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Proof of Theorem 1. The problem is modelled as a sequential game. At ¢t = 0, banks offer contracts, {rlT, rho, rgT}
to investors, committing to capital allocation {S-, K, }. Next, investors decide their investment strategy, {Sa,da,ds}.
At t = 1, investors decide whether to withdraw from each bank, w, = 1, or to stay in each bank, w, = 0. At t = 2,
the risky project is realized and all assets are divided among investors remaining in the banks.! We will solve the
game by backward induction. Finally, we will show that banks have no incentive to change their capital allocation
ex post, banks implement the socially optimal allocation, and that banks are exposed to the risk of runs.

To fix notation, suppose that the bank invests in {Sr0, K-0} at t = 0. After paying to investors who withdraw
at t = 1, the bank has {S;1, K;1} remaining. Thus, if (1 —n,) percentage of deposits remain in bank 7, each unit

of deposit receives [Sr1 + 1 RK-1], where 1, is the indicator of success for type 7 assets. Thus, the expected

1
1=n.
value of remaining in bank 7 at t = 1 is ﬁ [Sr1 + p (07) RK-1]. Because budget constraints for the bank will bind

h
in equilibrium, Sy0 = Ar1, 4+ (1 = A) 7h,, Kr0 = (1= X) %, and S + Ko = 1.2
At t = 1, investors decide whether to withdraw, setting w, = 1, or stay in the bank, setting w, = 0. Suppose that,
in equilibrium, share 7. of deposits are withdrawn at ¢ = 1. Payouts depend on the solvency of the bank. If the bank

is solvent, investors who withdraw receive r1, from bank 7 at ¢ = 1; investors who stay in the bank receive a share of

remaining assets. Late investors who remain in the bank thus have an expected payoff of 171777 [Sr1+p(07) RK-1].
In contrast, if the bank is insolvent, some investors who withdraw receive r1, at ¢ = 1, but some receive nothing (due
to the sequential service constraint); investors who stay in the bank receive nothing because S-1 = K,;1 = 0 when
the bank is insolvent.

Because banks are benevolent, they will liquidate assets efficiently, so they will use the safe asset first, then the

risky second (because £ < 1 < p(fr)R). Therefore, for n. < 20 S, = S,o —n,r1, and K;1 = Ko, but for

rir’

N, € (ffo, %), Sr1=0and K;1 = Kro — 7 (1,717 — S-0). Finally, if n, > %, the bank is insolvent:
Sr1 = K71 = 0. Investors who withdraw receive ri, for sure if the bank is solvent; if the bank is insolvent, they

receive a lottery that pays r1, with probability % and 0 otherwise. Thus, when 7 other investors withdraw

at t = 1, if a late investor stays in bank 7, he expects to receive y- (7,,6r) per unit of investment, where

171,,]7_ [STO —N:Tir +p (eT) RKTO] n- S f;(_)
yr (1,,0:) = BIDR (R o~ L (n ryy — Sr0)] o, € (S0, Srttn) (1)
0 n. > Sro+£Kro
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Alternatively, if the late investor withdraws from the bank at ¢t = 1, he receives, per unit of investment,

Soo4lKoo
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Define u (wa,ws,n4,Ng) as the expected payoff to late investors as a function of their withdrawal decisions at

each bank, wa and wp, and the withdrawal decisions of all other investors at each bank, n, and ng. Thus,

u(wa,wp,na,np) = > A{wrzr () + (1 —wr)y- (n,07)} dr.
Te{A,B}

Because the payoffs from the two banks are additively separable, the decision to remain in a bank is independent

! This assumption could alternatively be stated as assuming that any surplus earned is returned to depositors, and
investors who remain in the bank bear the cost of a shortfall.

2Though it would be feasible to provide safe assets for 71, and 75, by investing in the risky asset and liquidating
it at ¢ = 1, it would be inefficient to do so, because £ < 1. Therefore, Sro and Ko optimally implement 7.



of the other bank. As in Diamond and Dybvig (1983), if a sufficient number of other investors withdraw early from
bank A, n, > %, all investor find it optimal to withdraw early as well: u (1, j,n4,1n5) > u (0,4,m4,ng) for all
j €{0,1} and for all nz when 7, is large enough. This is a panic run, which is not the focus of our paper. Because
we only consider fundamental runs, we suppose late investors remain in banks unless it is optimal to withdraw
when only early investors withdraw. Formally, investors stay in bank A iff w (0,7, A, \) > w (1,7, A, A), and investors
stay in bank B iff u (5,0,A\,A) > u (5,1, A, A). Conversely, if u (1,7, A) > (0,7, A, A), all investors run bank A,
and if u (5,1, A\, A) > u (5,0, A), all investors run bank B. Therefore, investors stay in bank 7, setting w, = 0,
yr (N, 07) > 2z (A). Because Sr0 = Arir + (1 —)) rho, A < %7 s0 yr (A, 07) > zr (\) iff rh + p(67) b > .
Alternatively, if ri, > rb, + p(@T)TST, investors will run bank 7, which implies that investors receive ri, with
probability x, = % Define C; as the set of incentive compatible contracts, and C¢ as the set of contracts
that induce a run.
Now we have determined the optimal withdrawal decisions of investors at ¢ = 1, consider optimal investment
decisions by investors at t = 0. The investors’ problem is
V= max Uo (3)
s.t. Sa+da+dp <2

Let k be the multiplier for investor’s budget constraint, let L be the Lagrangian function, and let D* (r) be the set
of solutions to this problem, given the contract offered by banks r = {ra,rg}. We will now characterize the set of
solutions to this problem.

If rr € C¢, 7 € {A, B}, both banks offer contracts that induce investors to run. Investors’ expected payoff is

from investing {Sa,da,ds} is Us = Trr, where

Yrr = AYErr + (1 — A) [Sa + xaT14da + XpgT1BdB], (4)

Terr = XaXpt(Sa+r1ada+718dB) + XA (1= Xp)u(Sa+r14dA)
+ (1= x4) xpu(Sa +r1BdB) + (1 = x4) (1 — xB) u(Sa),

and x, = S0t Note aa—SLa = )\B’I(;%GRR + (1 =) — Kk, where

T1r

OY ERR
08,

= xaXpt (So+71ada +7r1dB) + x4 (1 —xp)u (Se +7r14d4)
+ (1= x4) xp¥ (Sa +7118dB) + (1 = x4) (1 — xp)u' (Sa),
and ;TL; = )\MBETRR + (1 = A) x,7r1r — Kk, where

0Y ERR

7 A Xrtt (Sa 4 11rdr +r10der) Xorie + (1= X ) 0 (Sa + 117dr) X717

Note x,rir = Sro + £Kro < 1 because S;0 + Kro = 1 and £ < 1. Because u” <0, E)T@E% < M;E%. Therefore,
d; =0 and S, = 2: if both banks offer contracts that induce investors to run at ¢ = 1, investors will refuse to invest
in that bank at ¢ = 0. Investors receive Vautarky = Au(2) +2 (1 — A).

If r, € C. but v € C¢,, bank 7 writes a contract inducing investors to remain in the bank, while bank 7’ writes

a contract inducing investors to run. Investors’ expected payoff is Up = Y, (07), where
Yo (0:) = ATrr +(1—N\) [Sa ¥ xriprdy (r; L p(0,) r;) d,} , (5)

and
TET = XU (Sa, + TleT + TlT/dT/) + (1 - XT’) u (Sa + TleT) .



Note BBT )\dTET + (1—=X) — Kk, where Bd Zr = y ' (S, —l— 7"1Td + rlT/dT/) + (1= x,) v (Sq +r1rdr). B%L/ =
M (Sq + rirdr + 7‘17—/d.,—/) X, 717 + (1 = X) X, 71, — k. Thus, ad < Wv so d,» = 0. Therefore, investors will refuse
to invest in any bank that writes a contract inducing runs. Because d =0, aaSL =M (Se +rird:)+ (1 =) — &
and % =M (S +71rdr) e + (1= N) (Tl27 +p(07) TST) — K.

Finally, if . € C; for 7 € {A, B}, investors will run neither bank. Investors’ expected payoff is Uy =

Y aB (01,071), where
Tan (04,08) = Au(Sa + r1ada +rids) + (1= A) [Sa+ (rsa+p(0a)r5a) da+ (rho +p(0n)145) da] . (6)

Thus, as =M (Se +114da +718dB) + (1 — X) — k and
W =M (Sq +114da +T1BdE) 1 + (1 = X) (7"127. —|—p(9T)7'§T) — K, for 7 € {A, B}.

Therefore, we have characterized the optimal investment decision by investors given contracts offered by the
banks (with FOCs). Let us now turn to the optimal contracts offered by banks. We will solve the bank’s problem,
ignoring the IC constraints, then verify that the IC constraints are satisfied. Thus, Up (r,d) = Tas ({61,01}) |r,a on

this region. Banks are benevolent, so bank 7 solves

max \%4 (7)
)
s.t. Mir 4 (1= A)rh + (1 =) % <1
Suppose to the contrary that r5. > 0. Consider an alternative contract #, such that #1, = ri,, 7, = 0 and

7. = rh + Rrhy.. Pick d € D*(r) and d € D* (7). By switching from r, to 7,, the bank provides investors

with utility V () = Up (F, ci) By definition of the maximum, Up (r d) Uo (7,d), and Up (7,d) = Uo (r,d) +
(1=X) (p(@r)R—1)rh.d,. Also, Uy (r,d) = V (r). Therefore, V (¥) > V (r), with strict inequality if d, > 0.
Therefore, rh, = 0 in any optimal contract.

The budget constraint binds in equilibrium, so r%, = % (1 — Ari7). Thus, V (r) = Up (r,d), and we can express
U (r,d) =Au(Sqe +r1+dr +117d) + (1= A) Sa+ (1 — X)) p(07) rhd. +p (0r) R(1 — Arir)d-.

We will now prove that banks set S, + r1-d, + r1,+d.s = ci, where v’ (c]) = p(61) R. Suppose to the contrary that
Sa + r1rdr + r17d < ¢i. Consider the alternative contract #1» = r1r + J§, where ¢ is small. V (7) = U (f, J) and

U (7’, J) > U (7,d). By first-order approximation, U (7,d) — U (r,d) = X [u/ (c1) — p (01) R] d-8, so U (7,d) > U (r,d),

which implies that V (7) > V (r), with strict inequality if d- > 0. Similarly, if So + r1-dr + r1,7d,s > ci, consider

F1r = 117 — 0 for small 6: U (7,d) — U (r,d) = X [p(07) R — v’ (c1)] d+6, so U (7,d) > U (r,d) and V () > V (r), with

strict inequality for dr > 0. It is optimal for investors to set S, = 0 if p(HT)réLT > rir > 1 and one inequality is

strict, so dr > 0 for at least one bank. Therefore, banks set 71 so that u' (c1) = p (0r) R. Because u’ (2) > p (6r) R,

Sa +7114da +7118BdB > 2, so one of the banks offers 1, > 1, and investors set S, = 0. Note that it is WLOG optimal
R

for both banks to set r{r = ic}, where v’ (c}) = p(0r) R, 742" = 0, and 757" = & (1 — Ar{Z) and, from investor

FOCs, it is WLOG optimal for investors to set d = 1 (investors are indifferent between all allocations such that
da+dp =2).
Because the budget constraint binds at each bank and households invest all wealth at banks, da + dp = 2,

we can express the value late investors receive by staying in the bank as Uy (67) = p (1) R2:‘;T. By (20), 2 <

cl < %7 Ui (07) > %, Thus, Ui (1) > i, so (12) is lax. Similarly, by offering symmetric
contracts, both (13) and (14) are lax as well. Banks implement the optimal contract with capital allocation S-o = Arf~
and K-o =1— Ar{>

Banks are dynamically consistent — if they had the option to secretly change their capital allocation ex post,
banks would ex post select the same allocation. If the bank deviated to Sr0 + € and K,9 — €, where € > 0, investor

payoff would change by (1 — A) (1 —p(07) R)e < 0. Similarly, if the bank deviated to Sro — e and Ko + ¢, investor



payoff would change by pr)R (1-

%) € < 0. Thus, any ex post deviation from the ex ante optimal capital allocation
harms the bank’s ObJCCthO.

We will now show that banks implement the socially optimal allocation with linear contracts. Consider the social
planner’s problem. The social planner can allocate resources to the early type through the storage technology, and
can allocate resources to the portfolio of late investors: the social planner allocates c¢1 to early consumers and portfolio

{cg, 3, c2B} to late consumers. This allocation provides investors with utility ¢ ({0, 0r}), where
—
L{(G):)\u(61)+(1—)\)[czs—i-p(@A)c‘gA—Fp(@B)cQB]. (8)
The planner’s problem is

max Uu{0r,0r})

s, & 5
s.t. ACl‘i’(l*A) C2+§+§ SQ

Let k be the multiplier for the budget constraint and L be the Lagranglan function. The FOCs are aL =M (e1) — Ak,
8‘962 1-XA)—-(1-=Xk, and % = (1-=X\)p(0r) — L52k. Because T < RgCL,, s =0. Further7 chg = % =0
implies Kk = u’ (c1) = p(f7) R. Thus, the social planner allocates cj to the early type. Also, k > 0, so the budget
constraint binds, and thus, ¢4 +c% = % (2 = Aci). It is WLOG optimal for the social planner to set & = . Note

that this allocation is implemented when both banks offer contracts r2* and investors set d. = 1.

Finally, because r{> > 1, y, (1) = 0 < 2, (1), so banks are exposed to the risk of runs. That is, runs are feasible
because Sro + Ko < r{r, but runs are off-equilibrium, because investors would refuse to invest in the bank if they
expected to run. m
Proof of Theorem 2. The timing of the problem is the same as that in Theorem 1, as are the cash flows. At

t = 1, investor payoff given withdrawal decision {wa,wp}, is now

u(wa,wp,na,mp) =min - > Awrzr (n,) + (1= wr)y- (n,,0-)} dr.
0cCre{A, B}

where yr (n,,0;) is from (1) and z- (n,) is from (2). Because we focus on fundamental runs, we suppose late investors
remain in banks unless it is optimal to withdraw when only early investors withdraw. Formally, investors remain in
both banks iff « (0,0, X\, ) = max; jc{o,13 ¢ (4,4, A\, A), so lettin% r=A{rr} ciany let Cag (r) be the set of contracts
that induce late investors to stay in both banks. Similarly, let C'a (r) be the set of contracts that induce late investors
to stay in only bank A but withdraw from bank B, u (0,1, X\, \) = max; ;0,13 % (4,7, A, A) , and let Ch (r) be the set
of contracts such that « (1,0, A\, \) = max; jeqo,13 % (4,4, A, A) . Finally, let Co (r) be the set of contracts that induce
late investors to withdraw from both banks, so that u(1,1,A,A) = max; je(o,1} © (4,4, A\, A) . We will assume that
investors who are indifferent will stay in the bank (ties go toward stability), so define Cap = C’AB, C, = C’T\C’AB,
and Cy = éo\ (CapUC4UCB).

We have characterized the optimal withdrawal decisions of investors; consider optimal investment decision by
investors at ¢ = 0. Similar to the proof of Theorem 1, investors solve (3). If banks offer contracts in Cp, investors
earn utility Up = Trr, as defined in (4). Because Trr does not depend on 6., by identical logic to the proof of
Theorem 1, investors refuse to invest in either bank, setting Sq = 2 and earning Vautarky-

If banks offer contracts in C, investors earn utility Uy = Y, defined in (5). By identical logic to the proof
of Theorem 1, investors refuse to invest in bank 7', d,, = 0. However, on C,, investors will only have exposure
to type T assets, so 8¢ = 0. Thus, r € C, requires that b, + p(@L)réLT > r1,. Combining budget constraints,
Arir + (1= X) (TZQT + %) =Land p(AL)R< 1,if ri, > 1, vh. +p(0L) 75 < 1, s0 C, is empty if 71, > 1. Because
d. =0, aasL =M (Se +71-d-)+ (1 — A) —k and gTLT = (Sa +71-d-) 1+ (1= A) {rlzf +p(0L) réﬂ — k. Because
Arie + (1= A) (TIQT + r%) =1,pOL)R<1, 1, <1, and v (2) > 1, aasL >3 aL , with strict inequality if 71+ < 1 or
ri_ > 0. Thus, it is WLOG optimal for investors to set S, = 2 when banks offer contracts in C.



If banks offer contracts in Cap, investors earn Uy = T ap, defined in (6). This implies that ;TLQ =M (e1) +
(1-X) =&, W =M (c1)r1r 4+ (1 = A) (rh, +p(02)75,) — K, for 7 € {A, B}, where ¢1 = Sa + r1ada + r1pdp and
0% is from Lemma 2. Suppose to the contrary that investors have corner beliefs and exposure to risky assets: 37 s.t.
rhd. >0and 02 =0r. Because re CAB, rir <rh, +p(01) rk . Because r% > 0, and the budget constraint must
be satisfied, this implies that ;7= < as . Contradiction. Thus, investors are only willing to invest in risky assets if
they have interior beliefs. Also, TQTdT > 0 only if ’I“QT/dT/ > 0.

Now that we have solved the optimal investment behavior by investors, we will solve the bank’s problem. As
we have shown, if either bank violates the IC constraints, investors will refuse to invest in either bank, so banks will
satisfy the IC constraints. We will guess that IC constraints (13) and (14) are lax, then verify that these constraints
are satisfied. The banks are benevolent, so bank 7 solves

max \%
5
s.t. )\T1T+(1—A)T27—+(1_)\)#§1
N
TleT —+ TIT'dT/ S Lnil’l U1 (0)

0ecC

where V' and d are the value function and solutions to (3), respectively.

Safe Equilibrium: If the other bank sets T;LT/ = 0, it will be optimal for bank 7 to set r%. = 0. Suppose
to the contrary that 3. > 0. By Lemma 2, 0, = 0, for all v% > 0. Consider an alternative contract 7, such
that 71, = rir, T, = 15 + % and 75, = 0. Pick d € D* (r) and d € D* (7). By switching from r, to 7, the

bank provides investors with utility V (7) = Up (F, cZ) By definition of the maximum, Up (f,ci) > Uy (7,d), and
Uo (7,d) = U (r,d) + (1—=XN)(1—p(6r) R) %dn where U (r,d) = V (r). Therefore, V (F) > V (r), with strict

inequality if d, > 0. Thus, 7%, = 0 in any optimal contract. Therefore, if one bank does not invest in the risky assets,
the best response of the other bank is to not invest either. Because u’ (2) > 1, banks provide as much insurance
against the liquidity shock as possible, so the IC binds. Thus, 1, = 5, = 1 and r%. = 0. Note that (13) simplifies
to rh, > 717, so it is satisfied. Similarly, (14) is also satisfied. When faced with this contract, investors find it weakly
optimal to set d- = 1. Because y- (1,0) = 1 = 2z, (n) for all 5, banks are not exposed to the risk of runs.

Risky Equilibrium: We will show that the equilibrium from Theorem 1 is also an equilibrium here. If both
banks offer 2%, note (12) is lax at both banks, so we will guess that it is lax. Let s, be the multiplier for the budget
constraint of bank 7, and let L, be the Lagrangian function for bank 7. Let ¢c1 = Sy +r1ada +ripdp. If both banks
invest in risky assets, r%. > 0, investors optimally invest so that they have interior beliefs in equilibrium. Because
beliefs are interior, it can easily be shown that the objective is strictly concave, so there is a unique continuously
differentiable {S.,da,dg}. 2L~ = \u' (1) dr — Akir, "’L,: =1 -XNdr — (1 -\ k-, and gfg: =1-Np(0))d

or T
(1-X)%. gfl: = 0 iff K, —1u (c1)d-. Because gf; e 0, kr = p(0%) Rd,, so v (c1) = p(0%) R. Because this
holds for both banks, this implies that 6% = 0%, so by Lemma 2, r54da = rigdp. Also, 0% = 0p, and p (67) R > 1,
which implies that R oL > g = so b, = 0. Note the FOCs are satisfied if each bank offers r?* where rir = ;c’{,
u' (¢f) = p(Or) R, ry) 2— 0, and rgf* = 2 (1= ArfY). Because r{y > 1 and p(67) R > 1, So = 0. Because banks
offer symmetric contracts, r£* = r;, investors optimally set d. = 1. Thus, we can express Uy (67) = p (0) RQI__A? .
By (20),2 < ¢} < %, which implies that Uy (07) > %, so (12) is lax. By identical logic to that

in the proof of Theorem 1, banks have no incentive to change S-o and Ko ex post. Because r1 > 1, C; is empty:
it is better to run both banks rather than just one, so (13) and (14) are lax when banks offer symmetric contracts.
Further, because 7{~ > 1, y, (1,0-) = 0 < 2z, (1), so banks are exposed to the risk of runs in this equilibrium. Because
p(O7)rh. > ri. > 1, 72* Pareto dominates rZ*.

Finally, we will show the risky equilibrium implements the socially optimal allocation. Consider the social

planner’s problem, similar to the Proof of Theorem 1. When the social planner allocates ¢1 to early consumers and



{62 s e } to late, investors receive min GCZ/{ (7), where U is defined in (8). The planner’s problem is

max min U (7)

¢ dec
s, & 5
s.t. ACl-’—(l_)\) 02+§+§ SQ

Let x be the multiplier for the budget constraint and L be the Lagrangian. The FOCs are aTLl = X/ (c1) — Ak,

chz (I=XA)—(1—=AX)k, and chg =(1—\)p(0%) — 552K, where 6% is from Lemma 2 (substituting in c5 for rh.d,).

Because 5(0A+03) = Op, 37 s.t. 0z > Or, so % < RaaLT7 which implies ¢5 = 0. Further
€3
aL

k = p(6%) R, which implies 8% = 0%, so (by Lemma 2) ¢4 = ¢¥ and 6% = 6. 5. = 0 implies u "(c1) =p(Or) R

, B—T = 0 implies
Note this allocation is implemented when banks offer r2* and investors set d- = 1. ®
Proof of Theorem 3. The proof is similar to the proof of Theorem 1 and Theorem 2: the problem is similarly
modelled as a sequential game. At ¢t = 0, banks offer contracts {rlf,rlz.r,rﬂ} to investors, committing to capital
allocation {S;, K-}. Next, investors decide their investment strategy, {Sq,da,ds}. At ¢t =1, investors decide whether
to withdraw from each bank, w, = 1, or to stay in each bank, w, = 0. Distinct from Theorem 1 and Theorem 2,
however, is that investors can condition their withdrawal decisions on the signal s;. The signal s, give the payoff
given success of projects at t = 2: R, = s;R. Recall the structure of s.: with probability e, there is bad news about
type T assets, so s, = ¢ and s,» = 1, for T € {A, B} and 7’ # 7. With probability 1 — 2¢, s, = 1 for both banks. At
t = 2, the risky project is realized and all assets are divided among investors remaining in the banks. We solve the
game by backward induction.

Uncertainty-Neutral Investors: The cashflows are similar to that in the proof of Theorem 1, except that if

the payoff of remaining in the bank depends on how bad the shock is. If the shock is not sufficiently bad, ¢ >

(9T)R’
banks prefer to liquidate the safe asset first, then the risky asset. Thus, for s; € {¢, 1},
17177 [Sro — 0,711+ +p(0-) s: RK 0] N, <
St Sr0 Sro+tK,
U (s Ors) = 3 R (Ko — L (g,ra = S0)]  mee (522, +7K) ‘ (9)
0 n, > %

Alternatively, if the shock is very bad, ¢ < (9 R

assets, whether investors run the bank or not. This implies that the expected cashflow of remaining in the bank

the bank finds it optimal to liquidate their entire position in risky

following bad news is

0 7]7’ STUi{KTO : (10)

= [STO + eKTO - 7].,-7"17'] n S M
(777-’ T7¢) = { 1o "

Because we focus on fundamental runs, similar to the proof of Theorem 1, investors find it optimal to remain in bank
7 iff y- (A, 071,5;) > z- (A), where z- is given in (2). Thus, r € C1 iff late investors optimally set w, = 0 if s, = 1,
which holds iff 74, + p (87) 75, > ri,. Similarly, if ¢ > ﬁ7 r € C¢iff rh. + p(67) ¢rh. > ri,. Alternatively,
if ¢ < p(@ﬁ’ re C¢iff ry, + L1l > ri.. Note that C¢ C CL. Thus, bank 7 can decide whether to write a

R -
contract in C¢, by setting 1, < 75, + p (1) érl . where ¢ = max{ }, a contract in CI\C?, by setting

rhe +p(01) drh. < rir <rh.+p(0r) 7., or a contract in CL¢, by setting ri, > rb, +p (07) 5.
By identical logic to that in Theorem 1, investors would refuse to invest in a bank that will be run with probability
1, setting d, = 0 for that bank. Thus, we can restrict attention to contracts in C. Because bad news about each

bank occurs with disjoint probability e, investor utility is
T=(1-2)Tn+eTa+eTpm,

where Ty is the expected utility of investors when there is no news, and Y, is the expected utility of investors when



there is bad news about bank 7’. Because banks will offer contracts in C}, investors remain in both banks if there is

no bad news. Thus, if there is no bad news, s = 1 for 7 € {A, B}, investors earn Tn ({01,07}), where
T (7) = At (Sa + rirds + Tiprde) + (1= A) [sa + (réT +p(65) T;;) dr + (rgf, +p(0,) r;,) dT/] .

In contrast, if there is bad news about bank 7', investor utility depends on the type of contract bank 7’ wrote. If

bank 7/ wrote a contract in C’f,,

investors will stay in both banks, so their expected payoff is Y- ({07,07}), where
T, (7) — At (Sa + 1rds 4 rrprdi) + (1= ) [sa n (r;T +p(6,) r;z) dr + (rgT, L0, ;w;p) d,,] ,

and ¢ = max {d), ﬁ}. If bank 7’ wrote a contract in Ci/\Cf,, investors will run bank 7/, so their expected payoff
is Tr ({0r,61}), where

TT (7) = >\ [XTIU (Sa + TlelT + Tlr/d‘r’) + (1 - X,J) u (Sa + TleT)]
+ (1 - )‘) |:Sa + (TZQT +p (67') TST) d17‘ + X.,-/'rlq—’dl-r/] 5

SprottE g

Typ!

h
Xy = , Spo=Ar1r + (1 =X rb., and Koo = (1 — ) %. We can express investor utility as

T:TN—Fa(TA—f—TB—QTN).

Also, all left-hand and right-hand derivatives of Yn, T4, and T p exist and are finite.
Thus, we have the optimal withdrawal decisions by late investors; consider optimal investment by investors.

Investors solve

vV = max T
Sa,da,dp
s.t. Sae+da+dp <2

Let k be the multiplier for the constraint, and let L be the Lagrangian function for investors. For signs z € {—,+},

8IL _ / azTA BII:TB azTN

55, ~ o (Setrirdir Frimde) +(1=4) Fe < 95. 05, 2 as. ) "
0: T /
8d = )\uz (Sa + 7ﬂl'rle + TlT/dT/) Tir + (1 - A) (Tl27' +p (HT) 7"37')
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If ri; > 1and rh, +p (0r) b >0, g'fif > gg’;, so Sq = 0. Let D* () be the set of optimal investment policies for

investors, given contracts r = {ra,rs}.

Now we have the optimal investment policy by investors, D* (1), consider the optimal contracts offered by banks.
Guess that IC constraints are lax, then verify later. Bank 7 solves

max 14

Tr

h
s.t. Arir 4+ (1 —X) (réT + %) <1

Investor utility is increasing in 7, so the budget constraint binds. Suppose to the contrary that v, > 0. Consider
an alternative contract 7, such that 1, = 71,, 75, = 15, — & and 74, = r_ + 6R, for & small and positive. Pick
d € D* (r) and d € D* (7). By switching from 7, to 7, the bank provides investors with utility V (7) = T (F, cf) By



definition of the maximum, T (F, J) > (7,d). Also,
T (7';7 d) -7 (r, d) =AYN + €(ATA +AYp — QATN) R

where AT, = YT, (7,d) — T, (r,d). If d, = 0, AT, = 0 for 7 € {A,B,N}, so the rb, = 0 is WLOG optimal.
Ifd: >0AYN =(1-=XN)(p(@r)R—1)d-0, and p(f7) R > 1, so ATx > 0. Because all left-hand and right-hand
derivatives exist and are finite, AT, is finite, for 7 € {4, B, N}. Thus, for € small enough, Y (7,d) > Y (r,d) . Because
Y (r,d) =V (r), V (¥) > V (r), with strict inequality if d, > 0. Therefore, 75, = 0 in any optimal contract. Similarly,
Bank 7 sets rir so that ri,d, 4+ r1,/d,» = & Suppose to the contrary that r1,d, + r1,+d,» < & and dr > 0. Consider
deviation 71 = 71, + 8, for small positive 8, so 74, = rb — Rﬁd (the budget constraint binds). In this case,
AYNn = A(¢ —p(07) R)d-6 > 0. Because ¢ is small, this implies V (¥) > V (r), so contract r cannot be optimal.
Suppose to the contrary that ri,d; + r1+d,» > é and d, > 0. Consider deviation 71, = r1 — §, for small positive J,
so 75, = 4, + R12;6, which implies AYx = A (p (67) R — 1) d.6 > 0. Because ¢ is small, this implies V (7) > V (r),
so contract r cannot be optimal. By the FOCs for investors, if either bank offers a contract such that r1- > 1 and
rhe +p (61) rh_ > 1, with at least one inequality strict, investors will set S, = 0, so they invest in at least one bank.
Therefore, d. > 0 in equilibrium, so any optimal contract offered by the banks will set intermediate payoffs so that
g and 73" = (1 — Ar1,), all ICs are lax because 2 < & < 2%,

investors optimally set d. = 1. Investors will run following bad news on bank 7 iff ¢ < ﬁ, resulting in the
Tor

riada + ripdp = ¢. If banks set ri, = and
expression for ¢ in the statement of the theorem.

Uncertainty-Averse Investors: When investors are uncertainty averse, the withdrawal decisions become
interrelated, so the optimal run behavior of investors depends on the specific contract offered by banks. Investors
who remain in a bank following bad news will receive either (9) or (10), depending on the size of ¢. Further, investor
beliefs are now given by the worst-case scenario, as stated in Lemma 2. Given bad news is realized on bank 7/, we can
find the optimal withdrawal behavior of late investors, and thus the utility of investors, Y,. As above, all left-hand
and right-hand derivatives of T4 and Yp exist and are finite. Similar to the proof of Theorem 2, investors will
refuse any contract that induces runs with probability 1, so it cannot be optimal for banks to offer such a contract.
Therefore, it is optimal for the bank to offer a contract that induces investors to remain in both banks if there is no
bad news. Thus, if there is no bad news, investors receive T n (7“), where Y is defined in (11) and 9 is from
Lemma 2.

Thus, investor’s expected payoff, given their optimal withdrawal strategy and the contracts from the bank, is
T=(1-2)YTn +eYa+eYp. Thus, investors solve

vV = max T
Sa,da,dp
s.t. Soe+da+dp <2

Let k be the multiplier for the constraint, and let L be the Lagrangian function for investors. For signs z € {—,+},

&EL _ / azTA BIETB 8IL‘TN

55, ~ Nz (Satrirdir Frimd) +(1=4) Fe ( 95. T 0s. 2 as. ) o
893T ! a
ad = )\’LLI (Sa, + rlelT + Tl‘r/d‘r’) rir + (1 - )\) (TZQT + p (97-) TQT)
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Let D* (r) be the set of optimal investment policies for investors, given contracts r = {ra,rs}.

Now we have the optimal investment policy by investors, D* (r), consider the optimal contract offered by banks.



Suppose that (13) and (14) are lax (we will verify later). Bank 7 solves

max 14

h
s.t. Arir 4+ (1= X) <T27— + %) <1

Sa +r17dr +1177dr < min Uy (7)
0ec
where Uy (8) = Sa + (rh +p (0-) 75 )dr + (rh., + p 0,.) 78 Ndyr.

Safe Equilibrium: If the other bank sets r2, = 0, it will be optimal for bank 7 to set r5. = 0. Suppose
to the contrary that 5. > 0. By Lemma 2, 0, = 0 for all r% > 0. Consider an alternative contract 7, such
that 71, = rir, 7o, = 15 + % and 72, = 0. Pick d € D* (r) and d e D* (7). By switching from r, to 7., the
bank provides investors with utility V () = YT (77, cz) By definition of the maximum, YT (7’"’, J) > T (7,d). Also,
ATn = (1-X)(1—-26)(1—p(0z)R)Rrh.d,. If d =0, AT, =0 for all 7 € {A,B,N}, so V() = V (r), and it
is WLOG optimal to set r5. = 0. If d, > 0, AYx > 0, and because ¢ is small, T (7,d) > T (r,d), which implies
V () > V (r). Therefore, 75, = 0: if one bank does not invest in the risky assets, the best response of the other bank
is to not invest either. Because ¢ > 2, banks provide as much insurance against the liquidity shock as possible, so the
IC binds. Thus, 711- =, = 1 and 7% = 0. Note that (13) simplifies to rh. > rir, so it is satisfied. Similarly, (14) is
also satisfied. Because y- (n,0,s) =1 = z, (n) for all 5, 0, and s, there are no runs in the safe equilibrium.

Risky Equilibrium: Banks are only willing to set r%. > 0 if p(6%) R > 1, which requires interior beliefs. For
investors to have interior beliefs, it must be that rh.d. > 0 for 7 € {A, B}. Guess that p(#2)R > 1 and ri- > 1

e L

(we will verify these later). as < ‘Zfif, so Sa = 0. Because the investor’s budget constraint

binds, d,» = 2 — d,. Substituting in, it can quickly be verified that the investor’s problem is strictly concave in d.

when beliefs are interior, so there exists a unique solution to the investors problem. Guess that all IC constraints

are lax. Let x, be the multiplier for the budget constraint of bank 7, and L, be the Lagrangian for bank 7. For
dxLy _ 9z Y ;Y ;T sLy _ 9z T amr T

pe{-+} Gk = B ie (Gha 1 B¥o _ 9%dn ), Guf = N+s( Ay %Tp 26T,2f)—(1—k)r<,

’ Or1r or1, or1, or1, ory ’ 67‘l ark

xLy _ 95X 92T 9, 92T 1-) YN _ awr _
and %= h =% hN + € ( argf + Bth -2 argN) — *F* K. Because aleiV =(1- )\) dT and 6T§f =1-XNp(89)d-,
%Trjf < Ra’LT for e sufficiently small, so 7‘27 =0. Also, 65”}” = \ul, (c1) dr, where ¢c1 = ri-dr + rivd, .

Suppose to the contrary that ¢1 < & which implies uf, (c1) = % > p (67) R. By Lemma 2, the bank that provides
investors with a higher exposure of risky assets, rrd, > r,/d.,, would have 0% < 0p. Thus, %%TTN %B;EN7

T 27
so for e sufficiently small, i %Tf‘* > —/\ ‘?;ﬁﬂ so bank 7 would have an incentive to decrease r4, and increase ri,.
Thus, the optimal contracts from banks must provide ¢1 > ¢. Suppose to the contrary that ¢; > ¢, which implies
_ . a 10.Y R .Y . . . 10,Lr R 9;Lr

uy (c1) = 1. Because p(03) R > 1, an:’ < i ar;{v, so for sufficiently small €, 3 o ToX orf 0 5O either

bank would have an incentive to decrease r1, and increase r2,. Thus, the optimal contract from banks must provide
c1 < ¢, so ¢1 = ¢ in equilibrium.

By setting r1r = ri = %6, rh = TST/, investors optimally select d- = 1, so 8, = 01, and the FOCs are satisfied.
Because 2 < € < 2%, (12) is lax. Because p (6z) R < 1, (13) and (14) are lax. Therefore, all IC constraint
are lax. Because ri; > 1 > p (1) R, if there is a shock bad enough to run one bank, investors will run both. The

cutoff for runs follows from substitution into the expression from Lemma 3. m



