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Abstract

This paper shows asymmetric information restricts capital flows to insurers follow-
ing catastrophes, resulting in an insurance cycle. Insurers hold capital to provide in-
surance. Indemnities increase in capital, but the premium to indemnity ratio decreases
in capital. Capital is restricted after a catastrophe occurs because the market does not
know which insurers have been affected by the catastrophe. This paper concludes that
the insurance cycle is capital-driven and a consequence of asymmetric information.
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1 Introduction

The motivation for this paper is the insurance underwriting cycle; there are periods when

insurance is expensive, underwriting is profitable, and coverage may be somewhat limited,

yet other times when insurance is cheap, underwriting is less profitable, and coverage is more

readily available. Gron (1994) documents this pattern, and argues that capital drives this

cycle.1 As shown in Section 2, Gron’s result is consistent with a relatively simple model,

provided that capital is exogenous. However, when capital levels are endogenous, insurance

underwriting returns should be driven by the cost of capital.

Various other papers (e.g., Grace and Hotchkiss (1995), Chen, Wong, and Lee (1999),

and Leng and Venezian (2003)) consider whether the insurance underwriting cycle is mean-

ingfully linked to the overall performance of the economy. Grace and Hotchkiss conclude

that the effects of shocks to various general economic variables have little effect on the under-

writing profitability of the property-liability insurance industry. Harrington, Niehaus, and

Yu (2013) further note that evidence provided by these studies needs to be interpreted with

caution, not only because of limited sample sizes but also because of possible conditional

heteroscedasticity in the various models.

The question which we address here is whether there are better and simpler explanations

as to why the insurance cycle exists. In this paper, we show how asymmetric information

restricts the market for insurance. Insurance companies know more about their losses than

the market, leading to a breakdown of the provision of capital to insurance companies.

Because this adversely affects the pricing and availability of insurance, it harms social welfare.

We model asymmetric information in Section 3 with the following structure on the insured

risk. There is a risk that a catastrophe (an increase in the probability of loss for some

customers) will occur. When a catastrophe occurs, an insurer knows its exposure to the

catastrophe. If a catastrophe does not occur, insurers will be exposed only to their normal

1See also Cagle and Harrington (1995), Cummins and Danzon (1997), Doherty and Garven (1995),
Niehaus and Terry (1993), and Winter (1994).
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risks. The market knows whether a catastrophe has occurred, but does not know which

insurers are affected. When a catastrophe occurs, capital is restricted from flowing into

insurers, limiting their ability to underwrite insurance. This creates the insurance cycle –

insurance will be more expensive after losses, and cheaper after profits.

Property-casualty insurance is important in the modern economy: over $612 billion were

spent on property-casualty insurance in the United States in 2016.2 This includes automobile

and homeowners insurance, and various other lines of business. Not only are these important

risks to insure, but there are also many occasions when insureds are required to insure

these risks. For example, drivers are usually required to have automobile insurance, and

homeowners are often required to insure their home if they have a mortgage. This paper

will show why the insurance cycle affects property-casualty insurance, but not insurance

products that indemnify mortality and morbidity risks such as life insurance, annuities, and

health insurance. Specifically, losses in property-casualty insurance are catastrophe driven,

whereas losses in life insurance, annuity, and health insurance markets are not.

The model finds the following empirical implications. As agency problems worsen at

insurers, the insurance cycle becomes more pronounced. The insurance cycle is more pro-

nounced for lines of business that are more catastrophe driven. Finally, we find that the

insurance cycle is more pronounced following poor financial performance.

This paper also provides a novel motivation for insurance regulation: because agency

problems at insurance companies impact the provision of insurance to the market, share-

holders may not have sufficient motivation to exercising costly governance. Therefore, it

may improve welfare for a regulator to enforce corporate governance regulation upon insur-

ers.

This paper models accounting numbers from insurers as cheap talk. Leading up to

bankruptcy, the reported values of liabilities are flat, and then right before bankruptcy,

2See Table 2, page 3 of the NAIC 2016 Property/Casualty & Title Industry Report. The $612 billion
dollar figure cited here corresponds to total U.S. property-casualty insurance industry premiums collected
in 2016. However, the industry spent $74.2 billion on reinsurance; thus, premiums (net of reinsurance) came
to $537.92 billion during 2016.
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they shoot up (Plantin and Rochet (2009)). This suggests that they were underreported all

along, because insurance companies know more about their losses than the market. Insurance

companies are required to keep loss reserves, but they may have an incentive to manipulate

these reserves and underreport their losses.

This paper shows that the high-cost part of the insurance cycle can be thought of as a

liquidity crunch. Conceptually, this paper is similar to Acharya and Viswanathan (2011)

and He and Krishnamurthy (2013). In these papers, when an asset goes down in value, it

impacts the portfolios of those invested in it. This leads to a sale of the assets, which leads

to a further decrease in value. In Acharya and Viswanathan (2011), the sale occurs because

the investment managers’ portfolios are levered, and some are liquidated in a fire sale. In He

and Krishnamurthy (2013), the investment manager faces an agency problem, which restricts

the amount of outside investment in the portfolio. When the asset loses money, this creates

a shock to the investment manager’s wealth, which lowers the amount that be invested in

the asset. Our paper gives another channel that can worsen a liquidity crunch – asymmetric

information. If the insiders know more about the value of their losses than the outside world,

this will make the liquidity crunch even worse.

The paper is structured as follows. Section 2 presents a competitive model of insurance

where each insurer holds capital to pay losses if there is a catastrophe. Section 3 presents a

dynamic version of this model: each insurer knows the state of current policies when they

underwrite new policies, but the market does not. Because the insurer knows more about

the state of their policies than the market, capital flows are restricted into insurers, limiting

insurance provision. Section 4 concludes.3

3All proofs for lemmas, theorems and corollaries that appear in this paper are available at
http://bit.ly/cyclesappendix.
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2 Model of the Insurance Cycle

Insureds have income w and utility function u(·) (u′ > 0, u′′ < 0), but face risk of loss.

The loss occurs with probability π and results in loss of wealth of X. This risk is partially

catastrophe driven. A catastrophe affects an insured with probability θ. When an insured

is affected by a catastrophe, the probability of a loss is πH , while the probability of a loss is

πL without a catastrophe, where πH > πL. For example, if the relevant risk is a fire, there

is a small probablity that the house will burn down on its own (πL), but when a forest fire

occurs in the vicinity of the house, the probability of a loss increases (to πH). Thus, the

unconditional probability of loss is π = θπH + (1− θ) πL.

Each insurer is risk-neutral and has capital K, which it can allocate between underwriting

insurance and investing in the market, at rate ρ. Insurers hold sufficient capital to pay

losses when a catastrophe occurs.4 There are many insurers and many insureds per insurer

(formally, each insurer is a point x ∈ [0, 1] and each insured is a point (x, y) ∈ [0, 1]2).

An insurance contract states the premium, P , paid by the insured, and the indemnity, L,

paid to the insured if a loss occurs. When covered by this contract, the insured has utility

U (L, P ) = πu (w − P −X + L) + (1− π)u (w − P )

For tractability, we assume u is CARA (results are qualitatively similar without this assump-

tion). Insurers can invest in the market for gross return ρ > 1.5 Each insurer underwrites in-

surance for m insureds to maximize expected profit.6 Each insurer’s profit, however, depends

on if the insurer is affected by the catastrophe. If the insurer is unaffected by a catastrophe,

operating profits is OL = m [P − πLL]. However, if the insurer is affected by the catastrophe,

4This assumption is justified if there is a large personal loss from failing to pay policyholders, for example,
future exclusion from the market. Alternatively, if insurers follow a value-at-risk model, behavior would be
the same so long as θ is larger than required confidence level of the value-at-risk model.

5Capital backing insurance is assumed to earn a lower return than long-term capital investment. Formally,
the return paid to liquid assets is normalized to 1, and the return to long-term capital investment is ρ > 1.

6To simplify exposition, we assume in the body of the paper that insurers offer the same contract. This
is shown to be optimal in Theorem 1 because insureds have concave utility, resulting in a unique optimal
contract between insurers and insured.
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the probability of loss will be higher, πH > πL, so operating profit is OH = m [P − πHL].

To be able to pay policyholders, it must be that I + OL ≥ 0 and I + OH ≥ 0. Because

OH < OL, this constraint binds in a catastrophe, so I ≥ −OH . Because the value of each

insurer is operating profits plus investment income, each insurer maximizes

Π = m [P − πL] + I + (K − I)ρ

subject to the constraints that 0 ≤ I ≤ K, m ≥ 0, and I is big enough to cover losses if the

insurer is affected by the catastrophe, I ≥ −OH , or equivalently,

I ≥ m (πHL− P ) .

We will solve the model recursively. First, we will solve the optimal contract between

insurers and insured, given capital K. Next, we will consider the optimal choice of K.

Equilibrium: Given capital K, the market for insurance is in equilibrium if:

• Insurers optimally underwrite insurance: m, P , L, and I maximize Π.

• Insureds select the best insurance policy available (also considering self-insurance).

• The number of insurance policies must be feasible, so 0 ≤
∫ 1

0
mxdx ≤ 1.

Lemma 1 If any insured buys insurance, all insureds will buy insurance in equilibrium.

Insureds are identical and risk-averse, while insurers are risk-neutral, so all insureds buy

the same insurance policy.7 Because insurance is provided in a competitive market, insurers

charge lower premiums than what a monopolist insurer would charge. Theorem 1 shows how

much insureds will pay for a given level of insurance.

7Rothschild and Stiglitz (1976) show an instability in the market for insurance. In their model, insurers
do not know the type of the insured, but each insured knows whether they are high risk or low risk. Their
main result is that the only possible equilibrium is the separating equilibrium. As a part of this separating
equilibrium, low-risk insureds may choose not to buy insurance. This conflicts with Theorem 1 because all
insureds in our model are the same – the agency problem is at the insurance company.
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Theorem 1 Given market conditions, insurers write insurance with indemnity chosen to

maximize their premium-to-indemnity ratio. For indemnity L, the equilibrium premium is

P = LπP , where πP ∈ (π, πH). πP is strictly decreasing in L. The market for insurance

strictly improves welfare for insureds.

Theorem 1 gives the premium for any level of indemnity. Symmetry implies that m = 1

for all insurers so I = πHL − P (L). Define the gross return on providing insurance as

R (I), so that we can express insurers’ profit as Π = R (I) ∗ I + (K − I) ρ, where R (I) =

(1− θ) (πH − πL)
L

I
. Because insurers choose how much capital to invest in underwriting

insurance, writing insurance must provide a larger return than their outside option, ρ. Thus,

it must be the case that R (I) ≥ ρ (if this holds strictly, I = K). This gives us the conditions

for an equilibrium:

1. P = LπP

2. πP =
πu′ (w −X + L− P )

πu′ (w −X + L− P ) + (1− π)u′ (w − P )

3. I = (πH − πP )L

4. R (I) ≥ ρ, K ≥ I, and one holds with equality.

This implies that financially constrained insurers will not provide full insurance. If the

competitive market provides full insurance, it must be fairly priced (by Theorem 1, when

L = X, P (X) = πX) and insurers average zero operating profit, which fails to return to

capital backing insurance. This leads to Corollary 1.

Corollary 1 The market never provides full insurance coverage. That is, L < X.

Up to this point, we have shown that, in equilibrium, premiums increase in indemnities,

but the premium to indemnity ratio decreases in the indemnity. Theorem 2 derives the

equilibrium for a given level of capital.
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Theorem 2 There is a unique symmetric equilibrium in the market for insurance. Given a

level of I, insurers underwrite indemnity L (I) , the unique solution to

(πH − πP )L = I,

charging premium P = LπP , where

πP =
π

π + (1− π) eA(L(I)−X)
,

earning gross return of

R (I) =
πH − π
πH − πP

.

Finally, L (I) is increasing in I, yet R (I) is decreasing in I. If R (K) ≥ ρ, then I = K. If

R (K) < ρ, then I satisfies R (I) = ρ.

The intuition behind Theorem 2 is that capital provides the supply of insurance. For

small levels of capital, such that R (K) > ρ, the market for insurance is constrained: insurers

use all their capital to write insurance. However, if R (K) ≤ ρ, insurers will not increase

their underwriting when they gain access to more capital. Thus, not all insurance capital is

used to underwrite insurance, so that underwriting insurance earns return ρ.

The model captures the intuition that premiums and returns to insurance are decreasing

in insurance capital. If capital varies exogenously, an insurance cycle would result. When

capital is scarce, indemnities are low, but premiums are expensive (relative to indemnities).

When capital is plentiful, indemnities are generous, but the premiums are modest (closer

to actuarially fair). Capital of insurers is not exogenous, because insurers can raise capital,

however. The cost of capital to the insurer is γ > ρ, because investors require a risk premium.

Theorem 3 The insurer raises capital K∗ = (1− θ) (πH − πL)
L∗

γ
, and the equilibrium pre-
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mium to indemnity ratio is

P (L∗)

L∗
= πH − (1− θ) (πH − πL)

1

γ
.

Insurers earn only their cost of capital, yet the market provides incomplete insurance coverage

(formally, L∗ < X).

Theorem 3 produces several implications about insurance pricing. Insurance will be more

expensive when the cost of capital is larger, and premiums are more sensitive to the cost

of capital in more catastrophe-driven lines of insurance (lines with higher πH − πL). This

depends crucially on the assumption that insurers can raise capital efficiently. Section 3

shows how asymmetric information restricts the flow of capital, producing insurance cycles.

Corollary 2 Insureds are better off when insurers have more capital, or equivalently, when

the cost of capital is lower for insurers.

3 The Insurance Cycle

This section develops an endogenous capital-driven insurance cycle. Each insurer knows

more about its existing losses than the market. If a catastrophe occurs, the insurer knows its

exposure, but the market does not. For example, the market can see that a severe earthquake

has struck a certain area in California, but the market does not know which insurer is exposed

to those losses. This asymmetric information restricts financing, resulting in an insurance

cycle.

There are two generations of insureds. Each insured has CARA utility and risk of loss X

with probability π. The first generation of insureds is insured at time 0, and their losses will

be paid out at time 2. However, the insurer learns the state of the policies at time 1. Also,

at time 1, the second generation buy insurance, and their losses will be paid out at time 3.
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This overlap is necessary so that insurers (and only insurers) know the state of their early

policies when underwriting late policies.8

We assume the following decomposition of catastrophe risk. In the first period, a publically-

observable catastrophe occurs with probability φ. If a catastrophe strikes, an insurance

company is affected with probability λ, and it is unaffected with probability (1− λ). If an

insurance company is affected, then the probability of loss for their insureds is πH , while

the probability of loss at unaffected companies is πL. If a catastrophe does not occur, all

insureds have a probability of loss of πL. Thus, θ = φλ.

As in Section 2, underwriting and investment decisions can be summarized by how much

capital is devote to underwriting insurance in each state of the world. Define I0 as the capital

an insurer devotes to underwriting insurance for the first generation of insureds. Similarly,

define Inc as the capital devoted to underwriting the second generation provided that there

is no catastrophe, Ic,u as the capital devoted to underwriting the second generation provided

that there is a catastrophe, but that the insurer is unaffected, and Ic,a as the capital that an

insurer devotes to underwriting insurance when there is a catastrophe that affects the insurer.

As in Section 2, indemnity levels {L0, Lnc, Lc} and premiums {P (L0) , P (Lnc) , P (Lc)} are

functions of capital, {I0, Inc, Ic,u, Ic,a}.

Capital structure of insurers plays a pivotal role in the analysis. We assume that insurers

have equity E, but raise new funds with debt contracts.9 The insurer issues debt D0 at time

0 with face F2 for repayment at time 2. However, the insurer has the option to rollover this

debt by repaying C2 ≤ F2 at time 2, so the insurer will need to pay γ(F2 − C2) at time 3.

Also, if the insurer issues more debt ds for s ∈ {c, nc} at time 1, they will have to repay fs at

time 3, but this debt is junior to debt issued at t = 0.10 For simplicity, wealso assume that

8Similar results hold for more than two generations.
9Equity is less information sensitive than debt. Unaffected insurers prefer issuing debt to equity, because

is has a smaller cross-subsidy to affected insurers. Though affected insurers would prefer pooling with equity,
issuing equity would reveal them to be bad quality. Use of debt at t = 0 could be justified by assuming a
small probability that an insurer is poor quality.

10This structure is justified if the agent can divert cash flows across time. The prepayment option could
be restated as assuming the firm can buy back its bonds and the cost of capital is constant.
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they have a similar prepayment option for the late debt, so if they make an early payment

of cs, the remaining payment required on the debt is f2 −
1

γ
cs.

11

Assumption 2: Insureds are sufficiently risk-averse so that insurers provide insurance.

Formally, R (0) > max

{
γ2

1− λ
, γ2

[
1

φ

(
γ

ρ
− 1

)
+ 1

]
,
γ

ρ
γ2

}
.

Because a catastrophe harms insurers’ ability to raise capital, it is a liquidity shock. In

equilibrium, there are two ways that insurers can address catastrophe risk: they can use

precautionary savings or they can borrow, but pay a premium for funds. Assumption 2

guarantees that insurers find it profitable to underwrite insurance. If Assumption 2 fails,

the market for insurance may disappear following a catastrophe, which would be an extreme

form of the insurance cycle.

To provide debt to the firm, lenders must be paid back sufficiently to cover their cost of

capital. For early creditors to be willing to provide capital, discounted expected repayment is

at least as large as the capital that they provide. For late creditors, the discounted expected

repayment also must be at least as large as the capital that they provide, given that their

claim is junior to the early creditors. The insurer will optimally choose their borrowing,

savings, and underwriting decisions. Thus, wewill express the cost of raising debt ds at

t = 1 as κs (ds) for s ∈ {c, nc}. Note that κc is the expected cost to the unaffected insurer.

Similarly, define κ0 (D0) as the cost of raising D0 at t = 0.

Because there is no credible signal of the state of an insurer’s policies, any message would

be perceived as cheap talk, so affected insurers will mimic the unaffected insurers, resulting

in a pooling equilibrium. Thus, Ic,u = Ic,a.

Given the state s ∈ {0, nc, c}, insurers provide an indemnity Ls and charge premium

P (Ls), where P (·) is from Theorem 1. By Theorem 2, insurers earn return Rs =
πH − π
πH − πP

from writing insurance.

There are two things that the insurer can do at time 0: he can underwrite insurance, or

11For clarity, we denote the debt issued at t = 0 with capital letters and debt issued at t = 1 with lower
case letters.
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he can save to underwrite insurance later:

I0 + S0 ≤ E +D0, (1)

where S0 is the insurer’s savings at t = 0. Similarly, underwriting decisions at t = 1 must

be feasible as well:

Ic + Sc ≤ ρS0 + dc (2)

and

Inc + Snc ≤ ρS0 + dnc, (3)

where Sc and Snc are the savings decisions at t = 1 given a catastrophe and no catastrophe,

respectively. Each insurer maximizes its expected t = 3 value, so each insurer’s objective is

Π = γΠ0 + φΠc + (1− φ) Πnc, (4)

where Π0 is the expected profit from underwriting insurance at t = 0:

Π0 = R0I0 − κ0 (D0) , (5)

Πc is the expected profit at t = 1 if a catastrophe strikes:

Πc = RcIc − κc (dc) + ρ2Sc (6)

and Πnc is the expected profit at t = 2 if a catastrophe does not strike:

Πnc = RncInc − κnc (dnc) + ρ2Snc. (7)

Theorem 4 establishes the existence of the insurance cycle.

Theorem 4 An endogenous debt overhang problem limits insurers’ access to credit following
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a catastrophe, limiting provision of insurance (provision of insurance remains constant in the

absence of a catastrophe). Formally, Rc ≥ Rnc ≥ R0 and Rc > R0. If the insurer is allowed

to pay a dividend at t = 0, Rc > Rnc = R0 for all E > 0.

Theorem 4 shows that the return to writing insurance increases following a catastrophe.

By Theorem 3, the premium to indemnity ratio increases but indemnities decrease. This

occurs even though the catastrophe is noninformative of future losses, because risk is assumed

to be independent over time.

Corollary 3 The value of insurers’ debt increases in the absence of a catastrophe. Following

a catastrophe, the value of the equity decreases at affected insurers, but increases at unaffected

insurers.

Because capital acts as the supply of insurance, a catastrophe creates a supply shock to

insurance, resulting in a lower quantity (indemnity) and higher price (premium to indemnity

ratio). By Theorem 2, we can express the premium to indemnity ratio in a state s ∈ {0, c, nc}

as

P (Ls)

Ls
= πH −

(1− φλ) (πH − πL)

Rs

Thus, we can express the impact of the insurance cycle as

C =
P (Lc)

Lc
− P (L0)

L0

= (1− φλ) (πH − πL)

[
1

R0

− 1

Rc

]
. (8)

Thus, we can see how changes in parameters affect C, so we have the impact of fundamentals

on the cycle.

Corollary 4 Insurance is more expensive after a catastrophe strikes than in the absence of

a catastrophe. Formally, C > 0.
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We see here that insurance, measured by premium to indemnity ratio, gets more expensive

following a catastrophe. For tractability, we will focus on two types of equilibria: the savings

equilibrium, and the inefficient borrowing equilibrium. Further, we will assume that insurers

can pay a dividend at t = 0, so that R0 = γ2 (alternatively, we could assume that E is

not too large ex ante). As shown in Theorem 4, in the savings equilibrium, Rnc = γ2 and

Rc = γ2

(
1

φ

(
γ

ρ
− 1

)
+ 1

)
, while in the inefficient borrowing equilibrium, Rnc = γ2 and

either Rc =
γ2

1− φλ2
or Rc =

γ2

1− λ
. We refer to the type of equilibrium by the source of the

marginal dollar of funding.12 These are descriptions of the unique equilibrium on different

regions in the parameter space, not multiple equilibria. By restricting attention to these two

areas (because R0, Rc, and Rnc do not depend on πH and πL), we are able to derive another

implication.

Corollary 5 Lines of insurance that are more catastrophe driven (higher πH−πL) are more

expensive and have harsher cycles.

A risk is more catastrophe driven if it is more correlated with the catastrophe (this is

captured by an increase in πH and decrease in πL so that π remains constant). As shown in

Corollary 5, more catastrophe driven risks are more expensive insurance and exhibit harsher

cycles. This can explain why we do not see an insurance cycle in lines of insurance where

there is no catastrophic element to it, such as life insurance, health insurance and annuities.

Further, this explains why certain lines of insurance appear to be particularly expensive –

the prices must leave enough profit to pay insurers a sufficient return on capital backing

policies.

3.1 Comparative Statics in Savings Equilibrium

This section provides comparative statics for the case when the marginal dollar of funding

for insurers comes from savings, a scenario referred to as the saving equilibrium. In the

12It should be noted that insurers may raise funds via the debt market ex post in the savings equilibrium,
but the marginal dollar of funding comes from savings.
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saving equilibrium, Rc = γ2

(
1

φ

(
γ

ρ
− 1

)
+ 1

)
and R0 = γ2. Thus,

C = (1− φλ) (πH − πL)
γ − ρ

γ2 [γ − (1− φ) ρ]
.

Corollary 6 The insurance cycle becomes more pronounced and the insured are worse off

when ρ is lower.

There are a number of factors that could harm ρ, the effective return earned by insurance

companies on their investments. First, corporate taxes would lower the effective return of

capital held within the firm. Thus, the model predicts that increased corporate income taxes

would worsen the insurance cycle, because it harms the ability of insurance companies to

keep precautionary savings for catastrophes.

Corollary 6 shows a distinct result for regulation of insurers. If capital held by insurance

companies is subject to free cash flow problems (for example, if managers are tempted to

consume excessive perks when there is abundant capital), this will lower the effective return

on investment at insurance companies, ρ. Corollary 6 shows that in the presence of such

agency problems, insureds are worse off. Due to competition, there are no economic profits

in equilibrium, suggesting that insurers may lack incentive to perform governance, because

much of the benefit of governance goes to the consumer. This suggests a role for insurance

regulation. The usual motivation for regulation is protecting unsophisticated policyholders,13

so it may appear that lines of insurance with only sophisticated policyholders should not be

regulated. Corollary 6 suggests otherwise, but this needs to be formalized in a richer model

that incorporates governance.

Corollary 7 Increasing the cost of capital (γ and ρ) dampens the insurance cycle, but harms

insureds.

13The traditional argument for insurance regulation is that insurers would otherwise write contracts that
exploit policyholders, because the policyholders misunderstand the contract. Plantin and Rochet (2009)
argue that regulation is necessary to protect policyholders, not only in bankruptcy, but also in preventing
financial distress. They argue policyholders will not represent themselves due to the free-rider problem.
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When the cost of capital is higher, the insurance cycle is less volatile. Holding γ − ρ

constant14, a simultaneous increase in both γ and ρ will dampen the effects of the insurance

cycle. That is, this change will produce a decrease in C. However, this change causes

insurance to be more expensive in both states of the world, so insureds are harmed, even

though the cycle is smaller.

Corollary 8 When the risk premium increases (increasing γ but not ρ), the insurance cycle

is harsher iff φ is large enough. For a fixed φ, the severity of the insurance cycle in inverted

U-Shaped in the risk premium.

When the risk premium increases, the insurance cycle will become more severe for risks

that occur often enough, but the insurance cycle will be dampened for the very unlikely

events. However, because the cutoff for φ is increasing in γ, for a fixed φ and ρ, the severity

of the insurance cycle is inverted U-Shaped in γ.

Corollary 9 As the catastrophe becomes more likely (φ) or more widespread (λ), the cycle

will be dampened. However, holding the total risk of catastrophe (φλ) constant, if the catas-

trophe becomes less likely and more widespread, the insurance cycle will be more pronounced.

As the catastrophic event becomes more likely, the insurer devotes more capital to it, and

thus the cycle diminishes. More interesting is the result that if the catastrophe becomes less

likely but more widespread, the cycle becomes more pronounced. Insurers can only profit

from the catastrophe if they are not hit, so as a catastrophe becomes more widespread, it

becomes less profitable to save capital to back insurance. This results is a decrease in welfare,

because the same insurance is provided in the absence of a catastrophe, but less is provided

when a catastrophe occurs.

Corollary 10 Insurance cycles will be harsher during financial crises.

14The proof of Corollary 7 shows the result also holds if
ρ

γ
is constant.
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Insurance cycles will be more pronounced in bad times than during good times. We proxy

for this by examining what happens to premiums when insurers observe a low realization of

ρ. In the absence of a catastrophe, there will be no effect on prices, because insurers have

access to capital. However, when a catastrophe occurs, and there is low realized ρ, we will

see a shock to capital backing insurance and thus an increase in premiums. Therefore, for a

small change in ρ,
1

Lnc
P (Lnc) =

1

L∗
P (L∗) and is thus unchanged, while

1

Lc
P (Lc) increases.

3.2 Comparative Statics in Inefficient Borrowing Equilibrium

This section provides comparative statics for the case when the marginal dollar of funding

for insurers comes from borrowing following a catastrophe, a scenario referred to as the

borrowing equilibrium. Because there is a debt overhang problem, unaffected insurers must

pay a premium for funds. If insurers are moderately constrained, even affected insurers,

which have measure λ, will be able to repay late debt if they are not affected again, which

happens with probability φλ. Thus, lenders are repaid with probability 1 − φλ2, so the

cost of capital to unaffected insurers is Rc =
γ2

1− φλ2
(because unaffected lenders always

repay). If insurers are very constrained, affected insurers never repay, so the cost of capital

to unaffected insurers is Rc =
γ2

1− λ
. Because insurance is provided efficiently in the absence

of a catastrophe, R0 = Rnc = γ2, we know the severity of the insurance cycle.

Corollary 11 The cycle is less severe when the cost of capital is higher.

Corollary 11 shows the analogous result to Corollary 7: when the cost of capital is higher,

the insurance cycle is less severe. Because the cost of capital is higher, consumers are worse

off.

Corollary 12 If insurers are moderately constrained, the severity of the cycle is inverted

U-Shaped in the probability of a catastrophe, φ and the severity of the catastrophe, λ.

Insurance is more expensive when there is more catastrophe risk, both in normal times

and following catastrophes. For small levels of catastrophe risk, the impact on premiums in
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normal times is small enough that increased exposure to catastrophe risk results in a larger

cycle. When catastrophe risk becomes sufficiently prevalent, however, insurance when in

normal times becomes expensive enough that the difference starts to decrease.

Corollary 13 If insurers are very constrained, the severity of the cycle is decreasing in the

probability of the catastrophe, φ, and inverted U-Shaped in the severity of the catastrophe, λ.

When insurers are very constrained, increasing the probability of the catastrophe de-

creases the severity of the cycle. The severity of the catastrophe has a similar intuition as

in Corollary 12. Similar intuition leads us to the following corollary.

Corollary 14 For a given level of catastrophe risk, φλ, more widespread catastrophes (higher

λ, lower φ) are associated with more severe cycles.

4 Conclusion

In this paper, we model a perfectly competitive market for insurance where insurers hold

capital to pay operating losses in any state of the world. Insurance provided to insureds,

and thus their utility, is increasing in the amount of capital that insurers have.

This paper is a dynamic model, in which insurers raise capital to back insurance. If a

catastrophe strikes, the market will not know the impact that this catastrophe had on a

given insurance company, limiting the insurer’s ability to access capital. This will cause a

decrease in the provision of insurance, and thus a drop in welfare to the following generation

of insureds.

We find several results with this paper. First, as agency and tax costs increase for

insurers, the insurance cycle will become more pronounced. Also, as a risk becomes more

catastrophe driven, or as scope of a catastrophe increases, the insurance cycle becomes more

pronounced. Finally, insurance cycles will be more pronounced if a catastrophe occur during

a financial crisis. This holds because when a catastrophe occurs, the insurer will be unable to
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raise capital in the market, and the returns of their existing capital will be lower because of

the financial crisis. This will result in an even lower provision of insurance than the normal

catastrophe.

This paper also has another interesting result: in a perfectly-competitive market for

insurance where insurers hold capital to back insurance, there will never be full insurance.

This holds because the insurer must earn a sufficient return on their capital, but when the

market for insurance is perfectly competitive and provides full insurance, insurance will be

fairly priced. Because fairly priced insurance by definition breaks even, this cannot be an

equilibrium. Therefore, our model can help explain why we tend to see incomplete insurance

coverage provided in the market. The model further predicts that insurance provision will

be closer to efficient in certain lines of insurance, such as life, than others, like property-

casualty, because the provision of insurance is decreasing in how catastrophe driven a line of

insurance is.
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