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Proof of Theorem 1. The problem is modelled as a sequential game. At t = 0, banks o¤er contracts,
�

r1� ; r
l
2� ; r

h
2�

	

to investors, committing to capital allocation fS� ;K�g. Next, investors decide their investment strategy, fSa; dA; dBg.

At t = 1, investors decide whether to withdraw from each bank, w� = 1, or to stay in each bank, w� = 0. At t = 2,

the risky project is realized and all assets are divided among investors remaining in the banks.1 We will solve the

game by backward induction. Finally, we will show that banks have no incentive to change their capital allocation

ex post, banks implement the socially optimal allocation, and that banks are exposed to the risk of runs.

To �x notation, suppose that the bank invests in fS�0;K�0g at t = 0. After paying to investors who withdraw

at t = 1, the bank has fS�1;K�1g remaining. Thus, if (1� �� ) percentage of deposits remain in bank � , each unit

of deposit receives 1
1���

[S�1 + 1�RK�1], where 1� is the indicator of success for type � assets. Thus, the expected

value of remaining in bank � at t = 1 is 1
1���

[S�1 + p (�T )RK�1]. Because budget constraints for the bank will bind

in equilibrium, S�0 = �r1� + (1� �) rl2� , K�0 = (1� �)
rh
2�

R
, and S�0 +K�0 = 1:

2

At t = 1, investors decide whether to withdraw, setting w� = 1, or stay in the bank, setting w� = 0. Suppose that,

in equilibrium, share �� of deposits are withdrawn at t = 1. Payouts depend on the solvency of the bank. If the bank

is solvent, investors who withdraw receive r1� from bank � at t = 1; investors who stay in the bank receive a share of

remaining assets. Late investors who remain in the bank thus have an expected payo¤ of 1
1���

[S�1 + p (�T )RK�1] :

In contrast, if the bank is insolvent, some investors who withdraw receive r1� at t = 1, but some receive nothing (due

to the sequential service constraint); investors who stay in the bank receive nothing because S�1 = K�1 = 0 when

the bank is insolvent.

Because banks are benevolent, they will liquidate assets e¢ciently, so they will use the safe asset �rst, then the

risky second (because ` < 1 < p (�T )R). Therefore, for �� �
S�0
r1�
, S�1 = S�0 � ��r1� and K�1 = K�0, but for

�� 2
�

S�0
r1�

; S�0+`K�0

r1�

�

, S�1 = 0 and K�1 = K�0 �
1
`
(��r1� � S�0). Finally, if �� >

S�0+`K�0

r1�
, the bank is insolvent:

S�1 = K�1 = 0. Investors who withdraw receive r1� for sure if the bank is solvent; if the bank is insolvent, they

receive a lottery that pays r1� with probability
S�0+`K�0

�� r1�
and 0 otherwise. Thus, when �� other investors withdraw

at t = 1, if a late investor stays in bank � ; he expects to receive y� (�� ; �T ) per unit of investment, where

y� (�� ; �� ) =

8

>

<

>

:

1
1���

[S�0 � ��r1� + p (�T )RK�0]
p(�T )R
1���

�

K�0 �
1
`
(��r1� � S�0)

�

0

�� �
S�0
r1�

�� 2
�

S�0
r1�

; S�0+`K�0

r1�

�

�� >
S�0+`K�0

r1�

(1)

Alternatively, if the late investor withdraws from the bank at t = 1, he receives, per unit of investment,

z� (�� ) =

(

r1�
S�0+`K�0

��

�� �
S�0+`K�0

r1�

�� >
S�0+`K�0

r1�

: (2)

De�ne u (wA; wB ; �A; �B) as the expected payo¤ to late investors as a function of their withdrawal decisions at

each bank, wA and wB , and the withdrawal decisions of all other investors at each bank, �A and �B . Thus,

u (wA; wB ; �A; �B) =
P

�2fA;Bg

fw�z� (�� ) + (1� w� ) y� (�� ; �T )g d� :

Because the payo¤s from the two banks are additively separable, the decision to remain in a bank is independent

1This assumption could alternatively be stated as assuming that any surplus earned is returned to depositors, and
investors who remain in the bank bear the cost of a shortfall.

2Though it would be feasible to provide safe assets for r1� and r
l
2� by investing in the risky asset and liquidating

it at t = 1, it would be ine¢cient to do so, because ` < 1. Therefore, S�0 and K�0 optimally implement r� .
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of the other bank. As in Diamond and Dybvig (1983), if a su¢cient number of other investors withdraw early from

bank A, �A �
SA0+`KA0

r1A
, all investor �nd it optimal to withdraw early as well: u (1; j; �A; �B) > u (0; j; �A; �B) for all

j 2 f0; 1g and for all �B when �A is large enough. This is a panic run, which is not the focus of our paper. Because

we only consider fundamental runs, we suppose late investors remain in banks unless it is optimal to withdraw

when only early investors withdraw. Formally, investors stay in bank A i¤ u (0; j; �; �) � u (1; j; �; �), and investors

stay in bank B i¤ u (j; 0; �; �) � u (j; 1; �; �). Conversely, if u (1; j; �; �) > u (0; j; �; �), all investors run bank A,

and if u (j; 1; �; �) > u (j; 0; �; �), all investors run bank B. Therefore, investors stay in bank � , setting w� = 0;

y� (�; �T ) � z� (�). Because S�0 = �r1� + (1� �) rl2� , � �
S�0
r1�
, so y� (�; �T ) � z� (�) i¤ rl2� + p (�T ) r

h
2� � r1� .

Alternatively, if r1� > rl2� + p (�T ) r
h
2� , investors will run bank � , which implies that investors receive r1� with

probability �� =
S�0+`K�0

r1�
. De�ne C� as the set of incentive compatible contracts, and C

c
� as the set of contracts

that induce a run.

Now we have determined the optimal withdrawal decisions of investors at t = 1, consider optimal investment

decisions by investors at t = 0. The investors� problem is

V = max
Sa;d�

U0 (3)

s:t: Sa + dA + dB � 2

Let � be the multiplier for investor�s budget constraint, let L be the Lagrangian function, and let D� (r) be the set

of solutions to this problem, given the contract o¤ered by banks r = frA; rBg. We will now characterize the set of

solutions to this problem.

If r� 2 Cc
� , � 2 fA;Bg ; both banks o¤er contracts that induce investors to run. Investors� expected payo¤ is

from investing fSa; dA; dBg is U0 = �RR, where

�RR = ��ERR + (1� �) [Sa + �Ar1AdA + �Br1BdB ] ; (4)

�ERR = �A�Bu (Sa + r1AdA + r1BdB) + �A (1� �B)u (Sa + r1AdA)

+ (1� �A)�Bu (Sa + r1BdB) + (1� �A) (1� �B)u (Sa) ;

and �� =
S�0+`K�0

r1�
. Note @L

@Sa
= � @�ERR

@Sa
+ (1� �)� �, where

@�ERR
@Sa

= �A�Bu
0 (Sa + r1AdA + r1BdB) + �A (1� �B)u

0 (Sa + r1AdA)

+ (1� �A)�Bu
0 (Sa + r1BdB) + (1� �A) (1� �B)u

0 (Sa) ;

and @L
@d�

= � @�ERR
@d�

+ (1� �)��r1� � �, where

@�ERR
@d�

= �� 0u
0 (Sa + r1�d� + r1� 0d� 0)��r1� + (1� �� 0)u

0 (Sa + r1�d� )��r1� :

Note ��r1� = S�0 + `K�0 < 1 because S�0 + K�0 = 1 and ` < 1. Because u00 < 0, @�ERR
@d�

< @�ERR
@Sa

. Therefore,

d� = 0 and Sa = 2: if both banks o¤er contracts that induce investors to run at t = 1, investors will refuse to invest

in that bank at t = 0. Investors receive VAutarky = �u (2) + 2 (1� �).

If r� 2 C� but r� 0 2 C
c
� 0 , bank � writes a contract inducing investors to remain in the bank, while bank �

0 writes

a contract inducing investors to run. Investors� expected payo¤ is U0 = �� (�T ), where

�� (�� ) = ��E� + (1� �)
h

Sa + �� 0r1� 0d� 0 +
�

r
l
2� + p (�� ) r

h
2�

�

d�

i

; (5)

and

�E� = �� 0u (Sa + r1�d� + r1� 0d� 0) + (1� �� 0)u (Sa + r1�d� ) :

2



Note @L
@Sa

= � @�E�
@Sa

+ (1� �) � �, where @�E�
@Sa

= �� 0u
0 (Sa + r1�d� + r1� 0d� 0) + (1� �� 0)u

0 (Sa + r1�d� ).
@L
@d

�0
=

�u0 (Sa + r1�d� + r1� 0d� 0)�� 0r1� 0 +(1� �)�� 0r1� 0 ��. Thus,
@L
@d

�0
< @L

@Sa
, so d� 0 = 0. Therefore, investors will refuse

to invest in any bank that writes a contract inducing runs. Because d� 0 = 0, @L
@Sa

= �u0 (Sa + r1�d� ) + (1� �) � �

and @L
@d�

= �u0 (Sa + r1�d� ) r1� + (1� �)
�

rl2� + p (�T ) r
h
2�

�

� �.

Finally, if r� 2 C� for � 2 fA;Bg ; investors will run neither bank. Investors� expected payo¤ is U0 =

�AB (�T ; �T ), where

�AB (�A; �B) = �u (Sa + r1AdA + r1BdB) + (1� �)
h

Sa +
�

r
l
2A + p (�A) r

h
2A

�

dA +
�

r
l
2B + p (�B) r

h
2B

�

dB

i

: (6)

Thus, @L
@Sa

= �u0 (Sa + r1AdA + r1BdB) + (1� �)� � and
@L
@d�

= �u0 (Sa + r1AdA + r1BdB) r1� + (1� �)
�

rl2� + p (�T ) r
h
2�

�

� �, for � 2 fA;Bg.

Therefore, we have characterized the optimal investment decision by investors given contracts o¤ered by the

banks (with FOCs). Let us now turn to the optimal contracts o¤ered by banks. We will solve the bank�s problem,

ignoring the IC constraints, then verify that the IC constraints are satis�ed. Thus, U0 (r; d) = �AB (f�T ; �T g) jr;d on

this region. Banks are benevolent, so bank � solves

max
r�

V (7)

s:t: �r1� + (1� �) rl2� + (1� �)
rh2�
R

� 1:

Suppose to the contrary that rl2� > 0. Consider an alternative contract ~r� such that ~r1� = r1� , ~r
l
2� = 0 and

~rh2� = rh2� + Rrl2� . Pick d 2 D� (r) and ~d 2 D� (~r). By switching from r� to ~r� , the bank provides investors

with utility V (~r) = U0

�

~r; ~d
�

. By de�nition of the maximum, U0
�

~r; ~d
�

� U0 (~r; d), and U0 (~r; d) = U0 (r; d) +

(1� �) (p (�T )R� 1) r
l
2�d� : Also, U0 (r; d) = V (r). Therefore, V (~r) � V (r), with strict inequality if d� > 0.

Therefore, rl2� = 0 in any optimal contract.

The budget constraint binds in equilibrium, so rh2� =
R
1��

(1� �r1� ). Thus, V (r) = U0 (r; d), and we can express

U (r; d) = �u (Sa + r1�d� + r1� 0d� 0) + (1� �)Sa + (1� �) p (�T ) r
h
2� 0d� 0 + p (�T )R (1� �r1� ) d� :

We will now prove that banks set Sa + r1�d� + r1� 0d� 0 = c�1, where u
0 (c�1) = p (�T )R. Suppose to the contrary that

Sa + r1�d� + r1� 0d� 0 < c�1. Consider the alternative contract ~r1� = r1� + �, where � is small. V (~r) = U
�

~r; ~d
�

and

U
�

~r; ~d
�

� U (~r; d). By �rst-order approximation, U (~r; d)�U (r; d) = � [u0 (c1)� p (�T )R] d��, so U (~r; d) � U (r; d),

which implies that V (~r) � V (r), with strict inequality if d� > 0. Similarly, if Sa + r1�d� + r1� 0d� 0 > c�1, consider

~r1� = r1� � � for small �: U (~r; d)� U (r; d) = � [p (�T )R� u0 (c1)] d��, so U (~r; d) � U (r; d) and V (~r) � V (r), with

strict inequality for d� > 0. It is optimal for investors to set Sa = 0 if p (�T ) r
h
2� � r1� � 1 and one inequality is

strict, so d� > 0 for at least one bank. Therefore, banks set r1� so that u
0 (c1) = p (�T )R: Because u

0 (2) > p (�T )R,

Sa+ r1AdA+ r1BdB > 2, so one of the banks o¤ers r1� > 1, and investors set Sa = 0. Note that it is WLOG optimal

for both banks to set r��1� =
1
2
c�1, where u

0 (c�1) = p (�T )R, r
l��
2� = 0, and rh��2� = R

1��
(1� �r

��
1� ) and, from investor

FOCs, it is WLOG optimal for investors to set d� = 1 (investors are indi¤erent between all allocations such that

dA + dB = 2).

Because the budget constraint binds at each bank and households invest all wealth at banks, dA + dB = 2,

we can express the value late investors receive by staying in the bank as U1 (�T ) = p (�T )R
2��c�

1

1��
. By (20), 2 <

c�1 <
2p(�T )R

�p(�T )R+(1��)
, U1 (�T ) >

2p(�T )R
�p(�T )R+(1��)

. Thus, U1 (�T ) > c�1, so (12) is lax. Similarly, by o¤ering symmetric

contracts, both (13) and (14) are lax as well. Banks implement the optimal contract with capital allocation S�0 = �r
��
1�

and K�0 = 1� �r
��
1� .

Banks are dynamically consistent � if they had the option to secretly change their capital allocation ex post,

banks would ex post select the same allocation. If the bank deviated to S�0 + " and K�0 � ", where " > 0; investor

payo¤ would change by (1� �) (1� p (�T )R) " < 0. Similarly, if the bank deviated to S�0 � " and K�0 + ", investor
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payo¤ would change by p(�T )R
1��

�

1� 1
`

�

" < 0. Thus, any ex post deviation from the ex ante optimal capital allocation

harms the bank�s objective.

We will now show that banks implement the socially optimal allocation with linear contracts. Consider the social

planner�s problem. The social planner can allocate resources to the early type through the storage technology, and

can allocate resources to the portfolio of late investors: the social planner allocates c1 to early consumers and portfolio
�

cS2 ; c
A
2 ; c

B
2

	

to late consumers. This allocation provides investors with utility U (f�T ; �T g), where

U
��!
�
�

= �u (c1) + (1� �)
h

c
S
2 + p (�A) c

A
2 + p (�B) c

B
2

i

: (8)

The planner�s problem is

max
c

U (f�T ; �T g)

s:t: �c1 + (1� �)

�

c
S
2 +

cA2
R
+
cB2
R

�

� 2

Let � be the multiplier for the budget constraint and L be the Lagrangian function. The FOCs are @L
@c1

= �u0 (c1)���,
@L

@cS
2

= (1� �) � (1� �)�, and @L
@c�

2

= (1� �) p (�T ) �
1��
R
�. Because @L

@cS
2

< R @L
@c�

2

, cS2 = 0. Further,
@L
@c�

2

= @L
@c1

= 0

implies � = u0 (c1) = p (�T )R. Thus, the social planner allocates c
�
1 to the early type. Also, � > 0, so the budget

constraint binds, and thus, cA2 + c
B
2 =

R
1��

(2� �c�1). It is WLOG optimal for the social planner to set c
A
2 = cB2 . Note

that this allocation is implemented when both banks o¤er contracts r��� and investors set d� = 1.

Finally, because r��1� > 1, y� (1) = 0 < z� (1), so banks are exposed to the risk of runs. That is, runs are feasible

because S�0 + `K�0 < r
��
1� , but runs are o¤-equilibrium, because investors would refuse to invest in the bank if they

expected to run.

Proof of Theorem 2. The timing of the problem is the same as that in Theorem 1, as are the cash �ows. At

t = 1, investor payo¤ given withdrawal decision fwA; wBg, is now

u (wA; wB ; �A; �B) = min
�!
� 2C

P

�2fA;Bg

fw�z� (�� ) + (1� w� ) y� (�� ; �� )g d� :

where y� (�� ; �� ) is from (1) and z� (�� ) is from (2). Because we focus on fundamental runs, we suppose late investors

remain in banks unless it is optimal to withdraw when only early investors withdraw. Formally, investors remain in

both banks i¤ u (0; 0; �; �) = maxi;j2f0;1g u (i; j; �; �), so letting r = fr�g�2fA;Bg, let
~CAB (r) be the set of contracts

that induce late investors to stay in both banks. Similarly, let ~CA (r) be the set of contracts that induce late investors

to stay in only bank A but withdraw from bank B, u (0; 1; �; �) = maxi;j2f0;1g u (i; j; �; �) ; and let ~CB (r) be the set

of contracts such that u (1; 0; �; �) = maxi;j2f0;1g u (i; j; �; �) : Finally, let ~C0 (r) be the set of contracts that induce

late investors to withdraw from both banks, so that u (1; 1; �; �) = maxi;j2f0;1g u (i; j; �; �) : We will assume that

investors who are indi¤erent will stay in the bank (ties go toward stability), so de�ne CAB = ~CAB , C� = ~C�nCAB ,

and C0 = ~C0n (CAB [ CA [ CB).

We have characterized the optimal withdrawal decisions of investors; consider optimal investment decision by

investors at t = 0. Similar to the proof of Theorem 1, investors solve (3). If banks o¤er contracts in C0, investors

earn utility U0 = �RR, as de�ned in (4). Because �RR does not depend on �� , by identical logic to the proof of

Theorem 1, investors refuse to invest in either bank, setting Sa = 2 and earning VAutarky.

If banks o¤er contracts in C� , investors earn utility U0 = �� , de�ned in (5). By identical logic to the proof

of Theorem 1, investors refuse to invest in bank � 0, d� 0 = 0. However, on C� ; investors will only have exposure

to type � assets, so �a� = �L. Thus, r 2 C� requires that r
l
2� + p (�L) r

h
2� � r1� . Combining budget constraints,

�r1� + (1� �)
�

rl2� +
rh
2�

R

�

= 1, and p (�L)R < 1, if r1� > 1, r
l
2� + p (�L) r

h
2� < 1, so C� is empty if r1� > 1. Because

d� 0 = 0,
@L
@Sa

= �u0 (Sa + r1�d� )+(1� �)�� and @L
@d�

= �u0 (Sa + r1�d� ) r1� +(1� �)
�

rl2� + p (�L) r
h
2�

�

��. Because

�r1� + (1� �)
�

rl2� +
rh
2�

R

�

= 1, p (�L)R < 1, r1� � 1, and u
0 (2) > 1, @L

@Sa
� @L

@d�
, with strict inequality if r1� < 1 or

rh2� > 0. Thus, it is WLOG optimal for investors to set Sa = 2 when banks o¤er contracts in C� .
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If banks o¤er contracts in CAB , investors earn U0 = �AB , de�ned in (6). This implies that
@L
@Sa

= �u0 (c1) +

(1� �)� �, @L
@d�

= �u0 (c1) r1� + (1� �)
�

rl2� + p (�a� ) r
h
2�

�

� �, for � 2 fA;Bg, where c1 = Sa + r1AdA + r1BdB and

�a� is from Lemma 2. Suppose to the contrary that investors have corner beliefs and exposure to risky assets: 9� s.t.

rh2�d� > 0 and �a� = �L. Because r 2 CAB , r1� � rl2� + p (�L) r
h
2� . Because r

h
2� > 0, and the budget constraint must

be satis�ed, this implies that @L
@d�

< @L
@Sa

. Contradiction. Thus, investors are only willing to invest in risky assets if

they have interior beliefs. Also, rh2�d� > 0 only if r
h
2� 0d� 0 > 0.

Now that we have solved the optimal investment behavior by investors, we will solve the bank�s problem. As

we have shown, if either bank violates the IC constraints, investors will refuse to invest in either bank, so banks will

satisfy the IC constraints. We will guess that IC constraints (13) and (14) are lax, then verify that these constraints

are satis�ed. The banks are benevolent, so bank � solves

max
r�

V

s:t: �r1� + (1� �) rl2� + (1� �)
rh2�
R

� 1

r1�d� + r1� 0d� 0 � min
�!
� 2C

U1

��!
�
�

where V and d are the value function and solutions to (3), respectively.

Safe Equilibrium: If the other bank sets rh2� 0 = 0, it will be optimal for bank � to set rh2� = 0. Suppose

to the contrary that rh2� > 0. By Lemma 2, �� = �L for all rh2� > 0. Consider an alternative contract ~r� such

that ~r1� = r1� , ~r
l
2� = rl2� +

rh
2�

R
and ~rh2� = 0. Pick d 2 D� (r) and ~d 2 D� (~r). By switching from r� to ~r� , the

bank provides investors with utility V (~r) = U0

�

~r; ~d
�

. By de�nition of the maximum, U0
�

~r; ~d
�

� U0 (~r; d) ; and

U0 (~r; d) = U0 (r; d) + (1� �) (1� p (�L)R)
rh
2�

R
d� ; where U0 (r; d) = V (r). Therefore, V (~r) � V (r), with strict

inequality if d� > 0. Thus, r
h
2� = 0 in any optimal contract. Therefore, if one bank does not invest in the risky assets,

the best response of the other bank is to not invest either. Because u0 (2) > 1, banks provide as much insurance

against the liquidity shock as possible, so the IC binds. Thus, r1� = rl2� = 1 and r
h
2� = 0. Note that (13) simpli�es

to rl2� � r1� , so it is satis�ed. Similarly, (14) is also satis�ed. When faced with this contract, investors �nd it weakly

optimal to set d� = 1. Because y� (�; �) = 1 = z� (�) for all �; banks are not exposed to the risk of runs.

Risky Equilibrium: We will show that the equilibrium from Theorem 1 is also an equilibrium here. If both

banks o¤er r��� , note (12) is lax at both banks, so we will guess that it is lax. Let �� be the multiplier for the budget

constraint of bank � , and let L� be the Lagrangian function for bank � . Let c1 = Sa+ r1AdA+ r1BdB . If both banks

invest in risky assets, rh2� > 0, investors optimally invest so that they have interior beliefs in equilibrium. Because

beliefs are interior, it can easily be shown that the objective is strictly concave, so there is a unique continuously

di¤erentiable fSa; dA; dBg.
@L�
@r1�

= �u0 (c1) d� � ��� ;
@L�
@rl

2�

= (1� �) d� � (1� �)�� ; and
@L�
@rh

2�

= (1� �) p (�a� ) d� �

(1� �) ��
R
: @L�
@r1�

= 0 i¤ �� = u0 (c1) d� . Because
@L�
@rh

2�

= 0, �� = p (�a� )Rd� , so u
0 (c1) = p (�a� )R. Because this

holds for both banks, this implies that �aA = �aB , so by Lemma 2, r
h
2AdA = rh2BdB . Also, �

a
� = �T , and p (�T )R > 1,

which implies that R @L�
@rh

2�

> @L�
@rl

2�

, so rl2� = 0. Note the FOCs are satis�ed if each bank o¤ers r��� where r��1� =
1
2
c�1,

u0 (c�1) = p (�T )R, r
l��
2� = 0, and rh��2� = R

1��
(1� �r

��
1� ) : Because r

��
1� > 1 and p (�T )R > 1, Sa = 0. Because banks

o¤er symmetric contracts, r��� = r
��
� 0
, investors optimally set d� = 1. Thus, we can express U1 (�T ) = p (�T )R

2��c�
1

1��
:

By (20), 2 < c�1 <
2p(�T )R

�p(�T )R+(1��)
, which implies that U1 (�T ) >

2p(�T )R
�p(�T )R+(1��)

, so (12) is lax. By identical logic to that

in the proof of Theorem 1, banks have no incentive to change S�0 and K�0 ex post. Because r1� > 1, C� is empty:

it is better to run both banks rather than just one, so (13) and (14) are lax when banks o¤er symmetric contracts.

Further, because r��1� > 1, y� (1; �� ) = 0 < z� (1), so banks are exposed to the risk of runs in this equilibrium. Because

p (�T ) r
h
2� > r1� > 1, r

��
� Pareto dominates r��� .

Finally, we will show the risky equilibrium implements the socially optimal allocation. Consider the social

planner�s problem, similar to the Proof of Theorem 1. When the social planner allocates c1 to early consumers and
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�

cS2 ; c
A
2 ; c

B
2

	

to late, investors receive min�!
� 2C

U
��!
�
�

, where U is de�ned in (8). The planner�s problem is

max
c

min
�!
� 2C

U
��!
�
�

s:t: �c1 + (1� �)

�

c
S
2 +

cA2
R
+
cB2
R

�

� 2

Let � be the multiplier for the budget constraint and L be the Lagrangian. The FOCs are @L
@c1

= �u0 (c1) � ��,
@L

@cS
2

= (1� �)� (1� �)�, and @L
@c�

2

= (1� �) p (�a� )�
1��
R
�, where �a� is from Lemma 2 (substituting in c�2 for r

h
2�d� ).

Because 1
2
(�A + �B) = �T , 9~� s.t. �~� � �T , so

@L

@cS
2

< R @L

@c~�
2

, which implies cS2 = 0. Further, @L
@c�

2

= 0 implies

� = p (�a� )R, which implies �
a
A = �aB , so (by Lemma 2) c

A
2 = cB2 and �a� = �T .

@L
@c1

= 0 implies u0 (c1) = p (�T )R.

Note this allocation is implemented when banks o¤er r��� and investors set d� = 1.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 and Theorem 2: the problem is similarly

modelled as a sequential game. At t = 0, banks o¤er contracts
�

r1� ; r
l
2� ; r

h
2�

	

to investors, committing to capital

allocation fS� ;K�g. Next, investors decide their investment strategy, fSa; dA; dBg. At t = 1, investors decide whether

to withdraw from each bank, w� = 1, or to stay in each bank, w� = 0. Distinct from Theorem 1 and Theorem 2,

however, is that investors can condition their withdrawal decisions on the signal s� . The signal s� give the payo¤

given success of projects at t = 2: R� = s�R. Recall the structure of s� : with probability ", there is bad news about

type � assets, so s� = � and s� 0 = 1, for � 2 fA;Bg and �
0 6= � . With probability 1� 2", s� = 1 for both banks. At

t = 2, the risky project is realized and all assets are divided among investors remaining in the banks. We solve the

game by backward induction.

Uncertainty-Neutral Investors: The cash�ows are similar to that in the proof of Theorem 1, except that if

the payo¤ of remaining in the bank depends on how bad the shock is. If the shock is not su¢ciently bad, � � `
p(�T )R

,

banks prefer to liquidate the safe asset �rst, then the risky asset. Thus, for s� 2 f�; 1g,

y� (�� ; �� ; s� ) =

8

>

<

>

:

1
1���

[S�0 � ��r1� + p (�� ) s�RK�0]
p(�� )s�R
1���

�

K�0 �
1
`
(��r1� � S�0)

�

0

�� �
S�0
r1�

�� 2
�

S�0
r1�

; S�0+`K�0

r1�

�

�� >
S�0+`K�0

r1�

: (9)

Alternatively, if the shock is very bad, � < `
p(�T )R

, the bank �nds it optimal to liquidate their entire position in risky

assets, whether investors run the bank or not. This implies that the expected cash�ow of remaining in the bank

following bad news is

y� (�� ; �� ; �) =

(

1
1���

[S�0 + `K�0 � ��r1� ]

0

�� �
S�0+`K�0

r1�

�� >
S�0+`K�0

r1�

: (10)

Because we focus on fundamental runs, similar to the proof of Theorem 1, investors �nd it optimal to remain in bank

� i¤ y� (�; �T ; s� ) � z� (�), where z� is given in (2). Thus, r 2 C
1
� i¤ late investors optimally set w� = 0 if s� = 1,

which holds i¤ rl2� + p (�T ) r
h
2� � r1� . Similarly, if � �

`
p(�T )R

, r 2 C�
� i¤ r

l
2� + p (�T )�r

h
2� � r1� . Alternatively,

if � < `
p(�T )R

, r 2 C�
� i¤ rl2� +

`
R
rh2� � r1� . Note that C

�
� � C1

� . Thus, bank � can decide whether to write a

contract in C�
� , by setting r1� � rl2� + p (�T ) ~�r

h
2� , where ~� = max

n

�; `
p(�T )R

o

; a contract in C1
�nC

�
� , by setting

rl2� + p (�T ) ~�r
h
2� < r1� � rl2� + p (�T ) r

h
2� , or a contract in C

1c
� , by setting r1� > rl2� + p (�T ) r

h
2� .

By identical logic to that in Theorem 1, investors would refuse to invest in a bank that will be run with probability

1, setting d� = 0 for that bank. Thus, we can restrict attention to contracts in C1
� . Because bad news about each

bank occurs with disjoint probability ", investor utility is

� = (1� 2")�N + "�A + "�B ;

where �N is the expected utility of investors when there is no news, and �� is the expected utility of investors when

6



there is bad news about bank � 0. Because banks will o¤er contracts in C1
� , investors remain in both banks if there is

no bad news. Thus, if there is no bad news, s� = 1 for � 2 fA;Bg, investors earn �N (f�T ; �T g) ; where

�N
��!
�
�

= �u (Sa + r1�d� + r1� 0d� 0) + (1� �)
h

Sa +
�

r
l
2� + p (�� ) r

h
2�

�

d� +
�

r
l
2� 0 + p (�� 0) r

h
2� 0

�

d� 0
i

: (11)

In contrast, if there is bad news about bank � 0, investor utility depends on the type of contract bank � 0 wrote. If

bank � 0 wrote a contract in C�

� 0
, investors will stay in both banks, so their expected payo¤ is �� (f�T ; �T g) ; where

��
��!
�
�

= �u (Sa + r1�d� + r1� 0d� 0) + (1� �)
h

Sa +
�

r
l
2� + p (�� ) r

h
2�

�

d� +
�

r
l
2� 0 + p (�� 0) ~�r

h
2� 0

�

d� 0
i

;

and ~� = max
n

�; `
p(�T )R

o

. If bank � 0 wrote a contract in C1
� 0nC

�

� 0
, investors will run bank � 0, so their expected payo¤

is �� (f�T ; �T g), where

��
��!
�
�

= � [�� 0u (Sa + r1�d1� + r1� 0d� 0) + (1� �� 0)u (Sa + r1�d� )]

+ (1� �)
h

Sa +
�

r
l
2� + p (�� ) r

h
2�

�

d1� + �� 0r1� 0d1� 0
i

;

�� 0 =
S
�00

+`K
�00

r
1�0

, S� 00 = �r1� + (1� �) rl2� , and K� 00 = (1� �)
rh
2�

R
. We can express investor utility as

� = �N + " (�A +�B � 2�N ) :

Also, all left-hand and right-hand derivatives of �N , �A, and �B exist and are �nite.

Thus, we have the optimal withdrawal decisions by late investors; consider optimal investment by investors.

Investors solve

V = max
Sa;dA;dB

�

s:t: Sa + dA + dB � 2

Let � be the multiplier for the constraint, and let L be the Lagrangian function for investors. For signs x 2 f�;+g ;

@xL

@Sa
= �u

0
x (Sa + r1�d1� + r1� 0d� 0) + (1� �) + "

�

@x�A
@Sa

+
@x�B
@Sa

� 2
@x�N
@Sa

�

� �;

@x�

@d�
= �u

0

x (Sa + r1�d1� + r1� 0d� 0) r1� + (1� �)
�

r
l
2� + p (�T ) r

h
2�

�

+"

�

@x�A
@d�

+
@x�B
@d�

� 2
@x�N
@d�

�

� �

If r1� > 1 and rl2� + p (�T ) r
h
2� > 0, @xL

@d�
> @xL

@Sa
, so Sa = 0. Let D� (r) be the set of optimal investment policies for

investors, given contracts r = frA; rBg.

Now we have the optimal investment policy by investors, D� (r), consider the optimal contracts o¤ered by banks.

Guess that IC constraints are lax, then verify later. Bank � solves

max
r�

V

s:t: �r1� + (1� �)

�

r
l
2� +

rh2�
R

�

� 1

Investor utility is increasing in r, so the budget constraint binds. Suppose to the contrary that rl2� > 0. Consider

an alternative contract ~r� such that ~r1� = r1� , ~r
l
2� = rl2� � � and ~rh2� = rh2� + �R, for � small and positive. Pick

d 2 D� (r) and ~d 2 D� (~r). By switching from r� to ~r� , the bank provides investors with utility V (~r) = �
�

~r; ~d
�

. By

7



de�nition of the maximum, �
�

~r; ~d
�

� �(~r; d) : Also,

�(~r; d)��(r; d) = ��N + " (��A +��B � 2��N ) ;

where ��� = �� (~r; d) � �� (r; d). If d� = 0, ��� = 0 for � 2 fA;B;Ng, so the rl2� = 0 is WLOG optimal.

If d� > 0 ��N = (1� �) (p (�T )R� 1) d��, and p (�T )R > 1, so ��N > 0. Because all left-hand and right-hand

derivatives exist and are �nite, ��� is �nite, for � 2 fA;B;Ng. Thus, for " small enough, �(~r; d) > �(r; d) : Because

�(r; d) = V (r), V (~r) � V (r), with strict inequality if d� > 0. Therefore, r
l
2� = 0 in any optimal contract. Similarly,

Bank � sets r1� so that r1�d� + r1� 0d� 0 = ~c. Suppose to the contrary that r1�d� + r1� 0d� 0 < ~c and d� > 0. Consider

deviation ~r1� = r1� + �, for small positive �, so ~rh2� = rh2� � R �
1��

� (the budget constraint binds). In this case,

��N = � ( � p (�T )R) d�� > 0. Because " is small, this implies V (~r) > V (r) ; so contract r cannot be optimal.

Suppose to the contrary that r1�d� + r1� 0d� 0 > ~c and d� > 0. Consider deviation ~r1� = r1� � �, for small positive �,

so ~rh2� = rh2� +R
�

1��
�, which implies ��N = � (p (�T )R� 1) d�� > 0. Because " is small, this implies V (~r) > V (r),

so contract r cannot be optimal. By the FOCs for investors, if either bank o¤ers a contract such that r1� � 1 and

rl2� + p (�T ) r
h
2� � 1, with at least one inequality strict, investors will set Sa = 0, so they invest in at least one bank.

Therefore, d� > 0 in equilibrium, so any optimal contract o¤ered by the banks will set intermediate payo¤s so that

r1AdA + r1BdB = ~c. If banks set r
�
1� =

~c
2
and r�h2� = (1� �r1� ), all ICs are lax because 2 < ~c < 2 p(�T )R

�p(�T )R+(1��)
; and

investors optimally set d� = 1. Investors will run following bad news on bank � i¤ � <
r�
1�

p(�T )r
�h
2�

, resulting in the

expression for � in the statement of the theorem.

Uncertainty-Averse Investors: When investors are uncertainty averse, the withdrawal decisions become

interrelated, so the optimal run behavior of investors depends on the speci�c contract o¤ered by banks. Investors

who remain in a bank following bad news will receive either (9) or (10), depending on the size of �. Further, investor

beliefs are now given by the worst-case scenario, as stated in Lemma 2. Given bad news is realized on bank � 0, we can

�nd the optimal withdrawal behavior of late investors, and thus the utility of investors, �� . As above, all left-hand

and right-hand derivatives of �A and �B exist and are �nite. Similar to the proof of Theorem 2, investors will

refuse any contract that induces runs with probability 1, so it cannot be optimal for banks to o¤er such a contract.

Therefore, it is optimal for the bank to o¤er a contract that induces investors to remain in both banks if there is no

bad news. Thus, if there is no bad news, investors receive �N
��!
� a
�

, where �N is de�ned in (11) and
�!
� a is from

Lemma 2.

Thus, investor�s expected payo¤, given their optimal withdrawal strategy and the contracts from the bank, is

� = (1� 2")�N + "�A + "�B : Thus, investors solve

V = max
Sa;dA;dB

�

s:t: Sa + dA + dB � 2

Let � be the multiplier for the constraint, and let L be the Lagrangian function for investors. For signs x 2 f�;+g ;

@xL

@Sa
= �u

0
x (Sa + r1�d1� + r1� 0d� 0) + (1� �) + "

�

@x�A
@Sa

+
@x�B
@Sa

� 2
@x�N
@Sa

�

� �;

@x�

@d�
= �u

0

x (Sa + r1�d1� + r1� 0d� 0) r1� + (1� �)
�

r
l
2� + p (�a� ) r

h
2�

�

+"

�

@x�A
@d�

+
@x�B
@d�

� 2
@x�N
@d�

�

� �

Let D� (r) be the set of optimal investment policies for investors, given contracts r = frA; rBg.

Now we have the optimal investment policy by investors, D� (r), consider the optimal contract o¤ered by banks.
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Suppose that (13) and (14) are lax (we will verify later). Bank � solves

max
r�

V

s:t: �r1� + (1� �)

�

r
l
2� +

rh2�
R

�

� 1

Sa + r1�d� + r1� 0d� 0 � min
�!
� 2C

U1

��!
�
�

where U1 (�) = Sa + (r
l
2� + p (�� ) r

h
2� )d� + (r

l
2� 0 + p (�� 0) r

h
2� 0)d� 0 :

Safe Equilibrium: If the other bank sets rh2� 0 = 0, it will be optimal for bank � to set rh2� = 0. Suppose

to the contrary that rh2� > 0. By Lemma 2, �� = �L for all rh2� > 0. Consider an alternative contract ~r� such

that ~r1� = r1� , ~r
l
2� = rl2� +

rh
2�

R
and ~rh2� = 0. Pick d 2 D� (r) and ~d 2 D� (~r). By switching from r� to ~r� , the

bank provides investors with utility V (~r) = �
�

~r; ~d
�

. By de�nition of the maximum, �
�

~r; ~d
�

� �(~r; d) : Also,

��N = (1� �) (1� 2") (1� p (�L)R)Rr
h
2�d� : If d� = 0, ��� = 0 for all � 2 fA;B;Ng, so V (~r) = V (r), and it

is WLOG optimal to set rh2� = 0. If d� > 0, ��N > 0, and because " is small, �(~r; d) > �(r; d), which implies

V (~r) > V (r). Therefore, rh2� = 0: if one bank does not invest in the risky assets, the best response of the other bank

is to not invest either. Because ~c > 2, banks provide as much insurance against the liquidity shock as possible, so the

IC binds. Thus, r1� = rl2� = 1 and r
h
2� = 0. Note that (13) simpli�es to r

l
2� � r1� , so it is satis�ed. Similarly, (14) is

also satis�ed. Because y� (�; �; s) = 1 = z� (�) for all �, �, and s, there are no runs in the safe equilibrium.

Risky Equilibrium: Banks are only willing to set rh2� > 0 if p (�a� )R � 1, which requires interior beliefs. For

investors to have interior beliefs, it must be that rh2�d� > 0 for � 2 fA;Bg. Guess that p (�a� )R > 1 and r1� � 1

(we will verify these later). This implies that @xL
@Sa

< @xL
@d�

, so Sa = 0. Because the investor�s budget constraint

binds, d� 0 = 2 � d� . Substituting in, it can quickly be veri�ed that the investor�s problem is strictly concave in d�

when beliefs are interior, so there exists a unique solution to the investors problem. Guess that all IC constraints

are lax. Let �� be the multiplier for the budget constraint of bank � , and L� be the Lagrangian for bank � . For

x 2 f�;+g, @xL�
@r1�

= @x�N
@r1�

+"
�

@x�A
@r1�

+ @x�B
@r1�

� 2 @x�N
@r1�

�

���; @xL�
@rl

2�

= @x�N
@rl

2�

+"
�

@x�A
@rl

2�

+ @x�B
@rl

2�

� 2 @x�N
@rl

2�

�

�(1� �)�;

and @xL�
@rh

2�

= @x�N
@rh

2�

+ "
�

@x�A
@rh

2�

+ @x�B
@rh

2�

� 2 @x�N
@rh

2�

�

� 1��
R
�. Because @x�N

@rl
2�

= (1� �) d� and
@x�N
@rh

2�

= (1� �) p (�a� ) d� ,

@xL�
@rl

2�

< R @xL�
@rh

2�

for " su¢ciently small, so rl2� = 0. Also,
@x�N
@r1�

= �u0x (c1) d� , where c1 = r1�d� + r1� 0d� 0 .

Suppose to the contrary that c1 < ~c, which implies u0x (c1) =  > p (�T )R. By Lemma 2, the bank that provides

investors with a higher exposure of risky assets, r�d� � r� 0d� 0 , would have �
a
� � �T . Thus,

1
�

@x�N
@r1�

> R
1��

@x�N
@rh

2�

,

so for " su¢ciently small, 1
�
@xL�
@r1�

> R
1��

@xL�
@rh

2�

, so bank � would have an incentive to decrease rh2� and increase r1� .

Thus, the optimal contracts from banks must provide c1 � ~c. Suppose to the contrary that c1 > ~c, which implies

u0x (c1) = 1. Because p (�a� )R > 1, 1
�

@x�N
@r1�

< R
1��

@x�N
@rh

2�

, so for su¢ciently small ", 1
�
@xL�
@r1�

< R
1��

@xL�
@rh

2�

; so either

bank would have an incentive to decrease r1� and increase r2� . Thus, the optimal contract from banks must provide

c1 � ~c, so c1 = ~c in equilibrium.

By setting r1� = r1� 0 =
1
2
~c, rh2� = rh2� 0 , investors optimally select d� = 1, so �� = �T , and the FOCs are satis�ed.

Because 2 < ~c < 2 p(�T )R
�p(�T )R+(1��)

, (12) is lax. Because p (�L)R < 1, (13) and (14) are lax. Therefore, all IC constraint

are lax. Because r1� > 1 > p (�L)R, if there is a shock bad enough to run one bank, investors will run both. The

cuto¤ for runs follows from substitution into the expression from Lemma 3.
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