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Innovation is arguably one of the most important value drivers in modern corporations and

a key source of economic growth (Solow, 1957). There are times when innovation stagnates, but

others when technology leaps forward in innovation waves. These spurts of innovation activity are

often associated with higher stock market valuations for technology firms, strong (or “optimistic”)

investor sentiment (Perez, 2002, and Baker and Wurgler, 2007), a strong market for Initial Public

Offerings, IPO, (Lee, Shleifer, and Thaler, 1991, and Baker andWurgler, 2000) and an active market

for mergers and acquisitions, M&A (Celikyurt et al., 2010, and Bena and Li, 2014). Interestingly,

such flare-ups in innovation and IPO activity are often confined to specific technology sectors, with

little or no correlation with the broader equity markets.1

While time-varying investor sentiment is often identified as an important cause of the alternating

periods of booms and busts, we have a limited understanding of its economic drivers. We propose

a novel theory of belief formation, which we identify as “investor sentiment,” based on decision

theory. We develop our notion of investor sentiment in the context of innovation. Innovation,

by its nature, is characterized by a limited knowledge of the relevant probability distributions, a

situation best described as “Knightian uncertainty”(Knight, 1921): investors must typically decide

whether to fund a project with very limited knowledge of the odds of success.

We show uncertainty aversion can cause investor beliefs to fluctuate (endogenously) between

periods of pessimism toward innovative ventures (“cold markets”) and periods of greater optimism

(“hot markets”). These alternating phases spur innovation waves associated with higher stock

market valuations, greater volumes of IPOs, and an active M&A market for technology companies.

Our approach can explain the emergence of sector-specific hot and cold markets uncorrelated with

aggregate economic factors, such as overall economic activity or stock market performance.

There are many reasons why innovation develops in waves. These include fundamentals such

as random scientific breakthroughs with technological spillovers. In this paper, we focus on the

interaction between financial markets and the incentives to innovate. We study an economy with

multiple entrepreneurs endowed with risky project-ideas that, if successful, may lead to innovations.

The innovation process consists of two stages. In the first stage, entrepreneurs must decide whether

or not to invest personal resources, such as exerting effort, to innovate. If the first stage is successful,

1For example, in the boom years of 1998-2000, the NASDAQ index, which is dominated by technology companies,
more than doubled while the general market, as measured for example by the S&P500 index, remained stable.
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further development of the innovation requires additional monetary investment. Entrepreneurs

raise funds by selling shares of their firms to uncertainty-averse investors. The second stage of

the innovation process is uncertain: outside investors are uncertain on the exact distribution of

the residual success probability. We model uncertainty aversion by assuming outside investors

maximize Minimum Expected Utility (MEU) as in Gilboa and Schmeilder (1989).

An important implication of uncertainty aversion is that probabilistic assessments (or “beliefs”

in the sense of Savage, 1954, and de Finetti, 1974) held by an uncertainty-averse investor are not

uniquely determined by a single prior but, rather, are determined endogenously as the outcome of

a minimization problem. A well-known feature of the MEU approach is that uncertainty averse

agents typically hold more “pessimistic” beliefs than corresponding expected utility agents.2 In

this paper, we exploit another important property of the MEU approach. Specifically, in our

model, uncertainty-averse investors hold (weakly) more favorable probabilistic assessments toward

an innovation, and thus value it more, if they invest in other innovations as well. This happens

because, by holding a portfolio of uncertain assets, investors can lower their exposure to the source

of uncertainty for each asset, a property known as uncertainty hedging.3 The effect of uncertainty

hedging is to lead investors to hold more favorable beliefs, and thus to be more “optimistic”on an

asset’s future profitability, when they hold multiple assets in their portfolio rather than in isolation,

partially alleviating their “pessimism”relative to uncertainty-neutral investors.

In our economy, entrepreneurs raise equity from uncertainty-averse investors in the public equity

market through an IPO. The key feature of our model is that uncertainty-averse investors, by

investing in a portfolio of (possibly independent) R&D processes, reduce their exposure to the

joint (uncertain) event that all such R&D efforts fail.4 Thus, uncertainty-averse investors are

(relatively) more optimistic, and willing to pay more, for equity in a given entrepreneurial firm

when other entrepreneurs innovate as well. We refer to the (endogenous) probabilistic assessments

held by investors on the success of innovations as characterizing their sentiment.

2This feature is used in Garlappi, Giammarino, and Lazrak (2017) and Lee and Rajan (2018), among others.
3Uncertainty hedging is a direct consequence of the “uncertainty aversion axiom”of Gilboa and Schmeidler (1989).
4For example, there is considerable uncertainty on the technical diffi culties related to development of self-driving

cars —where several companies are engaged in substantial R&D effort. Clearly, there is very little information on
the true odds of discovery relevant for each producer. Most likely, however, one of such innovators will discover a
workable technology that will become the industry standard. By investing in a portfolio of companies, investors (such
as VCs) limit their exposure to the adverse effect of uncertainty, reducing their assessment of the probability each
technology will fail and, thus, improving their overall outlook on the sector.
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We show uncertainty aversion generates strategic complementarity between innovative activities

which can result in innovation waves. Arrival of innovation opportunities in the economy may be

the random effect of exogenous technological progress. We argue such technological advances, while

seeding the ground for an innovation wave, may not be suffi cient to ignite one. Rather, a wave will

start when a critical mass of innovators is attained, which spurs a “hot”market for innovation.

The notion of sentiment we propose in our paper is firmly grounded on decision theory and

provides a new channel for how it affects economic behavior. Several authors suggested that

investor attitude toward investment in risky assets, often referred to as sentiment, is a critical

feature of investor behavior in financial markets.5 Unfortunately, there is still little understanding

of its economic drivers and time variation. Our approach provides a foundation for the notion

of sentiment based on uncertainty and investor aversion to it. In our model, investors beliefs are

determined endogenously and, because of uncertainty hedging, depend on their changing overall

exposure to the sources of uncertainty in the economy. Importantly, in our theory investor sentiment

is not based on erroneous beliefs disjoint from economic fundamentals but, rather, it depends

directly on investor uncertainty about such fundamentals.6

The channel we propose differs from more traditional “neoclassical” explanations. Shleifer

(1986) argues that innovations in one sector have a positive externality in other sectors, because of

their positive effect on aggregate demand. As in our paper, innovators prefer to postpone innovation

to periods of time when other innovators undertake theirs, generating self-fulfilling boom-and-bust

cycles. While in Shleifer (1986) this cycle occurs through the effect that a favorable aggregate

macroeconomic environment has on the value of innovation, in our model waves may be localized

in a specific sector, even if the overall economy is not booming. Thus, our model can explain the

boom in the biotech market in 1989-1992, which occurred around the economic recession of thr

early 1990’s and within a relatively calmer overall stock market (Booth, 2016).

Acemoglu and Zilibotti (1997) argue that at the early stages of economic development, when

5See Barberis, Shleifer, and Vishny (1998), Baker and Wurgler (2006), and Ljungqvist, Nanda, and Singh (2006).
Baker and Wurgler (2007) suggest investor sentiment, in the form of “optimism or pessimism about stocks,”is likely
to affect more those stocks that are harder to value, that is, stocks surrounded by more uncertainty.

6Our paper is related to recent rational explanations of sentiment, such as Angeletos and La’O (2013). An
important difference with our paper is that in Angeletos and La’O a change in sentiment is the outcome of an
aggregate shock (a “sentiment shock”) that affects agent information sets and, thus, beliefs in the presence of imperfect
communication. In our paper, changes in sentiment emerge endogenously in an otherwise stationary environment.
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capital is limited, the presence of project indivisibilities caps the range of risky investment projects

implemented in an economy, reducing the benefits of risk sharing, discouraging investment. Our

paper differs in many important dimensions. First, our results do not rely on the limited supply

of capital but, rather, are driven by the random arrival of innovative ideas in the economy. In

our model capital is abundant and, thus, it is better suited to explain innovation waves in more

mature economies, while the Acemoglu and Zilibotti model is better suited to explain the random

growth rates of economies at the earlier stages of their development. Second, in Acemoglu and

Zilibotti a “wave”(or, perhaps a “crash”) may occur as the outcome of negative production shocks

that reduce capital available in the economy thus restricting its diversification opportunities. In

contrast, in our paper, a wave ends when the pipeline of innovations that were initiated in that

wave are completed, and a new wave starts when a new critical mass is achieved.7

The benefits of uncertainty hedging are similar to the traditional benefits of risk diversification

in standard portfolio theory, but in the context of uncertainty.8 A key difference is that, under

uncertainty aversion, investors’beliefs and attitude toward risky assets are endogenous and depend

on their overall portfolio composition. In addition, because of uncertainty hedging, investors hold

more favorable beliefs on the future cash flow of risky assets when they hold such assets in a

portfolio rather than in isolation. In contrast, under traditional risk aversion, investors’subjective

beliefs are fixed, and are uniquely determined by their (single) prior.

A second important difference is that traditional portfolio diversification can generate innovation

waves coupled with high stock market valuations as the outcome of a reduction of the economy-wide

market price of risk, as in Acemoglu and Zilibotti (1997). This channel requires a volume of new

firms seeking financing that is suffi ciently large to reduce the aggregate market risk premium, and

innovation waves are necessarily associated with economy-wide equity market booms.

Our approach can explain the apparent “boom and bust”behavior in technology sectors, such

as the Life Sciences and the Information Technology, where hot periods in innovation rates, merger

activity, and asset valuations alternate with cold periods, even while the overall equity market

remains stable. This divergence between a technology sector and the general market is diffi cult to

7Equilibrium investment booms and busts in the presence of asymmetric information and agency conflicts is also
examined by Greenwald et al. (1984), Zeira (1999), and Kumar and Langberg (2013).

8Observational equivalence between models based on uncertainty aversion and those based on standard risk-averse
models is an issue discussed in the literature (see, for example, Maenhout, 2004, and Skiadas, 2003, among others).
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reconcile on the basis of risk aversion: early-stage innovations typically represent a small portion of

the overall market, thus providing only limited diversification opportunity to investors. Further, if

the risk faced by investors is essentially technological, with little or no correlation with aggregate risk

(as in Pastor and Veronesi, 2009), risk premia cannot play a role in innovation process. Traditional

risk aversion can generate waves and hot equity markets limited to specific sectors only in the

presence of capital markets segmentations that reduce risk-diversification opportunities available

to investors.9 In contrast, uncertainty hedging can play a significant role even in the case of

small uncertain investments and trigger waves limited to specific sectors. In our model, periods

of strong innovative activity are accompanied by high valuations because innovation waves are, in

equilibrium, associated with more optimistic expectations on future cash flows.

Our paper has implications for the impact of M&A activity and corporate ownership structure

on innovation. In the new channel we propose, mergers of innovative firms create synergies and spur

innovation. Positive synergies are endogenous, the direct outcome of the beneficial spillover on the

probabilistic assessments of future returns on innovation due to uncertainty aversion. Our model

also predicts that merger activities involving innovative firms are associated with more optimistic

investor expectations and greater valuations. Thus, our paper can explain the strong M&A activity

of firms that just performed an IPO documented in Celikyurt et al. (2010).10

Our paper contributes insights from uncertainty aversion to three separate strands of literature.

First, and foremost, our paper belongs to the rapidly expanding literature on determinants of

innovation waves.11 In early research, which focused mostly on the technological “fundamentals”

behind innovation, waves are driven by a technological breakthrough that affects an entire sector,

with positive spillover across different technologies. More recently, Zeira (1999) shows that such

waves may be amplified by information overshooting in the context of rational learning about

changing fundamentals. Grenadier (1996) argues overinvestment within booms and subsequent

busts can be the outcome of optimal dynamic exercise of real investment options.

More recent research focuses on the link between innovation waves, availability of financing,

and stock market booms. Greenwald et al. (1984) argue that credit constraints can generate boom

9Section 6 discusses the effect of uncertainty aversion on investor portfolio formation, such as venture capitalists.
10Hart and Holmstrom (2010) develop a model where mergers create value by internalizing externalities.
11The critical role of innovation and innovation waves has been extensively studied at least since Schumpeter (1939)

and (1942), Kuznets (1940), and, more recently, Aghion and Howitt (1992), and Klepper (1996).
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and busts in investment, but do not directly focus on innovation. Scharfstein and Stein (1990)

suggest reputation considerations by investment managers may induce them to herd, facilitating

the financing of technology firms.12 Ljungqvist, Nanda, and Singh (2006) argue that firms time

their IPOs in periods of (exogenously determined) strong sentiment from retail investors. Gompers

et al. (2008) show that periods of high stock market valuations are also associated with greater fund

raising by VCs. Kumar and Langberg (2013) suggests that booms and busts in firm investment

may be the outcome of agency conflict between shareholders and managers, a consideration absent

in our paper. Nanda and Rhodes-Kropf (2013) find that in “hot markets”VCs invest in riskier and

more innovative firms. Nanda and Rhodes-Kropf (2017) argue favorable financial market conditions

reduce refinancing risk for VCs, promoting investment in more innovative projects. A positive effect

of investor sentiment on innovation is documented in Aramonte and Carl (2018).

The second stream of literature is the recent debate on the links between technological innovation

and stock market prices. Nicholas (2008) shows that an important driver of the stock market run-

up experienced in the American economy in the late 1920’s was the strong innovative activity

by industrial companies which affected the market valuation of “knowledge assets.” Two closely

related papers are Pastor and Veronesi (2005) and (2009). The first paper argues that IPO waves

can be the outcome of a change in the “fundamentals”characterizing a firm and its environment,

such as an exogenous decrease in the market expected return. In our paper, in contrast, IPO

waves occur in a stationary environment. The second paper argues stock market booms (and

subsequent crashes) are the outcome of the changing nature of risk that characterizes technological

revolutions, from idiosyncratic to systematic, and its impact on discount rates. In our model,

periods of strong innovative activity are accompanied by high valuations because innovation waves

are, in equilibrium, associated with more optimistic expectations on cash flows. Thus, our model,

which focuses on expected cash flows, complements theirs, that focus on discount rates.

The third stream of literature focuses on the drivers of mergers and the impact of M&A activity

on incentives to innovate. High stock market valuations are associated with M&A activity (Mak-

simovic and Phillips, 2001, and Jovanovic and Rousseau, 2001). Rhodes-Kropf and Viswanathan

(2004) argue this is the outcome of misvaluation of the true synergies created in a merger when

12Gompers and Lerner (2000) find higher venture capital valuations are not linked to better success rates of portfolio
companies. Perez (2002) shows technological revolutions are associated with “overheated”financial markets.
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the overall market is overvalued. The impact of M&A activity on corporate innovative activity has

been documented by several empirical studies. Phillips and Zhdanov (2013) show that a firm’s

R&D expenditures increase in periods of strong M&A activity in the same industry. Bena and Li

(2014) argue that the presence of technological overlap between two firms’innovative activities is

a predictor of the probability of a merger.13 We study a parsimonious model based on uncertainty

aversion proposing a novel direct link between stock price valuations, M&A activity, and innova-

tion rates. In addition, investors’desire for uncertainty hedging creates the externality that, in our

model, is at the heart of endogenous synergies in mergers of innovative companies.

The paper is organized as follows. In Section 1, we introduce the basic model and in Section 2,

we derive the main results. Section 3 develops the dynamic model. Section 4 discusses the impact of

competition. Section 5 examines the impact of mergers on incentives to innovate. Section 6 presents

the main empirical implications of our model. Section 7 discusses certain critical assumptions and

possible extensions of our model and concludes the paper. All proofs are in the Appendix.

1 The Basic Model

We study a two-period economy with three dates, t ∈ {1, 2, 3}. The economy has two classes of

agents: investors and entrepreneurs. Entrepreneurs are endowed with project-ideas that may lead

to an innovation. Project-ideas are risky and require an investment both at the beginning, t = 1,

and at the interim date, t = 2. If successful, project-ideas generate a valuable innovation at t = 3

and, if unsuccessful, have zero payoff. For simplicity, we assume initially that there are only two

entrepreneurs, denominated by τ , with τ ∈ {A,B}. Project-ideas are creative innovations that are

unique to each entrepreneur and can be pursued only by the entrepreneur generating them.

Entrepreneurs are penniless and require financing from investors. There is a unit mass of

investors, each with ω0 units of endowment. This initial endowment can be used to invest in one

(or both) of the two project-ideas or in another (risky) asset that is available in the economy.

Investment in the other asset, which can be interpreted as the market portfolio, can be made at
13Bernstein (2015) documents that in the three years after their IPO, firms engage in strong M&A activity, acquiring

a substantial number of patents. Sevilir and Tian (2012) show that acquiring innovative target firms is positively
related to acquirer abnormal announcement returns and long-term stock return performance. The importance of the
presence of technological overlaps between acquiring firms and targets is confirmed by Seru (2014), which finds that
innovation rates are lower in diversifying mergers, where the technological benefits of a merger are likely to be absent.
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either t = 1 and t = 2, and yields a unit gross expected return per period (a normalization).

The innovation process is structured in two stages. To implement a project-idea, and thus to

“innovate,”an entrepreneur makes at t = 1 a fixed, non-pecuniary investment kτ . This investment

represents the preliminary personal effort (or “sweat equity”) that she must exert to generate

the idea. We refer to the initial investment, kτ , as the “discovery cost” for the innovation. We

denote the decision made by entrepreneur τ of whether to incur such cost with dτ ∈ {0, 1}, where

dτ = 1 indicates the personal investment is made, and dτ = 0 otherwise. The innovation process

is inherently risky: denote with qτ the success probability of the first stage of the process. For

simplicity, assume first-stage success probabilities are independent.14

If the first stage is successful, at t = 2 the innovation process enters the second stage. The second

stage requires a monetary investment of cτ . Entrepreneurs pay for this investment by selling equity

to a large number of well-diversified investors in an IPO. Entrepreneurs are impatient and sell at

the interim period, t = 2, their entire firm to outside investors, at (market) value Vτ . The second

stage of the innovation process is also risky and, if successful, the innovation generates at the end

of the last period, t = 3, the payoff yτ with probability p, and zero otherwise. We also assume that

the success probabilities of the second stage are independent. Finally, if an entrepreneur does not

initiate the innovation process, she will have a zero payoff.

The game unfolds as follows. At the beginning, t = 1, entrepreneurs simultaneously decide

whether or not to innovate, and select dτ ∈ {0, 1}. Investors invest their endowment in the other

asset available in the economy. At the interim date, t = 2, entrepreneurs with successful first

stage sell their entire firm to outside investors for value Vτ , which represents their payoff from

the innovation. Outside investors purchase a fraction ωτ of firm τ and invest the residual value

ω0−ωAVA−ωBVB in the other asset. At the last stage, t = 3, residual uncertainty on the success of

each innovation is resolved and payoff realized. Investors’final payoff depends on their investments

in each innovation, ωτ , and on the return from those investments. We initially assume that project

payoffs are the same whether only one or both entrepreneurs are successful.

14Positive correlation of first-stage success probabilities would increase potential for waves.
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1.1 Modeling Uncertainty

A key feature of our model is that outside investors are uncertain about the success probability of

the second stage of project-ideas, p. We model uncertainty (or “ambiguity”) aversion by adopting

the Gilboa and Schmeidler (1989) Minimum Expected Utility approach:15 economic agents do not

have a single prior on future events but, rather, believe that the probability distribution of future

events belongs to a given setM, denoted as the “core beliefs set,”and maximize

U ≡ min
µ∈M

Eµ [u (·)] , (1)

where µ is a probability distribution, and u (·) is a von-Neumann Morgenstern utility function. An

important property of uncertainty aversion that plays a critical role in our paper is that uncertainty-

averse agents weakly prefer randomizations over random variables (more precisely, over acts de-

scribed in Anscombe and Aumann, 1963) rather than each individual variable in isolation. This

property is a direct consequence of the uncertainty-aversion axiom of Gilboa and Schmeidler (1989)

and is known as “uncertainty hedging.” Given two random variables, yk, k ∈ {1, 2}, with joint

distribution µ ∈M, by the property of the minimum operator, for any q ∈ [0, 1],

q min
µ∈M

Eµ [u (y1)] + (1− q) min
µ∈M

Eµ [u (y2)] ≤ min
µ∈M
{qEµ [u (y1)] + (1− q)Eµ [u (y2)]}. (2)

The key driver of our results is that (2) can hold with strict inequality.

Investors are uncertain on the success probability of the second stage of the innovation, p.

Following Hansen and Sargent (2001) and (2008) we characterize the core beliefs setM in (1) by

using the notion of relative entropy.16 For a given pair of (discrete) probability distributions (p, p̂),

the relative entropy of p with respect to p̂ is the Kullback-Leibler divergence of p from p̂:

R(p|p̂) ≡
∑
i

pi log
pi
p̂i
. (3)

15An alternative approach is “smooth ambiguity”developed by Klibanoff, Marinacci, and Mukerji (2005). In their
model, agents maximize expected felicity of expected utility, and agents are uncertainty averse if the felicity function is
concave. The main results of our paper will hold in this approach (if the felicity function is suffi ciently concave), at the
cost of substantially greater analytical complexity. Our results also hold under variational preferences of Maccheroni,
Marinacci, and Rustichini (2006) if the ambiguity index c (p) has a positive cross-partial. See also Siniscalchi (2011).
16This specification of ambiguity aversion, which is often referred to as the “constrained preferences”approach, is

a particular case of the larger class of “variational preferences.”Strzalecki (2011) provides a general characterization
of different approaches to modeling ambiguity aversion.
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Thus, the core beliefs set for the uncertainty-averse investors in our economy is

M ≡{p : R(p|p̂) ≤ η̃} , (4)

where p is the joint distribution of the success probability of the second stage of the two projects,

and p̂ is an exogenously given “reference”probability distribution. From (3), it is easy to see that

the relative entropy of p with respect to p̂ represents the (expected) log-likelihood ratio of the pairs

of distributions (p, p̂), when the “true”probability distribution is p. Thus, the core beliefs setM

can be interpreted as the set of probability distributions, p, that, if true, the investor would expect

not to reject the (“null”) hypothesis p̂ in a likelihood-ratio test.

Intuitively, the core belief setM includes probability distributions that are not “too unlikely”

to be the true (joint) probability distribution that characterizes the two technologies, given the

reference distribution p̂. Thus, the reference distribution p̂ can be interpreted as characterizing an

agent’s “view” about the true success probability p, and the parameter η̃ represents the degree

of the agent’s confidence on the reference probability.17 A small value of η̃ represents situations

where agents have more confidence that the probability distribution p̂ is a good representation of

the success probability of the two technologies, while a large value of η̃ corresponds to situations

where there is great uncertainty on such probabilities.

An important effect of restricting investors’ beliefs to the core beliefs set (4) is to rule out

probability distributions that are “too far” from the reference probability p̂. In other words, the

maximum entropy criterion implied by (4) has the effect of excluding from the core-belief set

probability distributions that give too much weight to extreme events (in both the right and left

tails). Because uncertainty-averse investors are essentially concerned about “left-tail” events, we

interpret this property as “trimming pessimism.”18

Lemma 1 Let η̃ < η̃0 (p̂) (defined in the appendix). The core beliefs setM is a strictly convex set

with smooth boundary. Furthermore, if investors have nonnegative investments in both innovations,

the solution to (1) is on the lower left-hand boundary ofM.

17As in Hansen and Sargent (2001) and (2008), relative entropy characterizes extent of “misspecification error.”
18Referring back to our example on self-driving cars, the relative entropy criterion eliminates from M probability

distributions that give too much weight to the extreme event that all technologies under development will fail.
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Lemma 1 is a direct implication of the strict convexity of relative entropy, R(p|p̂).19 Strict convexity

of the core beliefs set M implies (2) holds with strict inequality, and, thus, investors prefer to

hold uncertain technologies in a portfolio. Lemma 1 also implies uncertainty-averse investors with

positive investment in both project ideas select probability assessments that lie in the “lower-left”

boundary ofM, so the relevant part of the set is a smooth, decreasing, and convex function. Thus,

the deterioration of an assessment of success probability of one technology is met by a corresponding

improvement of assessment of success probability of the other technology.20

Unfortunately, the level set of relative entropy for binomial distributions in (4) is not solvable in

closed form, making the model analytically intractable. Therefore, similar to Dicks and Fulghieri

(2019), we use a parametrization of the core belief that closely approximates (4). First, we assume

the success probability p(θτ ), τ ∈ {A,B}, depends on the value of an underlying parameter θτ ,

and is p(θτ ) = eθτ−θM , where θτ < θM . Uncertainty-averse agents treat the vector ~θ ≡ (θA, θB)

as ambiguous, and they believe
−→
θ is near

−→
θ ∗ = (θ∗, θ∗), giving p̂ = p(θ∗). For a given parameter

combination ~θ, the second-stage success probabilities are independent.21 Second, we describe the

relevant portion of the boundary ofM (characterized in Lemma 4) by using the L1 norm:

C ≡

−→θ :
∑

τ∈{A,B}
|θτ − θ∗| ≤ η

 , (5)

where C now denotes the “core beliefs”set. Because investors hold innovations with non-negative

weights in their portfolios, we have θτ ≤ θ∗, which implies 12 (θA + θB) = θ∗ − η
2 .

The relationship between the core belief set under the relative entropy criterion (4), M, and

the approximation of its lower left boundary under the L1 norm (5), is depicted in Figure 1, drawn

on the basis of the parameter specification displayed in Point 1 of Table 1. The table displays a

numerical example that will illustrate the various cases we analyze in our paper. The figure displays

the full core belief set M and, in bold, the lower-left boundary portion of M that is relevant for

investors with long positions in both assets. The approximation of the lower-left boundary of M
19For a general discussion, see Theorem 2.5.3 and 2.7.2 of Cover and Thomas (2006). Our results hold, generally,

when the core belief setM is a strictly convex set with smooth boundaries. Note that “rectangular”core-belief sets
do not satisfy such condition, thus defeating the benefits of uncertainty hedging of the uncertainty-aversion axiom.
20This holds because relative entropy is additively separable in independent variables.
21 It is easy, although messy, to allow for the possibility of correlated second-stage success probabilities.
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under the L1 norm (5), is depicted with a dashed blue line.

Finally, while outside investors are uncertain on the parameter combination ~θ, there are no

other sources of uncertainty in the economy and investors are otherwise risk-neutral.22 This means

investors can have access to other (risky) investment opportunities without affecting our results. We

make this risk-neutrality assumption to isolate the effect of uncertainty aversion from the traditional

(and well-understood) risk-aversion channel. For simplicity, we also assume entrepreneurs are both

uncertainty and risk neutral. In Section 7 we discuss more explicitly the impact of these assumptions

on our analysis. We will at times benchmark the behavior of uncertainty-averse agents with the

behavior of an uncertainty-neutral SEU agent for whom η = 0, so that he has a prior belief θN = θ∗.

1.2 Uncertainty Aversion and Investor Sentiment

An important implication of uncertainty aversion is that the probability assessment (i.e., the “be-

liefs”) held by an uncertainty-averse investor (that is, their assessment of the parameter combination

~θ) are endogenous, and depend on the composition of their overall portfolio. Endogeneity of be-

liefs is the outcome of the fact that, when the uncertainty-hedging condition (2) holds as a strict

inequality, the minimization operator in (1) depends the agent’s overall exposure to uncertainty.

The effect of uncertainty hedging is that investors hold more favorable probability assessments

on the success probability of project-ideas if they invest in both projects, rather than in just

one project. Specifically, if both innovations are successful, and an investor decides to purchase

a proportion ωτ of entrepreneur τ’s firm, with payoff yτ , the investor will hold a risky portfolio

Π = {ωAyA, ωByB, ω0 − ωAVA − ωBVB}. Because investors are uncertainty averse but otherwise

risk neutral, portfolio Π provides the investor with utility U (Π) = min−→
θ ∈C u

(
Π,
−→
θ
)
, where

u
(

Π,
−→
θ
)
≡ eθA−θMωAyA + eθB−θMωByB + ω0 − ωAVA − ωBVB. (6)

Because of uncertainty aversion, the investor’s assessment at t = 2 on the state of the economy,

22Alternatively, our paper can be interpreted as modeling situations where uncertainty on other sectors of the
economy does not affect uncertainty surrounding our firms.
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−→
θ a, is the solution to the minimization problem

−→
θ a (Π) ≡ arg min

θ∈C
u
(

Π,
−→
θ
)
. (7)

Lemma 2 Uncertainty-averse investors hold less favorable beliefs than uncertainty-neutral investors.

Increasing an investor’s exposure to one innovation induces a more favorable assessment of the other

innovation. Formally, given portfolio Π, and letting

θ̌
a
τ (Π) = θ∗ − η

2
+

1

2
ln
ωτ ′yτ ′

ωτyτ
, (8)

an uncertainty-averse investor holds an assessment θaτ on the uncertain parameter θτ equal to

θaτ (Π) =


θ∗ − η

θ̌
a
τ (Π)

θ∗

θ̌
a
τ (Π) ≤ θ∗ − η

θ̌
a
τ (Π) ∈ (θ∗ − η, θ∗)

θ̌
a
τ (Π) ≥ θ∗

. (9)

If the investor invests in only one project idea, θaτ (Π) = θ∗ − η.

Lemma 2 shows that uncertainty-averse investors’assessment on
−→
θ is endogenous and determines

his view on the success probability of the innovations, given their assessment of the degree of

uncertainty surrounding the two firms. Thus, we refer to the assessment
−→
θ a ≡ (θaA, θ

a
B), and

the corresponding probabilistic assessments {p(θaA), p(θaB)}, as characterizing investor sentiment.

Uncertainty-averse investors hold less favorable beliefs that uncertainty-neutral investors p(θaτ ) ≤

p(θ∗τ ), where their assessment p(θaτ ) is a decreasing function of their degree of confidence, η, in

the reference probability, p(θ∗τ ). Investors’ beliefs and, thus, their attitude toward risky assets,

depend on their overall portfolio composition, Π, and the degree of confidence in the reference

probability, η, due to uncertainty aversion. Critically, because of uncertainty hedging, investors

hold more favorable beliefs on the return on risky assets when they hold such assets in a portfolio

rather than in isolation. For ease of exposition, we assume project payoffs are not too different,

yτ/yτ ′ ∈ (e−η, eη), so that θaτ (Π) ∈ (θ∗ − η, θ∗) in (9).

From Lemma 2, when an investor has a relatively greater proportion of her portfolio invested in

innovation τ , ωτyτ > ωτ ′yτ ′ , she will be relatively more pessimistic about the return on that inno-
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vation. This happens because a greater exposure to the uncertainty regarding a given innovation,

relative to another innovation, will make an uncertainty-averse investor relatively more concerned

about priors that are less favorable to that innovation. Correspondingly, the investor will give more

weight to the states of nature that are more favorable to the other innovation. In other words, the

investor will be more “optimistic”on the success probability of that other innovation.

A key implication of uncertainty hedging is to create a positive externality among investment

projects through its effect on investors beliefs. Suppose entrepreneur τ has a successful first-stage

project-idea, while entrepreneur τ ′ does not: Lemma 2 shows θaτ (Π) = θ∗ − η when ωτ ′yτ ′ = 0. In

this case, at the interim date, t = 2, investors hold more pessimistic assessments about the successful

innovation than if both entrepreneurs have a successful first-stage project-idea. By investing in only

one project-idea, investors hold a portfolio with greater exposure to the possibility that the second-

stage success probability is very low. In contrast, by investing in both technologies, investors limit

exposure to the “tail event” that both project-ideas have a very low success probability in the

second stage, a hypothesis rejected by the relative entropy criterion (4). Similar situations emerge

if only one entrepreneur decides to innovate, while the other entrepreneur does not.

An important implication of Lemma 2 is that investor probabilistic beliefs about one innova-

tion crucially depends on the availability of other innovations. Specifically, an investor will be

more optimistic about an innovation (and, thus, values it more) if he will also be able to make

greater investments in other innovations. This implies that uncertainty-averse investors perceive

innovations effectively as complements and prefer to hold them in a portfolio.

2 Uncertainty and Innovation

Portfolio complementarity due to uncertainty aversion creates strategic complementarity among

entrepreneurs. If only one entrepreneur innovates, she will face adverse investor beliefs. In contrast,

if both entrepreneurs innovate and have a successful first stage, uncertainty-averse investors hold

more favorable beliefs toward both innovations, making both innovations more valuable to the

entrepreneurs. This implies that an entrepreneur is more willing to innovate if other entrepreneurs

innovate as well. This positive spillover from one innovation to another generates innovation waves.
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2.1 The Uncertainty-Neutral Case

As a benchmark, we start the analysis by characterizing innovation decisions when investors are

uncertainty-neutral. If an entrepreneur has a successful first-stage project, under risk neutrality

equity prices depend only on their prior θN = θ∗, giving

Vτ ≡ p (θ∗) yτ , for τ ∈ {A,B}, (10)

Equation (10) shows that equity value for innovation τ depends only on its second-stage success

probability, p (θ∗), and project payoff yτ . The ex-ante expected payoff for entrepreneur τ from

initiating the innovation process, and thus incurring discovery cost kτ , is

EUτ ≡ qτ [p (θ∗) yτ − cτ ]− kτ .

Entrepreneur τ innovates at t = 0 if EUτ ≥ 0, leading to the following theorem.

Theorem 1 When investors are uncertainty-neutral, entrepreneurs of type τ innovate iff

kτ ≤ k̄τ ≡ qτ [p (θ∗) yτ − cτ ] , τ ∈ {A,B}.

Each entrepreneur initiates the innovation process when the expected payoff from the innovation

exceeds the initial discovery cost. Importantly, when investors are uncertainty neutral, investment

decisions by the two entrepreneurs are effectively independent, and they innovate only if their own

discovery cost is not too large, kτ ≤ k̄τ . This threshold, k̄τ , is increasing in the innovation potential

payoff, yτ , and both early-stage and late-stage success probabilities, qτ and p (θ∗). Also, k̄τ is

decreasing in the ex-post development cost, cτ .

2.2 Uncertainty Aversion and Innovation

We solve the model recursively. First, we determine the value Vτ that investors are willing to pay

at the interim date, t = 2, to entrepreneurs given first-stage success. Second, we solve for the initial

choice by entrepreneurs to initiate the innovation process.

Interim-Date Equity Market Valuations. Implementation of the second stage of innovation
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requires entrepreneurs to raise capital by selling equity at t = 2. Entrepreneurs sell their entire

firm to investors, use the proceeds to pay for the cost cτ , and pocket the difference. The payoff to

entrepreneur τ depends on the price outside investors are willing to pay, which, in turn, depends

on their assessments on the success probability of the innovation, p(θτ ), as follows.

Theorem 2 Uncertainty-averse (and risk-neutral) investors price entrepreneurial firms with suc-

cessful first-stage projects at expected value, V a
τ = p(θaτ )yτ , given their beliefs

−→
θ a. If only one

entrepreneur has successful first-stage project, firm value is

V a
τ = p (θ∗ − η) yτ . (11)

If both entrepreneurs are have successful first-stage projects, it is optimal for investors to hold a

balanced portfolio, ω∗A = ω∗B, and firm values are

V a
τ = p

(
θ∗ − η

2

)
(yτyτ ′)

1/2 , with τ , τ ′ ∈ {A,B}, τ 6= τ ′. (12)

In addition, V a
τ ≤ Vτ , and V a

τ is decreasing in η.

Theorem 2 shows that uncertainty-averse (and risk-neutral) investors price equity at its expected

value, given their beliefs. If both firms are successful, investors hold a balanced portfolio by

making equal investments in both firms. Desirability of equal investments is a consequence of

uncertainty hedging. For simplicity, we normalize ω∗A = ω∗B = 1. Furthermore, because from

Lemma 2 uncertainty-averse investors are less optimistic than uncertainty neutral investors, they

have a lower equity valuation, V a
τ ≤ Vτ , where the uncertainty-aversion discount, Vτ − V a

τ , is a

increasing function of uncertainty, η.

Theorem 2 also shows that when investors are uncertainty averse, the market value of one firm

depends not only on its own payoff, yτ , but also on the one of other firm. The linkage between the

market value of the two firms occurs through investor beliefs. From Lemma 2 an increase of the

payoff of one firm will increase the relative exposure of investors to that firm’s uncertainty relative

to the other firm’s uncertainty, making (all else equal) investors relatively more conservative (or

pessimistic) about that firm’s success probability and, correspondingly, relatively more confident

(or optimistic) about the other firm’s success probability. This interaction between equity market
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values of the two firms creates the strategic externality between the two entrepreneurs.

The market value of equity at the interim date depends on the number of firms seeking financing

from investors, which in turn depends on whether only one or both firms have successful innovations.

Thus, there are four possible states: (i) when both entrepreneurs had a successful first stage, state

SS; (ii) when only one entrepreneur has a successful first-stage, state SF with the symmetric FS

state, (iii) when both entrepreneur fail in the first stage and no innovation can take place, state

FF . Since the last state FF is trivial, we focus on the first two.

Consider first the case in which only one entrepreneur had a successful first-stage project-idea,

state SF . This state may arise either because the other entrepreneur has not initiated the innovation

process or because the first stage was unsuccessful. Investors value equity under the worst case

scenario giving V a,SF
τ = p (θ∗ − η) yτ , and the entrepreneur’s continuation utility is

Ua,SFτ ≡ V a,SF
τ − cτ = p (θ∗ − η) yτ − cτ . (13)

If both entrepreneurs innovate and have a successful first-stage project-idea (state SS), equity

market valuation is given in Theorem 2, with continuation utility

Ua,SSτ ≡ V a,SS
τ − cτ = p

(
θ∗ − η

2

)
(yτyτ ′)

1/2 − cτ . (14)

From (8), the presence of two entrepreneurial firms makes investors more optimistic, leading to

greater equity market valuations and entrepreneurial continuation utilities.

Corollary 1 When both entrepreneurs have a successful first-stage project, they receive higher

equity valuations, V a,SS
τ > V a,SF

τ , and are better off, Ua,SSτ > Ua,SFτ .

The Innovation Decision. At t = 1, entrepreneurs must decide whether to sustain the (non-

pecuniary) discovery cost kτ to initiate innovation. If entrepreneur τ ′ chooses to innovate, daτ ′ = 1,

the expected utility for entrepreneur τ from sustaining at t = 1 the initial discover cost kτ is

EUa,Iτ ≡ qτ
[
qτ ′Ua,SSτ + (1− qτ ′)Ua,SFτ

]
− kτ

for τ , τ ′ ∈ {A,B} and τ 6= τ ′. Conversely, if entrepreneur τ ′ does not innovate at t = 0, daτ ′ = 0,

17



the expected utility for entrepreneur τ from choosing to innovate at t = 1 is

EUa,Nτ = qτUa,SFτ − kτ .

Thus, entrepreneur τ objective function at t = 1 is given by:

EUaτ = daτ ′EUa,Iτ + (1− daτ ′)EUa,Nτ . (15)

Entrepreneur τ earns EUaτ if she sets d
a
τ = 1, but zero if she selects daτ = 0. We characterize the

equilibrium of the game by adopting the notion of subgame-perfect Nash Equilibrium.

Definition 1 A subgame-perfect Nash Equilibrium is a strategy combination {daτ} and investor

equity valuation V a
τ , for τ ∈ {A,B}, such that: (i) each entrepreneur τ ∈ {A,B} at t = 1 maximizes

(15), given the other entrepreneur’s optimal strategy and investor equity valuation V a
τ ; (ii) investor

equity valuation, V a
τ , for τ ∈ {A,B}, is from (11) and (12), given entrepreneurs’optimal strategies.

The innovation decisions at t = 1 are as follows.

Theorem 3 There are thresholds kaτ < k̄aτ , defined in the Appendix, with k̄
a
τ < k̄τ , such that:

(i) for low levels of discover cost, kτ ≤ kaτ , an entrepreneur always innovates, daτ = 1;

(ii) for high levels of discovery cost, kτ ≥ k̄aτ , an entrepreneur never innovates, daτ = 0;

(iii) for intermediate levels of the discovery cost, kτ ∈
(
kaτ , k̄

a
τ

)
, an entrepreneur innovates only if

the other entrepreneur innovates as well, daτ = daτ ′.

For very small levels of discovery costs, kτ ≤ kaτ , it is a dominant strategy for an entrepreneur

to innovate. For very large levels of discovery costs, kτ ≥ k̄aτ , it is a dominant strategy for an

entrepreneur not to innovate. For intermediate levels of discovery costs, kτ ∈
(
kaτ , k̄

a
τ

)
, entrepreneur

τ wishes to innovate only if the other entrepreneur innovates as well. If both entrepreneurs have

intermediate levels of discovery costs, there are two subgame perfect equilibria: one where both

entrepreneurs innovate, daA = daB = 1, and one where neither innovate, daA = daB = 0. The

equilibrium where both entrepreneurs innovate Pareto-dominates the no-innovation equilibrium.

Finally, because uncertainty-averse investors hold less optimistic beliefs that uncertainty-neutral
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ones (as shown in Lemma 2), entrepreneurs will be less prone to innovate, k̄aτ < k̄τ .23

When both entrepreneurs have intermediate discovery costs, there are equilibria with and with-

out innovation. In this case, entrepreneurs face a classic “assurance game,” in which there is a

Pareto-superior equilibrium, where both entrepreneurs innovate, yet also an ineffi cient, Pareto-

inferior equilibrium, where neither entrepreneur innovates. Multiplicity of equilibria results from

strategic complementarity created by uncertainty aversion: it is profitable for an entrepreneur to

innovate only if she expects high valuations, which requires the other entrepreneur to innovate.

Corollary 2 The threshold levels
{
k̄aτ
}
τ∈{A,B} are increasing functions of qτ , qτ ′ , yτ , and yτ ′, and

the threshold levels {kaτ}τ∈{A,B} are increasing functions of qτ and yτ . Both
{
k̄aτ
}
τ∈{A,B} and

{kaτ}τ∈{A,B} are decreasing in η.

Corollary 2 shows an increase in one entrepreneur’s probability of success, qτ , makes not only

that entrepreneur, but also others, more willing to innovate. Further, an increase in payoff of

innovation increases not only that entrepreneur’s willingness to innovate, but also makes innovation

more attractive to others. An increase in uncertainty, η, makes innovation less attractive.

3 Investor Sentiment and Innovation Waves

We now examine the effect of uncertainty on innovation waves in the context of a simple dynamic

model. We consider a simple discrete-time, infinite-horizon, dynamic stochastic game, where t ∈

T ≡ {1, 2, 3, ...} denotes time. At each date t ∈ T, a new project-idea arrives with a constant,

exogenous probability π, where each project-idea is owned by a unique entrepreneur. Let Et be the

set of entrepreneurs endowed with a project-idea at any given time t ∈ T, and let νt ≡ |Et| be the

number of entrepreneurs endowed with a project-idea.

Different from the basic model, we now assume an entrepreneur with a project-idea can delay

implementation to a future date. Waiting to implement the project-idea, however, is costly: entre-

preneurs and investors are impatient and have discount factor δ, which is the same for both groups.

23The uncertainty-neutral and uncertainty-averse cases for our numerical example are displayed in point 2 of Table
1. Uncertainty aversion decreases equity valuations with respect to uncertainty-neutral case and shrinks the set of
values of the initial discover costs k for which an innovation is undertaken.
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For tractability, we now assume that (i) if implemented, the first stage of the innovation process is

always successful, setting q = 1; and (ii) project ideas have the same payoff, y, and costs c and k.24

An entrepreneur endowed with a project-idea at time t must decide whether to implement the

innovation immediately or to delay its implementation to the next period. We assume this decision

is made simultaneously by the entrepreneurs endowed with a project-idea only after observing a

public signal which, for simplicity, we assume to be perfectly informative on νt.25

If an entrepreneur decides to innovate at time t, she must pay at that time discovery cost k

to implement the first stage of the innovation process. At t + 1, successful entrepreneurs proceed

with the second stage by sustaining cost c, paid by selling equity to investors, as described below.

Finally, project-ideas implemented at time t have at time t+ 2 a payoff y with probability p, and 0

otherwise, after which the entrepreneur exits from the economy. If a project-idea available at t is

not implemented, it is carried over at the following period, t+ 1, where she again faces the choice

of implementing the project-idea at that time, or to further delay implementation.

We model uncertainty in a way similar to the basic model. The success probability of the

second stage of a project implemented by entrepreneur n at date t is uncertain, depending again

on the value of a parameter θnt, and is equal to p (θnt) = eθnt−θM . For simplicity, we assume that

uncertainty on p is stationary and independent across time, setting θnt = θn for all (n, t).26 Thus,

at any time t, investors are uncertain over
−→
θ , and believe that

−→
θ ∈ C ≡

{
−→
θ :

∑
n∈Et

|θτ − θ∗| ≤ η
}

(16)

for some θ∗ and η ≥ 0. In this representation,
−→
θ ∗ is the vector of parameters that support the

reference probability p̂ in (4) and η is the perceived degree of uncertainty on
−→
θ .

We solve the model by examining first sub-games in which (some) entrepreneurs seek financing

at time t, because they initiated the innovation process at time t−1. In this case, uncertainty-averse

investors form at time t portfolios of uncertain assets by buying equity from available entrepreneurs.

Denote by St the set of entrepreneurs seeking financing at t, and let st ≡ |St|. Given our assumption
24Our results could be extended to the case where q < 1 but at the cost of greatly complicating the analysis.
25 It is possible, although messy, to extend the model to the case in which the public signal is noisy.
26This assumption rules out issues related to learning, which we leave for future research.
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that all innovations undertaken by an entrepreneur have a successful first-stage, St is the set of

entrepreneurs that initiated their project-ideas at time t− 1.

Similar to the basic model, each investor chooses a portfolio of the uncertain assets, {ωnt}n∈St ,

given their market valuations {Vnt}n∈St . By identical reasoning as Theorem 2, investors optimally

invest equally in all available innovations: ωnt = ωn′t for all n, n′ ∈ St and t ∈ T. Further, given

investor assessments
−→
θ at at t ∈ T, equity is priced at expected value: V a

nt = δp (θant) y for all n ∈ St.

We again interpret
−→
θ at as characterizing investor beliefs (that is, their sentiment) in the equity

market at time t. Importantly, similar to the basic model, investor assessment depends on the

number st of entrepreneurs that seek financing in the equity market at t.

Lemma 3 If an entrepreneur develops innovation alone, st = 1, investors are pessimistic:

V a
nt (1) = δp(θ∗ − η)y. (17)

If an entrepreneur develops innovation with others, st > 1, investors will be more optimistic

θant(st) = θ∗ − η

st
. (18)

Correspondingly, the market value of equity will be

V a
nt(st) = δp

(
θ∗ − η

st

)
y, (19)

where V a
nt(st) is increasing in st. If st = 0 the equity market is closed, and V a

nt = 0.

Lemma 3 shows investor beliefs at date t depends on the number of entrepreneurs, st, who

initiated the innovation process the previous period, t − 1, and are actively seeking financing.

When an entrepreneur innovates unilaterally, st = 1, investor sentiment is weak, θnt = θ∗ − η, and

the capital market values innovations conservatively, V a
n = δp(θ∗−η)y, generating a “cold market.”

In contrast, when entrepreneurs innovate together, for st > 1, from (18) assessed probabilistic

beliefs improve with the number of projects available at that time, st, leading to a “hot market.”

With a larger number of projects available, uncertainty-averse investors reduce their exposure to

the uncertainty of each individual project available at that time. Reduced exposure to project
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uncertainty, in turn, leads uncertainty-averse investors to hold more optimistic beliefs for each

project and, thus, to a hot equity market. Similarly, investor beliefs are negatively affected by the

extent of uncertainty in the economy: a greater value of η increases the total uncertainty faced by

investors, which makes them relatively more pessimistic and leads to lower equity valuations.

We can now focus on the equilibrium of the full game. We use the notion of Markov Perfect

Equilibrium from Maskin and Tirole (2001). A strategy is a Markov Strategy if and only if it

depends only on the current state of the game, which in our setting is the number of entrepreneurs

present in the economy, νt. Thus, we let the development decision of entrepreneur n be dan(νt) ∈

{0, 1}, and we focus on equilibria with symmetric pure Markov Strategies.

Payoffs for a given entrepreneur are determined as follows. If an entrepreneur develops her

project at time t, dan(νt) = 1, she expects the total number of projects available to investors to

be st = 1 +
∑

m∈Et\{n} d
a
m (νt). Let the development decisions of entrepreneurs other than n be

dan− (νt). From Lemma 3, she will sell equity in her project next period for V a
nt (st), yielding utility

at t equal to uan
(
νt, 1, d

a
n−
)

= û (st) where

û (st) ≡ δ [V a
nt (st)− c]− k. (20)

Alternatively, if the entrepreneur chooses not to develop her project at time t, dan(νt) = 0, she will

earn 0 at t but will still have the project at time t+ 1. Delaying innovation has both a cost and a

benefit. The cost of delaying the innovation is given by discount factor, δ, while the benefit is that

a new entrepreneur may arrive in the economy, which will increase the expected market value of

the equity of her company, (19). The overall utility can be represented recursively as

Uan
(
νt, d

a
n−
)
≡ max

dan∈{0,1}
{danuan (νt, 1, d

a
n−) + (1− dan) δEUan (νt+1, d

a
n−)} . (21)

Definition 2 A Markov Perfect Equilibrium is a strategy combination {da∗n (νt)}n∈Et such that each

entrepreneur maximizes (21) and investors value equity according to (17) and (19).

Given strategies of other entrepreneurs, dan−, at each point in time each entrepreneur optimally

decides whether to develop her innovation. Markov Perfect Equilibria for our game may or may not

have innovation waves, where two or more entrepreneurs are innovating at the same date.
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Theorem 4 There are values {kd, kd}, defined in the Appendix, such that:

(i) Equilibria with waves: for k ∈
(
kd, kd

)
there is a threshold ν∗ ≥ 2 such that any Markov Perfect

Equilibrium has da∗n (νt) = 0 for νt < ν∗ and da∗n (ν∗) = 1. When there are νt entrepreneurs with

project-ideas, the corresponding equilibrium payoff is

Uan (νt, d
∗
n−) =

[
δπ

1− δ (1− π)

]ν∗−νt
û (ν∗) . (22)

(ii) No-waves equilibria: for k < kd the unique Markov Perfect Equilibria has d
a∗
n (1) = 1, where

an entrepreneur starts an innovation as soon as one is available; if k > kd the innovation is not

viable and da∗n (νt) = 0, for all νt, t ≥ 0.

Innovation waves exist only for intermediate values of the initial discovery cost k. If this cost

is suffi ciently low, k < kd, entrepreneurs prefer innovating immediately rather than waiting for a

wave with better equity prices. Conversely, if the initial discovery cost is suffi ciently large, k > kd,

initiating innovation is too costly, making the innovation unprofitable.

In an innovation wave, investor beliefs, market valuations of firm equity, and innovation decisions

are all endogenous, and depend on the number of innovative firms available on the market. If too few

entrepreneurs are endowed with a project-idea, from (18), they all rationally anticipate that in the

following period investors will be pessimistic (“adverse sentiment”), and correspondingly, market

valuations will be low. This expectation of “cold equity markets” induces entrepreneurs to delay

innovation. When the number of entrepreneurs with an innovation is greater than a certain critical

mass, ν∗, entrepreneurs anticipate that, if they all innovate, investors will hold more favorable beliefs

in the following period, and, correspondingly, market valuations will be higher. The expectation of

a “hot equity market”will thus induce entrepreneurs to innovate.

Theorem 5 There is a k0 ∈
(
kd, k̄d

)
such that: (i) if k ∈ (kd, k0), there is a smallest possible

wave, ν = 2, and a largest possible wave, ν̄; (ii) if k ∈
(
k0, k̄d

)
, there is a smallest wave, ν ≥ 2,

but no largest wave; (iii) for k ∈
(
kd, k̄d

)
, in the effi cient Markov Perfect equilibrium entrepreneurs

innovate as soon as their number exceed critical mass νe ≥ ν.

When the initial discovery costs are relatively small, k ∈ (kd, k0), a wave of two entrepreneurs,

ν = 2, is viable. In this case, an entrepreneur is willing to innovate even if she anticipates that only

23



one other entrepreneur innovates as well. The largest possible wave size ν̄ is determined by the

fact that, when ν∗ is too large, the expected (discounted) payoff from waiting for a wave becomes

suffi ciently small that the entrepreneur prefers to innovate alone. When initial discovery costs

are moderate, k ∈
(
k0, k̄d

)
, an innovation is not profitable when implemented unilaterally, and it

becomes viable only if implemented in wave, even if it requires a long waiting period.27

The effi cient wave size, νe, maximizes the ex-ante payoff of entrepreneurs. A greater number

of entrepreneurs has a beneficial effect on investor beliefs, raising equity prices in the wave. How-

ever, larger waves require more time to build-up, entailing greater deferral costs. The first effect

dominates for small numbers of entrepreneurs, while the second dominates for larger waves.

Corollary 3 The following properties hold: (i) kd is decreasing in {η, π}; (ii) v is increasing in

{η, k}, and decreasing in δ; (iii) the effi cient wave, νe, is increasing in {η, k, π}.

Corollary 3 has the following implications. Entrepreneurs find it more attractive to wait for

a wave, rather than innovating immediately, when there is more uncertainty (kd decreasing in η).

Also, it is more attractive to wait for a wave when the arrival rate of the innovation, π, is larger

(kd decreasing in π), because a greater π makes the wave come faster.

Greater uncertainty leads also to a larger effi cient wave, νe. From (18), a greater value of η

makes uncertainty-averse investors relatively more pessimistic, so a greater number of entrepreneurs

is needed to improve investor beliefs suffi ciently to ignite innovation. Similarly, greater discovery

cost k requires more favorable investor beliefs, and thus greater valuations, to induce entrepreneurs

to initiate the innovation process, increasing both ν and νe. Finally, increasing arrival rate π makes

waiting for a larger critical mass more attractive, increasing νe.

Our model has the following implications for the innovation process in an economy. For low in-

novation costs, k < kd, entrepreneurs initiate the innovation process immediately. For intermediate

innovation costs, k ∈
(
kd, kd

)
, innovation activity remains latent in the economy when the number

of entrepreneurs with project-ideas is below critical mass. During this time, entrepreneurs delay

innovation, the market for entrepreneurial equity is “cold,”and dominated by investors’negative

27Point 3 of Table 1 displays the dynamic version of our numerical example with innovation waves. The minimum
wave has ν = 2, the effi cient wave has νe = 7, and equity valuations when entrepreneurs innovate alone, V ant (1) = 7.70,
and when they wait for the wave, V ant (νe) = 34.16.
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outlook. When the number of entrepreneurs with project-ideas reaches critical mass, entrepreneurs

expect a substantial improvement in investor sentiment and a “hot”equity market for innovations.

The improved expectations on the future market conditions spark an innovation wave that ripples

through the economy. In addition, Corollary 3 implies that greater uncertainty, or a greater discov-

ery cost, will lead to less frequent innovation waves, but when the wave takes place it will involve

a larger number of innovations and will be characterized by improved investor beliefs and equity

valuations. Alternatively, if we interpret η as characterizing the complexity of an industry, Corol-

lary 3 implies that less complex industries are characterized by more frequent innovation waves, of

smaller intensity, and with less ebullient equity markets. In contrast, more complex industries are

characterized by relatively less frequent innovation waves but, when they occur, they are of greater

intensity and with more ebullient equity markets.

4 Competition and Innovation

We have assumed so far that the payoff from an innovation, yτ , is not affected by the number of

successful innovators and, thus, is shielded from competition. Thus, innovators always benefit from

the presence of more innovators, because they increase the market value of their innovation due to

uncertainty hedging. Competition may mitigate our results if it decreases the value of innovation.

In this section, we explicitly consider the effect of competitive spillovers.

We modify our model as follows. We assume the payoff at t = 3 of innovation depends on the

number of entrepreneurs with successful first-stage projects: when there are s successful first-stage

project ideas, the potential payoff at time t = 3 from an innovation is (1− ξ)s−1 y, where ξ ∈ (0, 1).

The reduction of payoff captures adverse effects of competitive pressure in both the downstream

markets (i.e., competition for customers) and in the upstream markets for resources (such as for

limited financial or human capital, or other project inputs markets, including labor).28

Further, we allow for the possibility that arrival of a new project-idea can render obsolete

older project-ideas which arrived in earlier periods and have been postponed. This captures the

notion that delaying initiation of a project-idea exposes the entrepreneur to the possibility of being

leapfrogged by new emerging competitors. For tractability, we assume that with probability ε, all
28ξ < 0 would imply a beneficial network effect, a situation that we do not examine and leave for future research.
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delayed projects become obsolete, and therefore have no value. To simplify exposition, we assume

symmetry across entrepreneurs: qτ = 1, yτ = y, cτ = c, and kτ = k.

Competition affects the equilibrium of the dynamic game as follows. First, investor beliefs are

not affected by competition, because all payoffs are harmed equally by the same factor ξ. From

Lemma 3, entrepreneurs with successful first-stage projects sell them to external investors for

V ac
nt (s) = δp

(
θ∗ − η

s

)
(1− ξ)s−1 y. (23)

We will again focus on Markov Perfect Equilibria with innovation waves.

Theorem 6 There are thresholds {kcd (ξ, ε) , k̄cd (ξ) , ξ(ε)}, such that:

(i) weak competition: if ξ < ξ(ε), and k ∈
(
kcd (ξ, ε) , k̄cd (ξ)

)
, the Markov Perfect Equilibrium has

da∗n (νt) = 0 for ν < νc∗ and da∗n (νc∗) = 1, where νc∗ ≥ 2. The effi cient Markov Perfect equilibrium

has entrepreneurs innovating as soon as their number exceed the critical mass νe (ξ, ε);

(ii) strong competition: if ξ ≥ ξ(ε), then kcd (ξ, ε) = k̄cd (ξ) and entrepreneurs innovate immediately

or not at all: there are no waves;

(iii) If k < kcd (ξ, ε), the unique Markov Perfect Equilibria has da∗n (1) = 1: entrepreneurs start

the innovation process as soon as one is available. If k > k
c
d (ξ), the innovation is not viable and

da∗n (νt) = 0, for all νt, t ≥ 0.

The threshold kcd (ξ, ε) is increasing in ξ and ε, with ∂2kcd
∂ξ∂η < 0, while ξ(ε) is decreasing in ε.

Competitive pressure reduces the benefits of innovation waves, making waves overall relatively

less attractive. When competition is relatively weak, ξ < ξ, and the initial discovery cost, k, is

moderate, waiting for a wave is optimal for an entrepreneur. When competition is severe, ξ ≥ ξ,

kcd (ξ) = k̄d (ξ). Thus, when the initial discovery cost is suffi ciently low, k < kcd (ξ), an entrepreneur

starts the innovation process only if she is the only innovator, ν = 1, and no wave will occur. In this

case, an entrepreneur with an innovation prefers to preempt potential competition by initiating the

innovation process immediately and, thus, to become effectively a (temporary) monopolist. This

incentive to innovate alone, however, is mitigated by the presence of uncertainty. Indeed, if η = 0,

we have ξ = 0, and entrepreneurs strictly prefer innovating alone. Finally, an increase in the

obsolescence probability, ε, makes waiting for innovation waves less desirable.
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Competition affects both the size of effi cient innovation waves, νe, and innovation rates. Let T e

be the expected time between effi cient innovation waves, and define rate of innovation

Re ≡ νe

T e
. (24)

where Re represents the long-term average innovation rate per unit of time.

Corollary 4 The effi cient wave, νe (ξ, ε), is U-shaped function of ξ, and the innovation rate Re is

a inverse U-shaped function of ξ. An increase of ε decreases νe.

The number of entrepreneurs (and thus competitors) has now two opposing effects on the value of

innovation in a wave. As in the basic model, the presence of more innovating firms improves investor

beliefs, with a positive effect on equity valuations. The sentiment effect, however, is dampened by

the negative effect of competition on the final payoff from the innovation, with an adverse effect on

equity valuations. The competition effect dominates when competition is relatively less severe (low

ξ), making smaller waves more desirable. When competition becomes suffi ciently severe, high ξ,

the sentiment effect once again dominates, because a larger wave is necessary to make innovation

feasible, leading to a U-shaped relation between wave size and competition. Correspondingly,

larger innovation waves require more time to build up, lowering per-period innovation rates, thus

generating an inverse U-shaped function (of innovation rates R with respect to competition, ξ).29

5 Innovation and Acquisitions

Innovation is inherently a dynamic process, where firms can make additional investments that

increase the final payoff from their innovations. In this section, we allow entrepreneurs to change

their investment in the second stage of the innovation process, cτ , and thus affect the final project

payoff, yτ . We interpret this choice as the determination of the intensity, or scale, of the innovation

process. Innovation intensity reflects, for example, the level of R&D expenditures committed to the

innovation which affect the ultimate value of the innovation.
29Point 4 of Table 1 displays the dynamic version of our numerical example with innovation waves and competition.

Competitive pressure reduces the effi cient wave to νc∗ = 4 and the corresponding on the wave equity valuations,
V ant (νc∗) = 20.67. The table also displays the expecetd time between effcient waves waves, T e, and the corresponding
innovation rate, Re.
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The possibility of making investments affecting the level of yτ creates a new externality to the

one discussed in Section 2. The additional externality is that, from (12), the market value of an

individual firm, V a
τ , is increasing in the payoffs of both firms, {yτ , yτ ′}. If firms choose their level of

innovation intensity individually, they ignore the impact of their choice on the other firm’s valuation

through investor beliefs. This externality creates strategic complementarity between the choices of

innovation intensity, yτ , triggering the possibility of value-increasing mergers.

5.1 The Choice of Innovation Intensity

We modify our basic model as follows. If the first stage is successful, at t = 2, and before the sale of

equity to outside investors, the entrepreneur decides the level of intensity of the innovation process,

yτ . We assume again that the payoff from innovation is not affected by potential competition

among entrepreneurs (which is not our main concern in this section), so we set ξ = 0. Innovation

intensity is costly: entrepreneur τ implementing yτ sustains cost cτ (yτ ) = 1
Zτ (1+γ)

y1+γτ , where Zτ

represents the productivity of entrepreneur τ’s project-idea, and γ > 0 determines the convexity of

its cost structure. We assume both innovation intensity yτ and related costs cτ (yτ ) are contractible,

eliminating moral hazard concerns (which are not the focus of our paper).

In the benchmark case, where investors are uncertainty neutral, investors value new innovation

at Vτ ≡ p (θ∗) yτ , which implies optimal innovation intensity of y∗τ ≡ [p (θ∗)Zτ ]
1
γ . Similar to the

discussion in Section 2, both entrepreneurs decide whether or not to innovate independently, with

no role for the other entrepreneur’s characteristics, either ex-ante or ex-post.

When investors are uncertainty averse, the choice of innovation intensity depends on the degree

of investor sentiment. To simplify the exposition, we make the following regularity assumption:

A1: η > 2 ln (2) and
Zτ
Zτ ′
∈
(

1

ψ
,ψ

)
, where ψ =

[
1

4
eη
]γ+1

> 1, (25)

which guarantees θaτ (Π) = θ̃
a
τ (Π) in Lemma 2 and existence of pure-strategy equilibria. Assumption

A1 is satisfied when there is suffi cient degree of uncertainty and the two firms are not too dissimilar.

We start with the case where only one entrepreneur is successful, while the other has either

failed or not attempted first-stage innovation, state SF . The entrepreneur chooses the level of

innovation intensity, yτ , anticipating that investors will value equity under the worst case scenario,
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p (θ∗ − η). Substituting firm value from Theorem 2, the entrepreneur solves

max
yτ

Ua,SFτ ≡ p (θ∗ − η) yτ −
1

(1 + γ)Zτ
y1+γτ . (26)

The entrepreneur chooses a level of innovation intensity that reflects negative market sentiment:

ya,SFτ ≡ [p (θ∗ − η)Zτ ]
1
γ < y∗nτ . (27)

The market value of her firm and her corresponding continuation utility are

V a,SF
τ ≡ [p (θ∗ − η)]

1+γ
γ Z

1
γ
τ and Ua,SFτ = V a,SF

τ

γ

1 + γ
. (28)

More interesting is the case when both first-stage projects are successful, state SS, and

Ua,SSτ ≡ V a,SS
τ (yτ , yτ ′)− cτ (yτ ) = p(θaτ )yτ −

1

Zτ (1 + γ)
y1+γτ , (29)

where V a,SS
τ is from (12) in Theorem 2, given payoffs {yτ , yτ ′}. The choice of innovation intensity

by entrepreneur τ is now determined by three factors. The first two factors are the direct impact

of innovation intensity on firm value, for given beliefs, and its impact on cost, c(yτ ); these factors

are in common with the entrepreneur maximization problem in the SF state, (26). Uncertainty

aversion introduces a third factor: increasing the innovation intensity, yτ , induces investors to be

more pessimistic about the ultimate success probability for that firm, p(θaτ ), decreasing its value,

V a,SS
τ , with an adverse effect on expected payoff of the innovation. The subgame-perfect Nash

Equilibrium is characterized in the following.

Theorem 7 If both entrepreneurs have a successful first-stage project-idea (state SS), they select

innovation intensity according to

Y a,SS
τ (yτ ′) =

[
1

2
p
(
θ∗ − η

2

)
Zτ (yτ ′)

1/2

] 1

γ+ 1
2 , with τ 6= τ ′, and τ , τ ′ ∈ {A,B}; (30)

which is increasing in the other entrepreneurs’s innovation intensity, yτ ′. The subgame-perfect
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Nash Equilibrium innovation intensities for the sub-game are

ya,SSτ =

[
1

2
p
(
θ∗ − η

2

)
Zχτ Z

1−χ
τ ′

] 1
γ

, (31)

where χ ≡ 2γ+1
2(1+γ) . The equilibrium market value, V a,SS

τ , of the entrepreneurial firms and the

corresponding continuation utility are, respectively,

V a,SS
τ =

1

2γ

[
p
(
θ∗ − η

2

)] 1+γ
γ

(ZτZτ ′)
1

2γ and Ua,SSτ = χV a,SS
τ . (32)

As shown in Section 2, investors treat the innovative projects as complements, leading to a strategic

complementarity between the choices of innovation intensity levels, yτ . In addition, more favorable

investors’beliefs lead to greater equity market valuations and higher levels of innovation intensity

by both entrepreneurs as established in the following corollary.

Corollary 5 If both entrepreneurs are successful, they implement more innovation, ya,SSτ > ya,SFτ ,

receive higher valuations, V a,SS
τ > V a,SF

τ , and are better off, Ua,SSτ > Ua,SFτ .

5.2 Mergers and Synergies

Different from the basic model, if both entrepreneurs are successful in the first stage, state SS,

at the interim date, t = 2, they now have the option to merge. After the merger, they jointly

determine the innovation intensity, yτ , for both innovation processes τ ∈ {A,B}, and then the

merged firm sells its equity in the public equity market.

After the merger, the new firm maximizes the combined value of the innovation projects. By

reasoning from Theorem 2, the merged firm values projects at Vτ = p (θmτ ) yτ , for τ ∈ {A,B}, where

θmτ is the investors’assessment when the merged firm is sold. Thus, the merged firm’s objective is

Um ≡ p (θmA ) yA + p (θmB ) yB − cA (yA)− cB (yB) .

If investors are uncertainty neutral, θmτ = θ∗, then the choice of yA and yB are again independent:

the merged firm solves the same problem as the original entrepreneurs, leading to the same optimal

levels of innovation intensity and Um = UA + UB. Thus, the merger does not add value.
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If investors are uncertainty averse,
−→
θ m =

−→
θ a from (9), which depends on both yA and yB. As

in Theorem 2, VA = VB = p
(
θ∗ − η

2

)
y

1
2
Ay

1
2
B. The maximization problem of the merged firm becomes

Ua,m = 2p
(
θ∗ − η

2

)
y

1
2
Ay

1
2
B −

1

ZA (1 + γ)
y1+γA − 1

ZB (1 + γ)
y1+γB .

Theorem 8 When both entrepreneurs are successful, they merge and implement greater innovation

intensity, ya,mτ ≡
[
p
(
θ∗ − η

2

)
Zχτ Z

1−χ
τ ′

] 1
γ
> ya,SSτ . The merger adds value:

V a,m = 2
[
p
(
θ∗ − η

2

)] γ+1
γ

[ZAZB]
1

2γ > V a,SS
A + V a,SS

B .

Theorem 8 shows mergers add value to the innovative process. By merging, the joint firm chooses

innovation intensities greater than those that the two entrepreneurs would choose individually. Be-

cause of the positive externality between investment levels, yτ , ineffi ciently low levels of investment

occur when each entrepreneur maximizes her own payoff. By merging, the post-acquisition firm

internalizes the positive spillover effects of investment, leading to greater innovation and firm value.

Theorem 8 shows synergies are endogenous, and generated by this valuation externality.

We now examine the impact of mergers at the interim date, t = 2, on the entrepreneurs’ex-

ante incentives to innovate. The initial innovation decision depends on expectations of merger

terms. The acquisition price depends on allocation of the surplus between the two entrepreneurs.

Allocation of the synergies created in the merger occurs through bargaining, and we assume the

two entrepreneurs will split the surplus equally.30 Thus, if both innovations are successful in the

first stage, entrepreneur τ earns Υa,m
τ = Ua,SSτ + 1

2

(
Ua,m − Ua,SSA − Ua,SSB

)
.

Theorem 9 There are thresholds
{
ka,mτ , k̄a,mτ

}
(defined in the Appendix) with ka,mτ < k̄a,mτ , such

that: (i) for low levels of discover cost, kτ ≤ ka,mτ , an entrepreneur always innovates, daτ = 1; (ii)

for high levels of discovery cost, kτ ≥ k̄a,mτ , an entrepreneur never innovates, daτ = 0; (iii) for

intermediate levels of the discovery cost, kτ ∈
(
ka,mτ , k̄a,mτ

)
, an entrepreneur innovates only if the

other entrepreneur innovates as well, daτ = daτ ′. If both entrepreneurs have intermediate levels of

discovery costs, there are two subgame perfect equilibria, one where both entrepreneurs innovate,

daA = daB = 1, and one where neither innovate, daA = daB = 0. The innovation equilibrium Pareto-

30 It is easy to see that this surplus allocation will be the same as the one obtained through Shapley Values.
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dominates the no-innovation equilibrium. Finally ka,mτ = kaτ < k̄aτ < k̄a,mτ : the possibility of a

merger induces entrepreneurs to innovate more ex ante.

Theorems 8 and 9 show an active M&A market promotes innovative activity and leads to

greater innovation rates, improved investor beliefs, and higher firm valuations. Synergies created

are a direct consequence of endogenous investor beliefs due to uncertainty aversion. A merger

allows entrepreneurs to internalize the positive impact that the choice of the innovation intensity

in one innovation has on other innovations, and leads to greater innovation rates. Thus, the merger

of innovations endogenously promotes stronger investor sentiment leading to greater valuations.31

6 Empirical Implications

We propose a parsimonious theory of innovation waves and investor sentiment based on uncertainty

aversion. Our model leads to several novel empirical implications.

1. Innovation waves localized in specific (technological) sectors. Strategic complementarity

between entrepreneurs’innovation decisions creates the possibility of innovation waves. Arrival of

innovation opportunities (i.e. project-ideas) in the economy may depend on classic “fundamentals”

such as random technological advances in certain sectors, such as Information Technologies or

Life Sciences. Our paper suggests that such technological advances, while necessary, may not be

suffi cient to start a wave. Rather, an innovation wave occurs when a critical mass of potential

innovators is attained which will spur a “hot”market for innovative companies.

Our model can be applied more broadly to spillovers across industries. Specifically, an innovation

wave may start in one “sector”and then spill over to other unrelated “sectors.”32 This can happen,

for example, when a positive shock to entrepreneurs in one sector lowers their discovery cost from a

high level, kτ > k̄τ , to a low level, kτ < kτ , while the other entrepreneur faces a moderate discovery

cost, kτ ′ ∈
(
kτ ′ , k̄τ ′

)
, τ 6= τ ′. If the discovery costs of the first set of entrepreneurs decrease to

a low level, kτ < kτ , it now becomes optimal for them to initiate the innovation process. This

decision makes it profitable for other entrepreneurs to innovate as well, in anticipation of higher

31Point 5 of Table 1 displays the case with acquisitions. The possibility of an acquisition raises the optimal
innovation intensity, ya,m, with respect to autonomy, ya,SS , leading to greater equity valuations (V a,mτ > V a,SSτ ).
32For example, a positive technological shock to LinkedIn may boost Uber, even if no direct link is present.
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equity prices. Note that the spillover across sectors works through an “equity valuation”channel

driven by more favorable investor beliefs, rather than a pure technological channel. Similar results

hold for the productivity of innovation, Zτ , and the probability of success, qτ .

2. Investor sentiment, hot IPO markets, and equity returns. Cyclical “hot and cold”markets for

IPOs have been documented in the literature, and they largely remain a puzzle (see, for example,

Ritter and Welch, 2002). Lee, Shleifer, and Thaler (1991) document a greater volume of IPOs

in periods of strong investor sentiment. Lowry (2003) finds “hot” IPO markets are associated

with strong investor sentiment and high demand for capital by firms. Helwege and Liang (2004)

document hot and cold IPOs are largely concentrated in the same narrow set of industries and reflect

greater investor optimism. In our model, the market value of an entrepreneur’s firm is increasing

in the number of successful firms in the market and on their demand for external capital, because

uncertainty-averse investors are more optimistic when they can invest in the equity of a larger set

of new firms, leading to higher equity valuations. Innovation waves are associated with improved

investor sentiment toward innovations and with booms in the equity of technology firms, which are

then followed by lower stock returns. Thus, our model can explain the relationship between IPO

volume, stock market valuations, and the subsequent lower returns documented in the literature.

Our paper can also help explain the observed negative relationship between capital investments

and subsequent negative equity returns, especially for small firms (Lamont, 2000, Titman et al.,

2004, and Cooper et al., 2008). In our model, the negative association between investment and stock

returns is not driven by time-varying risk premia, but rather by changes of future expected cash flow

due to a change in investor sentiment. Eberhart et al. (2005), Hirschleifer et al. (2013), in contrast,

find a positive relation between firm-level innovation and future equity returns, and suggest investors

are slow in recognizing the full benefits of innovation. Similar patterns are observed in Kumar and

Li (2016), who suggest investments in innovative capacity create new investment opportunities (i.e.,

real options), increasing firm risk profile and, thus, discount rates. Our paper predicts the negative

association between capital investments and subsequent equity returns should be stronger during

innovation waves within an industry. This means the relation between investment in innovation and

future equity returns should differ when on or off the wave. This is a novel and testable prediction.

3. Venture capitalists portfolios and innovation rates. An additional implication of our model is
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a new role for VCs and the formation of their portfolios. By investing in firms in the same industry,

as opposed to diversifying in unrelated industries as prescribed by traditional risk aversion, VCs

can increase the benefits of uncertainty hedging and offer relatively better terms to entrepreneurs.33

Thus, entrepreneurs in more uncertain industries should seek financing from focused VCs (whereby

the uncertainty-hedging effect dominates), while entrepreneurs in less uncertain industries should

seek financing from generalist VCs (whereby the risk diversification effect dominates). In addition,

high level of uncertainty, by promoting focused portfolio, promotes (and rewards) investment in

sector-specific human capital by VCs. This is a new and testable implication.

Our model identifies an additional role for VCs: improving coordination across entrepreneurs.

If discovery costs fall in the intermediate range, kτ ∈
(
kτ , k̄τ

)
, entrepreneurs face an “assurance

game:” each entrepreneur will be willing to incur the discovery cost and innovate only if she is

assured other entrepreneurs will also do the same. Lacking such assurance, entrepreneurs may be

confined to the ineffi cient equilibrium with no innovation. In this setting, a VC may play a positive

role by addressing the coordination failure among entrepreneurs. By investing in several technology

firms in the same industry, the VC can help coordination among entrepreneurs, leading to greater

innovation rates.34 The innovation cycle discussed in this paper can also generate a VC cycle:

periods characterized by strong investor sentiment and a hot IPO market will also be associated

with strong VC fundraising and commitment activity, as documented in Gompers et al. (2008).

4. Innovation and competition. Our model suggests competition has two effects on innovation

activity in an economy. First, greater competition makes it less attractive for an entrepreneur

to wait for a wave, thus accelerating the innovation process. Second, the presence of competing

innovators has a beneficial effect of investors’beliefs (due to uncertainty hedging), with a positive

effect on equity prices (all else equal). This implies the impact of competition on the incentive

to innovate depends on both the extent of uncertainty and the strength of competition. For low

levels of competition, innovation decisions are strategic complements and entrepreneurs benefit from

waiting to innovate in order to join a wave. In contrast, for high levels of competition, innovation

33Zider (1998) argues that a primary strategy for VCs is to focus on promising industries, as opposed to just
investing in promising firms. Kolarich (2019) suggests that investing in a small concentrated portfolio, a strategy
known has “conviction investing,” better positions a VC for large gains (i.e., finding a “unicorn”). The advantages
and disadvantages for a VC investing in diversified portfolios are further discussed in Gery (2018).
34A positive impact of VC financing on innovation has been documented in Kortum and Lerner (2000) and Hellmann

and Puri (2000) among others (see Da Rin, Hellmann and Puri, 2013, for a extensive survey).

34



decisions are strategic substitutes and entrepreneurs innovate immediately to limit the adverse

impact of competition. The negative effect of competition on innovation waves is dampened by the

presence of uncertainty: competition accelerates innovation in mature industries, characterized by

relatively low uncertainty, but promotes innovation waves in new industries characterized by high

uncertainty. These properties leads to the following empirical implications. First, we find an inverse

U-Shaped relationship between competition and innovation rates, a feature consistent with existing

empirical literature (e.g., Aghion et al., 2005). Second, and more interestingly, we show that the

relation between competition and the size of innovation waves is a U-shaped function, especially in

industries characterized by greater uncertainty. These are new and testable implications.

5. Innovation, investor sentiment, and merger activity. Our paper presents a new channel

in which merger activity can generate synergies and spur innovation. Synergistic gains are the

outcome of the beneficial spillover effect of a merger on the expected value of the innovation. In

the post-merger firm, innovators choose greater innovation rates. Our model also predicts merger

activity involving innovative firms will be associated with strong investor sentiment and greater

valuations. These results are consistent with Bena and Li (2014): synergies obtained in combining

innovation capabilities are important drivers of acquisitions, with an overall positive impact on

innovation rates. A positive relation between merger waves and strong market valuations has

been documented in several empirical studies, such as Shleifer and Vishny (2003), Rhodes—Kropf,

Robinson and Viswanathan (2005), Dong et al. (2006), and Rosen (2006), among others.

6. Incubators. Our model also provides a new motivation for technological incubators. Incuba-

tors allow entrepreneurs to meet each other, and coordinate innovation decisions. Our model made

the standard assumption of full information, but this may not hold in practice. In an incubator, en-

trepreneurs can meet each other, perhaps overcoming coordination failure. This implies incubators

will be particularly valuable in industries surrounded by great uncertainty, a novel prediction.

7 Conclusion and Future Research

In this paper, we show uncertainty aversion generates endogenous investor beliefs (or sentiment),

resulting in innovation waves. Because of uncertainty hedging, investors treat different uncertain
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investments as complements, creating strategic complementarity in entrepreneurial behavior that

results in innovation waves. Our model can explain why there are some periods when investment

in innovation is “hot,”and investors are more willing to invest in risky investment projects tainted

by significant uncertainty.

In our model, we make several simplifying assumptions to facilitate analysis. Explicit examina-

tion of models relaxing such assumptions is, however, beyond the scope of this paper. Thus, our

paper could be extended in several important dimensions.

First, we develop our model under the simplifying assumptions that entrepreneurs are risk

and uncertainty neutral. Entrepreneurial uncertainty and risk aversion can be introduced in the

analysis at the cost of adding additional complexities which would not change the nature of our

results. First, entrepreneurial uncertainty aversion will have only a negligible impact on our model

because entrepreneurs are exposed uniquely to the uncertainty of their own firms. This means

that entrepreneurs would use their “worst-case” scenario to assess the success probability of the

innovation’s first stage, leaving our results unchanged. In contrast, risk-averse entrepreneurs will be

concerned with the risk they face in their innovations, and they will require again a risk premium

to initiate the innovation process. Interestingly, risk aversion of entrepreneurs amplifies the effect of

investor uncertainty aversion. Risk-averse entrepreneurs will also be concerned about the likelihood

that other entrepreneurs are successful, since the presence of other entrepreneurs will affect the

market value of their firms at the interim date, given investors’uncertainty aversion. This channel

would complement the one we analyze in this paper, which is centered on investors.

Second, in our paper it is quite useful that the core belief setM is strictly convex with a smooth

boundary. Although this assumption greatly simplifies the analysis, it is not critical for our results.

The main results of our paper depend only on the benefits of uncertainty hedging, a feature at the

very heart of uncertainty aversion. By holding ambiguous assets in a portfolio, uncertainty hedging

offers an uncertainty-averse investor an advantage analogous to the benefits of risk diversification

in standard portfolio theory. In our context, loosely speaking, the benefits of uncertainty hedging

are lost either when the worst-case probability for each investment in problem (2) can be taken

on a case-by-case basis, independently from investor’s overall portfolio composition (which would

happen, for example, in the case of “rectangular”core-beliefs sets), or when there is a single source
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of uncertainty affecting all assets. This extreme situation is analogous to the loss of the benefits of

diversification when assets are perfectly positively correlated in traditional portfolio theory.

Note that in our paper, for generality, we take the core-beliefs set of investors as a representation

of their primitive preferences. The core-beliefs set, however, could be obtained as the outcome of

a “micro-foundation” that builds directly on investors’ uncertainty on economic fundamentals.

In Appendix B, we present a model specification that generates qualitatively identical results,

where the source of uncertainty is consumer demand (formally, the proportion of consumers that

exhibit a relatively stronger preference for each good). This specification generates sector-specific

innovation waves as described in our paper. Detailed analysis of technological and economic drivers

of uncertainty is an important and very promising avenue of future research.

Finally, an important feature we deliberately ignore are the effects of learning. Learning about

either technologies or the economic environment is clearly a key component of the innovation

process. Our model suggests that, due to the complementarity we identify, learning in one project

(or sector) may have important spillover effects in other projects (or sectors). Also, learning may

impact the extent of uncertainty present in the economy, affecting valuations, project investments,

and investor predispostion toward innovation. We leave these considerations to future research.
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A Appendix: Proofs

Proof of Lemma 1. Let x = {xA, xB} be indicator variables for success of type A and B assets: x ∈ {0, 1}2. If
the probability of success is p = {pA, pB} the probability of x is pxAA pxBB (1− pA)1−xA (1− pB)1−xB . Thus,

R (p|p̂) =
∑

x∈{0,1}2
pxAA pxBB (1− pA)1−xA (1− pB)1−xB ln

pxAA pxBB (1− pA)1−xA (1− pB)1−xB

p̂xAA p̂xBB (1− p̂A)1−xA (1− p̂B)1−xB
.

Because the log of a product is the sum of the logs, and probabilities sum to one, R (p|p̂) = R (pA|p̂A) + R (pB |p̂B),

where R (pτ |p̂τ ) = pτ ln pτ
p̂τ

+ (1− pτ ) ln 1−pτ
1−p̂τ . Because

∂2R
∂p2τ

= 1
pτ

+ 1
1−pτ , R (pτ |p̂τ ) is strictly convex in pτ . Thus,

R (p|p̂) is strictly convex in p = {pA, pB}. Also, limpτ→0+ R (pτ |p̂τ ) = ln 1
1−p̂τ and limpτ→1− R (pτ |p̂τ ) = ln 1

p̂τ
. Define

η̃0 (p̂) = minχ∈Q ln 1
χ
, where Q = {p̂A, 1− p̂A, p̂B , 1− p̂B}. Therefore, if η̃ < η̃0 (p̂), M, as the lower level set of a

strictly convex function, is strictly convex. Note this generalizes: Theorem 2.5.3 of Cover and Thomas (2006) shows

relative entropy is additively separable in independent variables, and Theorem 2.7.2 shows it is strictly convex.

Suppose an investor receives yA if xA = 1 and yB if xB = 1, both strictly positive. R achieves a minimum

of zero at p = p̂. Because R is strictly convex in p, ∂R
∂pτ

< 0 for pτ < p̂τ and ∂R
∂pτ

> 0 for pτ > p̂τ . The worst-

case scenario solves min {pAyA + pByB} subject to R (p|p̂) ≤ η̃. Let λ be the multiplier and L be the Lagrangian:

L = − (pAyA + pByB) − λ (R (p|p̂)− η̃), so dL
dpτ

= −yτ − λ ∂R
∂pτ

. Because yτ > 0, dL
dpτ

= 0 requires λ ∂R
∂pτ

< 0, λ > 0

and ∂R
∂pτ

< 0, so pτ < p̂τ . If the investor has strictly positive exposure to only one innovation, yτ > 0 but yτ ′ = 0,

the worst-case scenario solves R (pτ |p̂τ ) = η̃ for pτ < p̂τ , and pτ ′ = p̂τ ′ . If yA = yB = 0, claim holds WLOG.

Proof of Lemma 2. U (Π) = minu (θ; Π) s.t.
∑
|θτ − θ∗| ≤ η. If ωτyτ > 0 = ωτ ′yτ ′ , ∂u

∂θτ
> 0 = ∂u

∂θτ′
,

so θτ = θ∗ − η and θτ ′ = θ∗. If ωτyτ , ωτ ′yτ ′ > 0, let λ be the multiplier and L be the Lagrangian: ∂L
∂θτ

=

−eθτ−θMωτyτ − λsign (θτ − θ∗). Because ωτyτ > 0 and λ ≥ 0, θτ ≤ θ∗. Because u is strictly convex in θ, FOCs are
suffi cient for a minimum. Because λ > 0, the constraint binds; substituting into ∂L

∂θτ
|θτ=θ̌τ

= 0 yields (8). Thus, if

θ̌
a
τ (Π) ∈ [θ∗ − η, θ∗], θaτ = θ̌

a
τ . If θ̌

a
τ < θ∗ − η, ∂L

∂θτ
< 0 for θτ ∈ [θ∗ − η, θ∗], so θaτ = θ∗ − η. If θ̌aτ > θ∗, ∂L

∂θτ
> 0 for

θτ ∈ [θ∗ − η, θ∗], so θaτ = θ∗. Therefore, (9) is the worst-case scenario.
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Proof of Theorem 2. Each investor’s objective is U (Π) = minθ∈C u (θ; Π), where u is from (6). Thus, dU
dωτ

=
∂u
∂ωτ

+ ∂u
∂θA

dθA
dωτ

+ ∂u
∂θB

dθB
dωτ

. If investors are uncertainty-neutral, the last two terms disappear (θτ is constant). If

uncertainty averse,
−→
θ a solves the minimization problem. For interior solutions, by Lemma 2, ∂u

∂θA
= ∂u

∂θB
= λ, so the

last two terms sum to λ ∂(θA+θB)
∂ωτ

= 0 because θA + θB = 2θ∗ − η is constant. For corner solutions, ∂θA
∂ωτ

= ∂θB
∂ωτ

= 0.

Therefore, dU
dωτ

= ∂u
∂ωτ

= p (θaτ ) yτ − Vτ : market clearing implies Vτ = p (θaτ ) yτ , and all investors have the same θaτ .

By Lemma 2, ωA
ωB

is constant across investors. Because yτ
yτ′
∈
(
e−η, eη

)
, prices follow by substitution.

Proof of Corollary 1. yτ ∈
(
e−ηyτ ′ , e

ηyτ
)
, so V a,SSτ = p

(
θ∗ − η

2

)
y
1
2
τ y

1
2
τ ′ > p (θ∗ − η) yτ = V a,SFτ : an entrepreneur

sells innovation for more when the other innovation is available.35 Uτ = Vτ − cτ , so claim on utility follows.

Proof of Theorem 3. EUa,Iτ ≥ 0 iff kτ ≤ k̄aτ ≡ qτqτ ′Ua,SSτ + qτ (1− qτ ′)Ua,SFτ , and EUa,Nτ ≥ 0 iff kτ ≤ kaτ ≡
qτUa,SFτ . Ua,SSτ > Ua,SFτ , so kaτ < k̄aτ . If kτ ∈

[
kaτ , k̄

a
τ

]
for both entrepreneurs, both equilibria exist. If daA = daB = 0,

entrepreneurs earn zero. If daA = daB = 1, entrepreneurs earn EUa,Iτ ≥ 0 (strict inequality if kτ < k̄aτ ). Firms are

priced so investors are indifferent, so innovation equilibrium dominates the other.

Proof of Corollary 2. Comparative statics follow from inspection of kaτ and k̄
a
τ , and because Ua,SSτ is increasing

in yτ and yτ ′ , Ua,SFτ is increasing in yτ , and Ua,SSτ > Ua,SFτ .

Proof of Lemma 3. At t − 1, entrepreneurs in St chose to implement their project-ideas and had a successful

first-stage innovation. Only implemented projects can be traded, so investors choose portfolio weights {ωn}n∈St to
maximize their minimum expected payoff, min−→

θ ∈C u
(−→
θ
)
, where u

(−→
θ
)

=
∑
n∈St ωn [δpn (θnt) yn − Vn] + ω0. By

identical proof to Theorem 2, in equilibrium, ωn = 1 for all n ∈ St and Vn = δpn (θant) yn. Recall that
−→
θ ∈ C iff∑

n∈St |θn − θ
∗| ≤ η. Let L be the Lagrangian function for the minimization problem and let λ be the multiplier for

the sum. Thus, ∂L
∂θnt

= −eθnt−θM yn − λsign (θnt − θ∗) . For all n ∈ St, yn = y > 0, so by complementary slackness,

λ ≥ 0, and thus θnt < θ∗. ∂L
∂θnt

= 0 iff eθnt−θM yn = λ, so θnt is constant for all n ∈ St: θnt = θ∗ − η
st
, because

st = |St|.36 Market valuation is increasing in st because θant is increasing in st.
Proof of Theorem 4. We consider Markov Perfect Equilibria with symmetric pure strategies. The state space is

the number of entrepreneurs with projects, the action space is to develop or not, dn (νt) ∈ {0, 1}, the payoff solves
(21). The transition probability is as follows: let Dt =

∑
n∈Et dn (νt). Because Dt projects are developed at time

t, and a new project arrives with probability π, P (νt+1 = νt −Dt + 1) = π and P (νt+1 = νt −Dt) = 1 − π. The
discount factor is δ ∈ (0, 1) and, for simplicity, we assume that the initial state is ν0 = 0.

If s entrepreneurs develop, they each earn û (s) = δ2p
(
θ∗ − η

s

)
y − δc− k, increasing in s. To have innovation in

equilibrium, û (s) > 0 for equilibrium s, so lims→∞ û (s) > 0,37 or equivalently, k < k̄d ≡ δ2p (θ∗) y − δc (if k > k̄d,

innovation is not profitable and never occurs). If each entrepreneur develops her innovation immediately upon discov-

ering it, she earns utility û (1). Note û (1) ≤ 0 iff k ≥ k0 ≡ δ2p (θ∗ − η) y − δc. Define ν0 ≡ min {s|û (s) > 0, s ∈ N}.
Suppose an entrepreneur believes other entrepreneurs develop according to d∗n (ν), for ν ∈ N. Because d∗n ∈ {0, 1},

let ν∗ ≡ inf {ν ∈ N|d∗n− (ν) = 1}. Entrepreneurs can forgo innovation, earning 0, so û (ν∗) > 0, so ν∗ ≥ ν0. We

solve (21) assuming the entrepreneur also plays d∗n, then verify d
∗
n is optimal. Because ν > ν∗ is off-equilibrium,

Uan
(
ν, d∗n−

)
is undefined for ν > ν∗. Everyone develops when νt = ν∗, so Uan

(
ν∗, d∗n−

)
= û (ν∗). For νt < ν∗, d∗n = 0,

so Uan
(
νt, d

∗
n−
)

= δEUan
(
νt+1, d

∗
n−
)
and EUan

(
νt+1, d

∗
n−
)

= πUan
(
νt + 1, d∗n−

)
+ (1− π)Uan

(
νt, d

∗
n−
)
, which implies

Uan
(
νt, d

∗
n−
)

= δπ
1−δ(1−π)

Uan
(
νt + 1, d∗n−

)
. Because this holds for all νt < ν∗, Uan

(
νt, d

∗
n−
)

=
[

δπ
1−δ(1−π)

]ν∗−νt
û (ν∗).

We must show innovating is optimal when νt = ν∗, and waiting optimal when νt < ν∗. Because û (ν∗) > 0 and
δπ

1−δ(1−π)
< 1, Uan

(
νt, d

∗
n−
)
is positive and increasing in νt. When everyone else innovate, νt = ν∗, if an entrepreneur

sets d = 0, her expected utility is Uan
(
1, d∗n−

)
< Uan (ν∗, d∗n−), so she innovates as well. Also, entrepreneurs must not

35Note the result follows weakly even without restrictions on yτ
yτ′
: if yτ ≥ eηyτ ′ , V

a,SS
τ = V a,SFτ , while if yτ <

e−ηyτ ′ , V
a,SS
τ = eθ

∗−θM yτ > V a,SFτ .
36By identical argument, undeveloped projects are not traded this period, so investors treat those projects as if

yn = 0. Thus, investors will assess any undeveloped or untraded project with θnt = θ∗.
37 û (s) is increasing in s and bounded, lims→+∞ û (s) = δ2eθ

∗−θM y − δc − k < +∞, so the entrepreneur will not
hold a project indefinitely in hopes of earning an infinite payoff.
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prefer to innovate immediately. Because Uan is increasing in νt, it is suffi cient that the first entrepreneur prefers to wait:
û (1) ≤ Uan

(
1, d∗n−

)
. Define Υ (ν∗) = Uan

(
1, d∗n−

)
: Υ′

Υ
= ln

(
δπ

1−δ(1−π)

)
+

δV ant(ν
∗)

δV ant(ν
∗)−δc−k

η

(ν∗)2
. Because û (ν∗) > 0, the

second term is the product of two decreasing functions; ln
(

δπ
1−δ(1−π)

)
< 0 does not depend on ν∗. Thus, if Υ > 0,

Υ′ > 0 for ν < ν̂ and Υ′ < 0 for ν > ν̂, for some ν̂. Because lims→∞ û (s) is positive and finite, limν∗→∞Υ (ν∗) = 0.

Therefore, if û (1) ≤ 0, the set of equilibria are all waves ν∗ ≥ ν ≡ min {s|û (s) > 0, s ∈ N}.38 In contrast, if û (1) > 0,

equilibria waves are ν∗ ∈ [ν, ν̄], ν ≡ min {s|Υ (s) > û (1) , s ∈ N} and ν̄ = max {s|Υ (s) > û (1) , s ∈ N}.
Finally, consider the no wave equilibrium. An entrepreneur could unilaterally create a wave of two by waiting

for the next entrepreneur. Thus, it is an equilibrium to innovate immediately only it û (1) > Υ (2), or equivalently,

if k < kd ≡
1−δ(1−π)

1−δ δ2p (θ∗ − η) y − δπ
1−δ δ

2p
(
θ∗ − η

2

)
y − δc. Because û (1) = Υ (1), k < kd also implies that ν̂ < 2,

so that û (1) > Υ (ν) for all ν ≥ 2: if it is an equilibrium to innovate unilaterally, there are no wave equilibria.

Proof of Theorem 5. Claims on ν and ν̄ follow because Υ is hump-shaped on relevant domain (proof of Theorem

4). An equilibrium is effi cient (in a class) if it grants higher payoff to entrepreneurs than other equilibria (in that class),

because investors are indifferent. Theorem 4 showed any wave equilibrium is a threshold equilibrium: entrepreneurs

wait until there are ν∗ projects to innovate. The effi cient equilibrium maximizes Υ. Define ∆Υ = Υ (ν + 1)−Υ (ν).

Theorem 4 showed Υ′

Υ
is decreasing for positive Υ, so Υ′ > 0 for ν < ν̂ and Υ′ < 0 for ν > ν̂. For ν < ν̂− 1, ∆Υ > 0,

for ν > ν̂, ∆Υ < 0. Therefore, there exists a νe such that for all ν with Υ (ν) > 0, if ν < νe, ∆Υ > 0 and if ν ≥ νe,

∆Υ ≤ 0. Note that k < k̄d implies there exists ν such that Υ > 0.

Proof of Corollary 3. kd solves f = Υ (2)−Υ (1) = 0. Because ∂f
∂k

= 1−δ
1−δ(1−π)

> 0 and ∂f
∂π

= δ(1−δ)
(1−δ+δπ)2

û (2) > 0,
dkd
dπ

< 0. Also, ∂f
∂η

= δ2p (θ∗ − η) y
(

1− 1
2

δπ
1−δ(1−π)

e
η
2

)
. If η > 2 ln 2[1−δ(1−π)]

δπ
, then f > 0 for all k > 0, so if there

exists a positive kd such that f = 0, ∂f
∂η

> 0, so dkd
dη

< 0.

If û (1) ≤ 0, ν ≡ min {s|û (s) > 0, s ∈ N}. Because û′ > 0, anything that increases û decreases ν, and vice versa.
∂û
∂η

= − 1
s
δ2e

θ∗− η
ν
−θM y < 0 and ∂û

∂k
= −1 < 0 so ν is increasing in {η, k}. ∂û

∂δ
= δe

θ∗− η
ν
−θM y + û (ν) + k

δ
> 0, so ν is

decreasing in δ. If there are waves in equilibrium, yet û (1) > 0, ν = 2, so claims trivially hold.

The optimal wave satisfies ∆Υ > 0 for ν < νe and ∆Υ ≤ 0 for ν ≥ νe, where Υ (ν) =
(

δπ
1−δ(1−π)

)ν−1

û (ν).

∂∆Υ
∂η

= − 1
ν+1

∆Υ + 1
ν(ν+1)

Υ (ν) + (δc+k)
ν+1

(
δπ

1−δ(1−π)

)ν
1−δ

1−δ(1−π)
: the last two terms are positive, so if ∆Υ|η > 0, then

∆Υ|η̂ > 0 for all η̂ > η, so νe is increasing in η. ∂∆Υ
∂π

=
(

δπ
1−δ(1−π)

)ν−1
δ(1−δ)

[1−δ(1−π)]2
û (ν + 1)+(ν − 1) 1−δ

[1−δ(1−π)]π
∆Υ (ν):

∂∆Υ
∂π

> 0 for ν ≤ νe, so νe is increasing in π. ∂∆Υ
∂k

=
(

δπ
1−δ(1−π)

)ν−1
1−δ

1−δ(1−π)
> 0, so νe is increasing in k.

Proof of Theorem 6. Proof follows by identical reasoning to Theorem 4: state space, action space, discount

factor, and initial state are identical. Different is that the transition probability and objective are affected by

competition. Again, Dt =
∑
n∈Et dn (νt). If Dt < νt, P (νt+1 = νt −Dt + 1) = π, P (νt+1 = νt −Dt) = 1 − π − ε,

and P (νt+1 = 0) = ε, while if Dt = νt, P (νt+1 = 1) = π and P (νt+1 = 0) = 1 − π. Entrepreneurs maximize

(21), except in (20), V acnt (s) = δp
(
θ∗ − η

s

)
(1− ξ)s−1 y. Because ε > 0, EUan

(
νt+1, d

∗
n−
)

= πUan
(
νt + 1, d∗n−

)
+

(1− π − ε)Uan
(
νt, d

∗
n−
)
, so Uan

(
νt, d

∗
n−
)

=
[

δπ
1−δ(1−π−ε)

]ν∗−νt
û (ν∗). It is optimal to innovate unilaterally iff û (1) >

Υ (2) iff k < kcd ≡
1−δ(1−π−ε)

1−δ(1−ε) δ2p (θ∗ − η) y − δπ
1−δ(1−ε)δ

2p
(
θ∗ − η

2

)
(1− ξ) y − δc iff ξ > ξ ≡ 1 − e−

η
2

1−δ(1−π−ε)
δπ

+
1−δ(1−ε)

δπ
δc+k

δ2p(θ∗− η2 )y
, so kcd (ξ) = k̄cd (ξ) for ξ > ξ. û′ (s) = δ2p

(
θ∗ − η

s

)
(1− ξ)s−1 y

[
η
s2

+ ln (1− ξ)
]
> 0 iff s <

s∗ ≡
√

η
− ln(1−ξ) . Innovation is possible in equilibrium iff k < k̄d ≡ δ2 maxs∈N

{
p
(
θ∗ − η

s

)
ξs−1

}
y − δc. Finally,

Υ′

Υ
= ln

(
δπ

1−δ(1−π−ε)

)
+

δV acnt (ν∗)
δV acnt (ν∗)−δc−k

(
η

(ν∗)2
+ ln (1− ξ)

)
: Υ′

Υ
is decreasing in ν for all ν such that Υ > 0. Thus,

there exists νe such that ∆Υ > 0 for ν < νe and ∆Υ ≤ 0 for ν > νe. ∂kcd
∂ξ

= δπ
1−δ(1−ε)δ

2p
(
θ∗ − η

2

)
y > 0 and

∂2kcd
∂ξ∂η

= − 1
2

δπ
1−δ(1−ε)δ

2p
(
θ∗ − η

2

)
y < 0. Let f = Υ (2) − u (1): f = 0 when k = kcd or ξ = ξ. ∂f

∂k
= 1−δ(1−ε)

1−δ(1−π−ε) ,
∂f
∂ξ

= − δπ
1−δ(1−π−ε)δ

2p
(
θ∗ − η

2

)
y, and ∂f

∂ε
= − δ2π

[1−δ(1−π−ε)]2 δ
2p
(
θ∗ − η

2

)
(1− ξ) y, so dkcd

dε
> 0 and

dξ

dε
< 0.

Proof of Corollary 4. ∂∆Υ
∂ξ

=
(

δπ
1−δ(1−π−ε)

)ν
δ2p

(
θ∗ − η

ν+1

)
ν (1− ξ)ν−2 y

[
ν−1
ν
e
− η
ν(ν+1) 1−δ(1−π−ε)

δπ
− (1− ξ)

]
,

38For k ∈
(
k0, k̄d

)
, never innovating is also an equilibrium, ν∗ = +∞, because innovating unilaterally is unprofitable.
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so ∂∆Υ
∂ξ

> 0 iff ξ > 1 − ν−1
ν
e
− η
ν(ν+1) 1−δ(1−π−ε)

δπ
, a cutoff increasing in ν. For ν = 1, ∆Υ is decreasing in ξ,

because ξ ∈ (0, 1). For ν > 1, ∆Υ is U-Shaped in ξ, which implies {ξ|∆Υ ≤ 0} is convex. Because
{
ξ|ν ≤ νopt

}
={

ξ|∆Υ
(
νopt

)
≤ 0
}
, νopt is U-Shaped in ξ.

We first find the expected time between waves, then show that R is decreasing in wave size. Define the expected

time until a wave when there are currently ν entrepreneurs as T (ν). Waves occur with ν∗ entrepreneurs, so T (ν∗) = 0.

For ν < ν∗, T (νt) = E [T (νt+1) + 1]. Because a new entrepreneur arrives with probability π, but all projects

become obsolete with probability ε, ET (νt+1) = πT (νt + 1) + (1− π − ε)T (νt) + εT (0), which implies T (νt) =
1

π+ε
+ π

π+ε
T (νt + 1) + ε

π+ε
T (0). It follows by induction that T (ν∗ − k − 1) =

[
1

π+ε
+ ε

π+ε
T (0)

]∑k
n=0

(
π
π+ε

)n
:

induction base is ν∗ − 1, because T (ν∗ − 1) = 1
π+ε

+ ε
π+ε

T (0), induction step follows by rearranging recursive

definition. Rearranging, T (0) = 1
ε

[(
π+ε
π

)ν∗ − 1
]
and T (νt) = 1

ε

[(
π+ε
π

)ν∗ − (π+ε
π

)νt]. Finally, because everyone
innovates in a wave, T (0) is the expected time between waves. Note T (0) |ε=0 = ν

π
, define T e = T (0) |ν=νe .

Note ∂Re

∂νe
=

(π+ε
π

)ν
e
−1−νe(π+ε

π
)ν
e

ln(π+επ )
1
ε [(π+επ )ν

e−1]2
, which is strictly negative because (π+ε

π
)ν
e

is convex in νe. ξ affects

Re only through νe, so dR
dξ

= dR
dνe

dνe

dξ
. Because dRe

dνe
< 0, this implies R is inverse U-Shaped in ξ. Note T (0) is the

quotient differential of
(
π+x
π

)νe
, a convex function in x, so T (0) is increasing in ε, and thus Re is decreasing in ε.

Finally, ∂∆Υ
∂ε

= −ν δ
1−δ(1−π)

∆Υ− δ
1−δ(1−π)

Υ (ν): ∂∆Υ
∂ε

< 0 for ν ≥ νe, so νe is decreasing in ε.
Proof of Theorem 7. When both entrepreneurs have successful first-stage,39 they select yτ to maximize Ua,SSτ =

V aτ − 1
Zτ (1+γ)

y1+γ
τ , V aτ from Theorem 2. For yτ < e−ηyτ ′ ,

∂Ua,SSτ
∂yτ

= p (θ∗)− 1
Zτ
yγτ . For yτ ∈

(
e−ηyτ ′ , e

ηyτ ′
)
, ∂U

a,SS
τ
∂yτ

=

1
2
p
(
θ∗ − η

2

)
y
− 1
2

τ y
1
2
τ ′ −

1
Zτ
yγτ . For yτ > eηyτ ′ ,

∂Ua,SSτ
∂yτ

= p (θ∗ − η) − 1
Zτ
yγτ . Thus, limyτ↑e−ηyτ′

∂Ua,SSτ
∂yτ

= p (θ∗) −
1
Zτ

[
e−ηyτ ′

]γ
> 1

2
p (θ∗) − 1

Zτ

[
e−ηyτ ′

]γ
= limyτ↓e−ηyτ′

∂Ua,SSτ
∂yτ

, but limyτ↑eηyτ′
∂Ua,SSτ
∂yτ

= 1
2
p (θ∗ − η) − 1

Zτ
[eηyτ ′ ]

γ <

p (θ∗ − η)− 1
Zτ

[eηyτ ′ ]
γ = limyτ↓eηyτ′

∂Ua,SSτ
∂yτ

. Thus, any critical point yτ ≤ e−ηyτ ′ is a global maximum, but a critical
point in

(
e−ηyτ ′ , e

ηyτ ′
)
must be compared to the critical point yτ ≥ eηyτ ′ .40

We now solve for the best-response function. It is optimal to select yτ < e−ηyτ ′ only if yτ = [p (θ∗)Zτ ]
1
γ <

e−ηyτ ′ . Thus, for yτ ′ > ŷτ ′ ≡ eη [p (θ∗)Zτ ]
1
γ , yτ = [p (θ∗)Zτ ]

1
γ . It is optimal to select yτ = e−ηyτ ′ only if

limyτ↑e−ηyτ′
∂Ua,SSτ
∂yτ

≥ 0 ≥ limyτ↓e−ηyτ′
∂Ua,SSτ
∂yτ

, which holds if yτ ′ ∈ [ȳτ ′ , ŷτ ′ ], ȳτ ′ ≡ 1
2γ
ŷτ ′ . The optimal yτ > eηyτ ′ is

ya,SFτ , so Ua,SFτ = [p (θ∗ − η)]
1+γ
γ Z

1
γ
τ

γ
1+γ

. For yτ ∈
(
e−ηyτ ′ , e

ηyτ ′
)
to be optimal, it must not only be locally optimal,

but also must provide greater utility than Ua,SFτ .41 yτ is a critical point,
∂Ua,SSτ
∂yτ

= 0, iff yτ =

[
Zτ
2
p
(
θ∗ − η

2

)
y
1
2
τ ′

] 1

γ+1
2 ,

so Ua,SSτ =
[
p
(
θ∗ − η

2

)] 2γ+2
2γ+1 Z

1
2γ+1
τ

[
1
2

] 1
2γ+1

[
2γ+1
2γ+2

]
y
γ+1
2γ+1

τ ′ . Ua,SSτ > Ua,SFτ iff yτ ′ > y
τ ′
≡ e
−η 2γ+1

γ 1
2

[
2γ

2γ+1

] 2γ+1
γ+1

ȳτ ′ .

Thus, if yτ ′ ≤ yτ ′ , yτ = ya,SFτ , while if yτ ′ ∈
(
y
τ ′
, ȳτ ′

)
, yτ = Y a,SSτ (yτ ′).

Restricting attention to pure strategy equilibria, either yτ′
yτ
∈
(
e−η, eη

)
or not. Both entrepreneurs select

innovation optimally. Because there is a kink at yτ ′ = eηyτ , it can never be that
yτ′
yτ

= eη in equilibrium.

Suppose to the contrary that so one entrepreneur selects yτ ′ > eηyτ . In that case, yτ ′ = [p (θ∗ − η)]
1
γ Z

1
γ

τ ′ ,

yτ = [p (θ∗)]
1
γ Z

1
γ
τ , so yτ ′ > eηyτ only if

Zτ′
Zτ

> eη(γ+1) > ψ = 1
4
eη(γ+1)

(
1 + 1

2γ

)2γ

because
(

1 + 1
2γ

)2γ

∈ (1, e)

for all γ > 0. Alternatively, if yτ′
yτ
∈
(
e−η, eη

)
in equilibrium, Y a,SSτ (yτ ′) =

[
Zτ
2
p
(
θ∗ − η

2

)
y
1
2
τ ′

] 1

γ+1
2 for both

39 If only entrepreneur τ has a successful first-stage, yτ ′ = 0. By Theorem 2, Vτ = p (θ∗ − η) yτ , so the entrepreneur’s

payoff is Ua,SFτ = p (θ∗ − η) yτ − 1
Zτ (1+γ)

y1+γ
τ . ∂Ua,SFτ

∂yτ
= p (θ∗ − η)− 1

Zτ
yγτ , and

∂2Ua,SFτ
∂y2τ

= − γ
Zτ
yγ−1
τ < 0, so FOCs

are suffi cient. Thus, ya,SFτ = [p (θ∗ − η)Zτ ]
1
γ , V a,SFτ = [p (θ∗ − η)]

1+γ
γ Z

1
γ
τ , and Ua,SFτ = [p (θ∗ − η)]

1+γ
γ Z

1
γ
τ

γ
1+γ

.

40 If yτ
yτ′
∈
(
e−η, eη

)
, ∂

2Ua,SSτ
∂y2τ

= − 1
4
p
(
θ∗ − η

2

)
y
− 3
2

τ y
1
2
τ ′ −

γ
Zτ
yγτ ; if not,

∂2Ua,SSτ
∂y2τ

= − γ
Zτ
yγ−1
τ . limyτ↑e−ηyτ′

∂Ua,SSτ
∂yτ

>

limyτ↓e−ηyτ′
∂Ua,SSτ
∂yτ

but limyτ↑eηyτ′
∂Ua,SSτ
∂yτ

< limyτ↓eηyτ′
∂Ua,SSτ
∂yτ

, so Ua,SSτ is concave everywhere except at yτ = eηyτ ′ .

Because limyτ↑e−ηyτ′
∂Ua,SSτ
∂yτ

> limyτ↓eηyτ′
∂Ua,SSτ
∂yτ

, any critical point yτ ≤ e−ηyτ ′ is a global maximum.
41This assumes that ya,SFτ > eηyτ ′ . If not, selecting y

a,SF
τ would give entrepreneur τ a strictly larger payoff than

Ua,SFτ , but a smaller payoff than Y a,SSτ (yτ ′), because Ua,SSτ is strictly concave on
(
e−ηyτ ′ , e

ηyτ ′
)
.
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entrepreneurs, which implies ya,SSτ =

[
1
2
p
(
θ∗ − η

2

)
Z

2γ+1
2γ+2
τ Z

1
2γ+2

τ ′

] 1
γ

. This is better for entrepreneur τ than ya,SFτ

only if ya,SSτ ′ > e
− η
2
2γ+1
γ
[
p
(
θ∗ − η

2

)] 1
γ Z

1
γ
τ 2

1
γ+1

[
2γ

2γ+1

] 2γ+1
γ+1

, which holds because Zτ′
Zτ

> e−η(γ+1)4
[

2γ
2γ+1

]2γ
= 1

ψ
.

Therefore, when ZA
ZB
∈
(

1
ψ
, ψ
)
, both entrepreneurs select innovation intensity with yτ′

yτ
∈
(
e−η, eη

)
,42 selecting

Y a,SSτ (yτ ′) =

[
Zτ
2
p
(
θ∗ − η

2

)
y
1
2
τ ′

] 1

γ+1
2 , leading to equilibrium innovation ya,SSτ =

[
1
2
p
(
θ∗ − η

2

)
Z

2γ+1
2γ+2
τ Z

1
2γ+2

τ ′

] 1
γ

.

Thus, the market price is V a,SSτ = 2
− 1
γ
[
p
(
θ∗ − η

2

)] γ+1
γ [ZτZτ ′ ]

1
2γ . Similarly, entrepreneur τ earns continuation

utility Ua,SSτ = 2
− 1
γ
[
p
(
θ∗ − η

2

)] γ+1
γ Z

1
2γ
τ Z

1
2γ

τ ′
2γ+1
2γ+2

, for τ ∈ {A,B} and τ ′ 6= τ .

Proof of Corollary 5. Theorem 7 showed Ua,SSτ > Ua,SFτ because Zτ′
Zτ
∈
(

1
ψ
, ψ
)
, where ψ =

[
1
4
eη
]γ+1

. V a,SSτ =

2
− 1
γ
[
p
(
θ∗ − η

2

)] γ+1
γ [ZτZτ ′ ]

1
2γ and V a,SFτ = [p (θ∗ − η)]

γ+1
γ Z

1
γ
τ , so V a,SSτ > V a,SFτ iff Zτ′

Zτ
> 4e−η(γ+1), which holds

because Zτ′
Zτ

> 1
ψ

= 4γ+1e−η(γ+1). Similarly, ya,SSτ =

[
1
2
p
(
θ∗ − η

2

)
Z

2γ+1
2γ+2
τ Z

1
2γ+2

τ ′

] 1
γ

and ya,SFτ = [p (θ∗ − η)Zτ ]
1
γ , so

ya,SSτ > ya,SFτ iff Zτ′
Zτ

> 4γ+1e−η(1+γ) = 1
ψ
. Therefore, Ua,SSτ > Ua,SFτ , V a,SSτ > V a,SFτ , and ya,SSτ > ya,SFτ .

Proof of Theorem 8. The merged firm maximizes the combined value of the two projects. By Theorem 2,

VA = VB = p
(
θ∗ − η

2

)
y
1
2
Ay

1
2
B , so the merged firm maximizes

Ua,m = 2p
(
θ∗ − η

2

)
y
1
2
Ay

1
2
B −

1

ZA (1 + γ)
y1+γ
A − 1

ZB (1 + γ)
y1+γ
B .

Because ∂U
a,m

∂yτ
= p

(
θ∗ − η

2

)
y
− 1
2

τ y
1
2
τ ′−

1
Zτ
yγτ , for τ ∈ {A,B}, τ ′ 6= τ , this implies Y a,mτ (yτ ′) =

[
p
(
θ∗ − η

2

)
Zτy

1
2
τ ′

] 1

γ+1
2 ,

so ya,mτ =

[
p
(
θ∗ − η

2

)
Z

1
2γ+2

τ ′ Z
2γ+1
2γ+2
τ

] 1
γ

. Thus, V a,mA = V a,mB =
[
p
(
θ∗ − η

2

)] 1+γ
γ [Zτ ′Zτ ]

1
2γ .

Proof of Theorem 9. If entrepreneur τ does not expect entrepreneur τ ′ to innovate, she innovates iff kτ ≤
ka,mτ ≡ qτUa,SFτ , the same cutoff as without the possibility of a merger. However, if entrepreneur τ expects en-

trepreneur τ ′ to innovate, she innovates iff kτ ≤ k̄a,mτ ≡ qτqτ ′Υ
a,m
τ + qτ (1− qτ ′)Ua,SFτ . Because Υa,a

τ = Ua,SSτ +
1
2

(
Ua,m − Ua,SSA − Ua,SSB

)
, if Υa,m

τ > Ua,SSτ , k̄a,mτ > k̄aτ , so the cutoff will be larger when mergers are possible,

resulting in more innovation. Thus, it is suffi cient to show that Ua,m > Ua,SSA + Ua,SSB .

Because V a,m = V a,mA +V a,mB , the merged firm earns Ua,m = 2 γ
1+γ

[
p
(
θ∗ − η

2

)] 1+γ
γ [ZAZB ]

1
2γ . Each entrepreneur

could earn Ua,SSτ = 1

2
1
γ

[
p
(
θ∗ − η

2

)] 1+γ
γ Z

1
2γ
τ Z

1
2γ

τ ′
2γ+1
2γ+2

if they did not merge, so Ua,SSA + Ua,SSB = Ua,m 1

2
1
γ

2γ+1
2γ

.

Because43 1

2
1
γ

2γ+1
2γ
∈ (0, 1) for γ ∈ (0,∞) , merger adds value: Ua,m > Ua,SSA + Ua,SSB , so Υτ > Ua,SSτ .

42 If Zτ
Zτ′
∈
(
ψ, eη(γ+1)

)
, there is a mixed strategy equilibrium: one firm selects yτ ′ = y

τ ′
and the other randomizes

between ya,SFτ and Y a,SSτ (yτ ′).
43Define x = 1

γ
, and f (x) = 2−x−1 (2 + x): f ′ (x) = 2−x−1 [1− (2 + x) ln 2], which is strictly negative because

2 ln 2 > 1, limx→0+ f (x) = 1, and limx→+∞ f (x) = 0. Therefore, 1

2
1
γ

2γ+1
2γ
∈ (0, 1) for all γ ∈ (0,∞).
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B Appendix: Demand Uncertainty

A key ingredient of our paper is that program (1) is a strictly convex programming problem which generates “interior

beliefs” for well-diversified portfolios. In the main body of the paper, the possibility of such interior beliefs is a

consequence of (strict) convexity of the relative entropy function R(·), which produces a strictly convex core beliefs
set M (see Figure 1). Thus, no specific parametric restriction on the joint probability p is needed to generate our

results. In this appendix, we present an alternative “micro-foundation” where interior beliefs are the outcome of

uncertainty about consumer demand. All results in our paper remain qualitatively the same in this specification.

Consider a simple extension of our three-dates model. There are three types of goods: type τ goods, τ ∈ {A,B},
and the numeraire. There are two firms, each specializing in the production of goods of type τ . At t = 1, entrepreneurs

decide whether to pay the discovery cost to innovate. If successful, at t = 2, each entrepreneur will select the optimal

investment into the project, yτ , financed by issuing equity to uncertainty-averse investors. The investment decision

is made under demand uncertainty for each product (as described below). At t = 3, consumer demand is revealed

and production decisions of firms are made. If successful, entrepreneurs will be monopolists in their innovative

good market. For tractability, we assume that entrepreneur τ has production costs cτ (Qτ ) = KτQτ , and that the

intermediate investment yτ lowers, at a cost ξ (yτ ) = κ
2
y2
τ , the per-unit production cost: Kτ = K0 −K1yτ .

There are two types of consumers, type A and type B, with a total mass of 1. Consumers value both goods, as

well as the numeraire, but each consumer values one good more that the other, which determines their type. The

price of the numeraire is fixed to 1, while the price of type τ good, Pτ , is determined in equilibrium. For simplicity,

we assume quadratic utility for each type of consumer. Thus

Uτ (qττ , q
τ
τ ′) = (D + ∆) qττ −

β

2
(qττ )2 +Dqττ ′ −

β

2
(qττ ′)

2 + w − Pτqττ − Pτ ′qττ ′ ,

where D, ∆, and β are strictly positive parameters. For simplicity, we assume that w and D large enough so that

consumers (in equilibrium) always consume a positive amount of all goods available in the market. It is easy to verify

that the consumer τ’s demand function for good τ is qττ = 1
β

(D + ∆− Pτ ), and for good τ ′ is qττ ′ = 1
β

(D − Pτ ′). Let
mτ ∈ [mL,mH ] be the proportion of consumers of type τ , with mA +mB = 1. Market clearing condition for good τ

requires that mτq
τ
τ +mτ ′q

τ ′
τ = Qτ , where Qτ is the output of a firm type τ . Thus, market clearing requires that

Pτ (Qτ ) = D +mτ∆− βQτ ,

and the price of type-τ goods is increasing in mτ . Because producers know mτ when making their production

decisions Qτ , they maximize

πτ (Qτ ) = Pτ (Qτ )Qτ −KτQτ ,

which gives

Qτ =
D +mτ∆−Kτ

2β
.

Letting Πτ = maxQτ π (Qτ ) , we have that entrepreneur τ profits are

Πτ =
[D +mτ∆−Kτ ]2

4β
.

This implies that, when both entrepreneurs are successful, investors beliefs are determined by solving:

min
{mA,mB}

U ≡ ωA

[
[D +mA∆−KA (yA)]2

4β
− VA

]
+ ωB

[
[D +mB∆−KB (yB)]2

4β
− VB

]
+ ω0

s.t. mA +mB = 1,

which is a (strictly) convex programming problem, with the same qualitative properties as (1).
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Figure 1: Core Belief Set Under Relative Entropy

This figure displays the core of belief setM under relative entropy (solid line) given by the set of p = (pA, pB) that

satisfy {p|R (p|p̂) ≤ η̃} when p̂A = p̂B = 1
2
and η̃ = 3

5
ln 2 (see Table 1). For investors with long positions in both

assets, under MEU the relevant portion of the core beliefs setM is given by the lower-left boundary. The figure also

shows the lower-left-hand portion of the specification based on the L1 norm (in blue and dashed).
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Table 1: Numerical examples
1. Base case parameters (Section 1): η = 3

5
ln (2) η̃ = 1.7381 yA = yB = 100 c = 3

p̂A = p̂B = 1
2

θ∗ − θM = −0.7954 kτ = 5 q = .75

2. Uncertainty-neutral case (Section 2.1): k̄τ = 30.86 VA = VB = 45.14

Uncertainty-averse case (Section 2.2): kaτ = 3.70 k̄aτ = 9.87

p(θ∗ − η) = .0794 V a,SFτ = 7.94 p(θ∗ − η
2
) = .1893 V a,SSτ = 18.93

3. Innovation waves (Section 3): δ = .97 π = .6 c = 3 k = 5

ν = 2 νe = 7 V ant (νe) = 34.16 V ant (1) = 7.70

k0 = 4.55 kd = 0 k̄d = 39.56

4. Competition and innovation (Section 4): ε = .01 ξ = .1 ξ = .58

νc = 2 νe (ξ, ε) = 4 V acnt (νe (ξ, ε)) = 20.67 V acnt (1) = 7.70

kcd = 0 k̄cd = 17.14 T e = 6.84 R = 0.59

5. Innovation and acquisitions (Section 5): ZA = ZB = 1000 γ = 1 y∗ = 451.04 V ∗τ = 203.77

ya,SF = 79.38 ya,SS = 94.65 ya,m = 189.30

V a,SFτ = 6.30 V a,SSτ = 17.90 V a,mτ = 35.83

k̄aτ = 8.15 ka,mτ = kaτ = 2.36 k̄a,mτ = 10.67
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