers. That is, the drift of division A is (aA + �aB) qA, and the drift of division B is (aB + �aA) qB . For
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simplicity, we will assume that HQ is uncertainty neutral, though HQ uncertainty only makes equity more attractive.

Because the participation constraint binds, the payo¤ to HQ will be

� = (1� �A � B) (aA + �aB) qA + (1� �B � A) (aB + �aA) qB + ÛA + ÛB (B126)

Division manager d has payo¤ Ûd = minqd2Kd ûd, where

ûd = �d (ad + �ad0) q̂
d
d + d (ad0 + �ad) q̂

d
d0 �

r�2

2

�
�2d + 2��dd + 2d

�
� a2d
2�d

(B127)

Beliefs are as solved in Lemma 2. We are also assuming both divisions have the same �. Let Hd =
jdj(ad0+�ad)qd0
�d(ad+�ad0)qd

.

If Hd � e��, q̂dd = e��qd and q̂dd0 = qd0 . Because we are assuming symmetry, these are the same. Conversely, if

d > 0 and Hd 2
�
e��; e�

�
, then q̂dd =

�
e��Hd

� 1
2 qd and q̂dd0 =

�
e�� 1

Hd

� 1
2
qd0 . Finally, if d < 0 and Hd 2

�
e��; e�

�
,

q̂dd =
�
e��Hd

� 1
2 qd but q̂dd0 =

�
2�

�
e�� 1

Hd

� 1
2

�
qd0 . Given beliefs, note

@ud
@ad

= �dq̂
d
d + d�q̂

d
d0 �

ad
�d
, so

ad = �d
h
�dq̂

d
d + d�q̂

d
d0

i
(B128)

There are three types of contracts that might arise in equilibrium: interior beliefs with long exposure, Hd 2�
e��; e�

�
with d > 0, interior beliefs with short exposure, Hd 2

�
e��; e�

�
and d < 0, and corner beliefs, Hd � e��.

First, we will show that the optimal contract when Hd 2
�
e��; e�

�
with d > 0 is equity. Then, we will show that

the optimal contract will be on this region when � is large enough.

First, note that the optimal contract is symmetric and induces symmetric e¤ort, aA = aB . Suppose to the

contrary that the HQ gives di¤erent contracts to the di¤erent division managers. By symmetry, the HQ receives the

same payo¤ by trading the contract between the two managers. Note that the objective, as the minimum of strictly

concave functions, is strictly concave. Thus, HQ receives a strictly higher payo¤ by giving both division managers

the average of the two contracts, so it cannot be optimal to give di¤erent contracts to the two division managers.

Because the HQ grants the same contract to the two division managers, in equilibrium, they will exert symmetric

e¤ort: ad = ad0 .

When Hd 2
�
e��; e�

�
and d > 0, from Lemma 2 and because ad = ad0 , q̂

d
d = e�

�
2 

1
2
d q

1
2
d0�

� 1
2

d q
1
2
d and q̂dd0 =

e�
�
2 �

1
2
d q

1
2
d 

� 1
2

d q
1
2
d0 . This implies that

ad = e�
�
2 �

1
2
d 

1
2
d �dq

1
2
d0q

1
2
d (1 + �) (B129)

Note that the e¤ort of each division manager depends on �d or d only through their geometric mean, (�dd)
1
2 .

Consider the optimal contract that induces interior beliefs from both division managers.

� = (1� �A � B) (aA + �aB) qA + (1� �B � A) (aB + �aA) qB + ÛA + ÛB (B130)

where Ûd = �d (ad + �ad0) q̂
d
d + d (ad0 + �ad) q̂

d
d0 � r�2

2

�
�2d + 2��dd + 2d

�
� a2d

2�d
. Note that

d�

d�A
=

@�

@�A
+

@�

@aA

daA
d�A

+
@�

@aB

daB
d�A

where @�
@�A

= � (aA + �aB) qA+
@ÛA
@�A

, and @ÛA
@�A

= (aA + �aB) q̂
A
A�r�2 (�A + �A). Further,

@�
@aA

= (1� �A � B) qA+

� (1� �B � A) qB +
@ÛB
@aA

, where @ÛB
@aA

= ��B q̂
B
B + B q̂

B
A . Recall

@ÛA
@aA

= 0 by the envelope theorem. Because aA

depends on the incentive contract only through IA � (�AA)
1
2 , daA

d�A
= 1

2
@aA
@IA

�
A
�A

� 1
2
. Thus,

d�

d�A
= � (aA + �aB)

�
qA � q̂AA

�
� r�2 (�A + �A) +

@�

@aA

1

2

@aA
@IA

�
A
�A

� 1
2

Similarly,

d�

dA
= � (aB + �aA)

�
qB � q̂AB

�
� r�2 (��A + A) +

@�

@aA

1

2

@aA
@IA

�
�A
A

� 1
2
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Therefore, d�
d�A

= 0 i¤

@�

@aA

1

2

@aA
@IA

(A�A)
1
2 = �A (aA + �aB)

�
qA � q̂AA

�
+ r�2

�
�2A + �A�A

�
and d�

dA
= 0 i¤

@�

@aA

1

2

@aA
@IA

(A�A)
1
2 = A (aB + �aA)

�
qB � q̂AB

�
+ r�2

�
��AA + 2A

�
Therefore, the optimal contract satis�es

�A (aA + �aB)
�
qA � q̂AA

�
+ r�2

�
�2A + �A�A

�
= A (aB + �aA)

�
qB � q̂AB

�
+ r�2

�
��AA + 2A

�
Because we have interior beliefs, it must be that �A (aA + �aB) q̂

A
A = A (aB + �aA) q̂

A
B . Symmetric conditions

hold for division B, with qA = qB , and we already showed aA = aB . Thus, the optimal contract must satisfy

f (�A) = f (A), where f (x) = xa (1 + �) q + r�2x2. Because f is monotonic, �A = A. Therefore, the optimal

contract when Hd 2
�
e��; e�

�
and d > 0 is equity, with Hd = 1. Substituiting back into the FOCs, it can be shown

that the optimal incentive level is � = e
� �
2 �(1+�)2q2

4e
� �
2 �(1+�)2q2�3e���q2(1+�)2+2r�2(1+�)

.

Next consider the optimal contract with Hd 2
�
e��; e�

�
but d < 0. From Lemma 2, q̂dd =

�
e��Hd

� 1
2 qd but

q̂dd0 =

�
2�

�
e�� 1

Hd

� 1
2

�
qd0 . Substituting into the FOC for e¤ort, ad = �d

�
�dq̂

d
d + d�q̂

d
d0
�
and applying symmetry,

ad = �dq

�
(1� �) e�

�
2 �

1
2
d jdj

1
2 + 2d�

�
(B131)

Note that a is increasing in � on this region, and we are on this region only if � < e� jj, which implies that

ad � �q jj (1� 3�) (B132)

Therefore, for � � 1
3
, ad � 0 on this region. That is, for � � 1

3
, there is no contract that induces e¤ort with � > 0

and  < �e���. Any such contract would be dominated by setting � =  = 0.

Finally, let us consider the optimal contract with corner beliefs, Hd � e��, so that q̂dd = e��qd and q̂dd0 = qd0 . In

this case,

ad = �d
�
�de

��q + d�q
�

(B133)

Note the HQ has payo¤

� = (1� �A � B) (aA + �aB) qA + (1� �B � A) (aB + �aA) qB + ÛA + ÛB (B134)

Thus,
d�

d�A
=

@�

@�A
+

@�

@aA

daA
d�A

(B135)

Note that @�
@�A

= � (aA + �aB) qA +
@ÛA
@�A

, where @ÛA
@�A

= (aA + �aB) e
��qA � r�2 (�A + �A). Thus, @�

@�A
=

� (aA + �aB) qA
�
1� e��

�
� r�2 (�A + �A). Further,

@�
@aA

= (1� �A � B) qA + (1� �B � A) �qB +
@ÛB
@aA

, where
@ÛB
@aA

= BqA + ��Be
��qB : by the envelope theorem,

dÛA
daA

= 0. Because daA
d�A

= �e��q, @�
@�A

= 0 i¤

@�

@aA
�Ae

��qA = (aA + �aB) qA
�
1� e��

�
+ r�2 (�A + �A) (B136)

Similarly,
d�

dA
=

@�

@A
+

@�

@aA

daA
dA

(B137)

because @�
@A

= � (aB + �aA) qB +
@ÛA
@A

and @ÛA
@A

= (aB + �aA) qB � r�2 (�� + ), @�
@A

= �r�2 (�� + ). Because,
daA
dA

= �A�qB , d�
dA

= 0 i¤
d�

daA
�A�qB = r�2 (��A + A)

17



Thus, @�
@�A

= 0 and d�
dA

= 0 implies that

d�

daA
�q = a (1 + �) e�q

�
1� e��

�
+ e�r�2 (� + �) =

1

�
r�2 (�� + ) (B138)

Substituting in for optimal e¤ort, a = �
�
�e��q + �q

�
, and rearranging,

��e��� (1 + �) e�q2
�
1� e��

�
+ r�2 (�e� � �)� = r�2 (1� �e��)  � ��2 (1 + �) e�q2

�
1� e��

�
(B139)

We will guess and verify that r�2 (1� �e��) > ��2 (1 + �) e�q2
�
1� e��

�
, so that we are not dividing by zero. This

implies that  = m�, where

m =
�� (1 + �) q2

�
1� e��

�
+ r�2 (�e� � �)

r�2 (1� �e��)� ��2 (1 + �) e�q2 (1� e��)
:

If � > 0, note that the numerator is strictly increasing in �, while the denominator is strictly decreasing in �.

When � = 0, m = ��, so the numerator is negative for small values of � and positive for large values of �. Note
that m = 0 i¤ � = 1

r�2
�� (1 + �) q2

�
1� e��

�
+ �e�. In this case, the denominator is D = r�2

�
1� �2e2�

�
+

�2�q2
�
1� e��

�
(1 + �) e� (1� �) which is strictly positive (note that, for � � e��, the numerator is bigger than

�e��q2
�
1� e�2�

�
+ r�2 (1� �), which is strictly positive for all � 2 [�1; 1], so it must be that � < e�� when m = 0).

Finally, note that we are on this region i¤  < e���, or equivalently, i¤ m < e��. Because the numerator is strictly

positive as the denominator approaches 0, m explodes, so it must be for � smaller than that m > e��. When � < 0,

the numerator is strictly positive, and the denominator is increasing then decreasing, so m is still well-de�ned by the

same argument. Thus, m solves f (m) = 0,

f (m) = m
�
r�2 (1� �e��)� ��2 (1 + �) e�q2

�
1� e��

��
� �� (1 + �) q2

�
1� e��

�
� r�2 (�e� � �)

Note f 0 = r�2 (1� �e��)� ��2 (1 + �) e�q2
�
1� e��

�
. We already proved above that f 0 > 0 for all m < e��.

@f

@�
= �m

�
r�2e��+ �e�q2

�
1� e��

� �
2� + 3�2

��
��e��e�q2

�
1� e��

�
(1 + 2�)� r�2e�

Thus, @f
@�

< 0. By the implicit function theorem, note that df
d�
= 0, because f is uniformly zero. Because df

d�
=

@f
@�
+ f 0 dm

d�
is uniformly zero, dm

d�
= �

@f
@�

f 0 > 0. Therefore, an increase in the synergy increases the exposure of the

contract to cross-pay under corner beliefs. Similarly,

@f

@�
= m

�
�r�2�e��� ��2 (1 + �) e�q2

�
� �� (1 + �) q2e�� � r�2�e�

which is likewise negative. Therefore, dm
d�

> 0: and an increase in uncertainty increases cross-pay with synergies.

Finally, note

f (m) j�=e�� = m
�
r�2 (1� �)� �e�2�

�
1 + e��

�
e�q2

�
1� e��

��
� �e��

�
1 + e��

�
q2
�
1� e��

�
� r�2 (1� �)

= (m� 1)
�
r�2 (1� �)� �e��q2

�
1� e�2�

��
If r�2 (1� �) > �e��q2

�
1� e�2�

�
, this implies that m = 1 when � = e��. If r�2 (1� �) � �e��q2

�
1� e�2�

�
, then

there exists a � � e�� such that r�2 (1� �e��) � ��2 (1 + �) e�q2
�
1� e��

�
= 0, and lim�!~�m = +1. Because

dm
d�

> 0, there exists a unique �̂ < e�� such that m < e�� i¤ � < �̂. Therefore, if � > �̂, it is not locally optimal to

select  < e���, and the HQ will shift to the �rst region, Hd 2
�
e��; e�

�
.

Therefore, de�ne �� = max
n
�̂; 1

3

o
. For all � > ��, the optimal contract will be equity.
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